控制系统仿真综合实验报告
控制系统仿真综合实验报告
图 2-1
校正前系统阶跃响应曲线
可以看出原系统的响应速度非常慢, 所以要通过校正来改善系统的动态性能, 可以采用串联超前校正。 原系统为Ⅰ型系统,容易求出系统的速度误差系数为
K lim
s 0
s 400 2 s ( s 30 s 200)
2
根据实验要求速度误差系数为 10 ,那么 KV 10 / 2 5 ,此时系统的开环 传函为: G s
5 400 ,用 MATLAB 计算得相角裕量为 32.6°,由于采 s s 30 s 200
2
用串联超前校正能够增大系统的相角裕量,所以综合考虑,采用串联超前校正。 2. 经过第一步的分析,采用串联校正,可以计算出串联校正装置传递函数为 5 (1 0.12 s ) ,因此校正后的开环传递函数为: 1 0.048s
K Ess Overshoot(%) Ts(s) 5 0.2857 34.6099 4.7766
表1
8 0.20000 43.5125 5.6730
9 0.1818 45.7812 5.5325
12 0.1429 51.6704 5.7655
不同 K 值下系统响应的参数
(四)实验结果与分析 从理论上分析,系统的传递函数为 G s
ulxxlgxx?????????????????????????????????????????????????????????????????4301004300100000000010????uxxxy????????????????????????????????????0001000001???实际系统摆杆转动轴心到杆质心的长度为l025m则系统的状态方程为
(二)实验要求 1. 使用 Matlab 进行仿真; 2. 分析不同 K 值的情况下,系统的单位阶跃响应曲线,并绘图进行比较; 3. 列表对系统响应各性能进行比较,并确定你认为合适的参数值。 (三)实验内容及步骤 1.运行 MATLAB,进行仿真实验。
自控仿真实验报告
一、实验目的1. 熟悉MATLAB/Simulink仿真软件的基本操作。
2. 学习控制系统模型的建立与仿真方法。
3. 通过仿真分析,验证理论知识,加深对自动控制原理的理解。
4. 掌握控制系统性能指标的计算方法。
二、实验内容本次实验主要分为两个部分:线性连续控制系统仿真和非线性环节控制系统仿真。
1. 线性连续控制系统仿真(1)系统模型建立根据题目要求,我们建立了两个线性连续控制系统的模型。
第一个系统为典型的二阶系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)} \]第二个系统为具有迟滞环节的系统,其开环传递函数为:\[ G(s) = \frac{1}{(s+1)(s+2)(s+3)} \](2)仿真与分析(a)阶跃响应仿真我们对两个系统分别进行了阶跃响应仿真,并记录了仿真结果。
(b)频率响应仿真我们对两个系统分别进行了频率响应仿真,并记录了仿真结果。
(3)性能指标计算根据仿真结果,我们计算了两个系统的性能指标,包括上升时间、超调量、调节时间等。
2. 非线性环节控制系统仿真(1)系统模型建立根据题目要求,我们建立了一个具有饱和死区特性的非线性环节控制系统模型。
其传递函数为:\[ W_k(s) = \begin{cases}1 & |s| < 1 \\0 & |s| \geq 1\end{cases} \](2)仿真与分析(a)阶跃响应仿真我们对非线性环节控制系统进行了阶跃响应仿真,并记录了仿真结果。
(b)相轨迹曲线绘制根据仿真结果,我们绘制了四条相轨迹曲线,以分析非线性环节对系统性能的影响。
三、实验结果与分析1. 线性连续控制系统仿真(a)阶跃响应仿真结果表明,两个系统的性能指标均满足设计要求。
(b)频率响应仿真结果表明,两个系统的幅频特性和相频特性均符合预期。
2. 非线性环节控制系统仿真(a)阶跃响应仿真结果表明,非线性环节对系统的性能产生了一定的影响,导致系统响应时间延长。
《MATLAB与控制系统仿真》实验报告
《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。
二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。
本实验中我们选择了一个简单的比例控制系统模型。
2.设定输入信号我们需要为控制系统提供输入信号进行仿真。
在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。
本实验中,我们选择了一个阶跃信号作为输入信号。
3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。
MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。
4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。
常见的性能指标包括系统的稳态误差、超调量、响应时间等。
四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。
2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。
3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。
4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。
5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。
五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。
通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。
六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。
通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。
七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。
MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。
基于MATLAB控制系统仿真实验报告
tf 4
y0
0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3
3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)
0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A
0.5
1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:
控制系统实训实验报告
一、实验目的1. 了解控制系统的基本组成和原理。
2. 掌握控制系统调试和性能测试方法。
3. 培养动手能力和团队协作精神。
4. 熟悉相关实验设备和软件的使用。
二、实验原理控制系统是指通过某种方式对某个系统进行控制,使其按照预定的要求进行运行。
控制系统主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号,通过调节输入信号,实现对被控对象的控制。
本实验主要研究PID控制系统的原理和应用。
三、实验仪器与设备1. 实验箱:用于搭建控制系统实验电路。
2. 数据采集卡:用于采集实验数据。
3. 计算机:用于运行实验软件和数据处理。
4. 实验软件:用于控制系统仿真和调试。
四、实验内容1. 控制系统搭建:根据实验要求,搭建PID控制系统实验电路,包括控制器、被控对象和反馈环节。
2. 控制系统调试:对搭建好的控制系统进行调试,包括控制器参数的整定、系统稳定性和响应速度的调整等。
3. 控制系统性能测试:对调试好的控制系统进行性能测试,包括系统稳定性、响应速度、超调量等指标。
4. 控制系统仿真:利用实验软件对控制系统进行仿真,分析系统在不同参数下的性能。
五、实验步骤1. 控制系统搭建:按照实验要求,连接控制器、被控对象和反馈环节,搭建PID控制系统实验电路。
2. 控制系统调试:根据实验要求,调整控制器参数,使系统达到预定的性能指标。
3. 控制系统性能测试:对调试好的控制系统进行性能测试,记录测试数据。
4. 控制系统仿真:利用实验软件对控制系统进行仿真,分析系统在不同参数下的性能。
六、实验结果与分析1. 控制系统搭建:成功搭建了PID控制系统实验电路。
2. 控制系统调试:通过调整控制器参数,使系统达到预定的性能指标。
3. 控制系统性能测试:系统稳定性、响应速度、超调量等指标均达到预期效果。
4. 控制系统仿真:仿真结果表明,系统在不同参数下具有良好的性能。
七、实验总结1. 通过本次实验,了解了控制系统的基本组成和原理。
控制系统仿真实验报告书
一、实验目的1. 掌握控制系统仿真的基本原理和方法;2. 熟练运用MATLAB/Simulink软件进行控制系统建模与仿真;3. 分析控制系统性能,优化控制策略。
二、实验内容1. 建立控制系统模型2. 进行仿真实验3. 分析仿真结果4. 优化控制策略三、实验环境1. 操作系统:Windows 102. 软件环境:MATLAB R2020a、Simulink3. 硬件环境:个人电脑一台四、实验过程1. 建立控制系统模型以一个典型的PID控制系统为例,建立其Simulink模型。
首先,创建一个新的Simulink模型,然后添加以下模块:(1)输入模块:添加一个阶跃信号源,表示系统的输入信号;(2)被控对象:添加一个传递函数模块,表示系统的被控对象;(3)控制器:添加一个PID控制器模块,表示系统的控制器;(4)输出模块:添加一个示波器模块,用于观察系统的输出信号。
2. 进行仿真实验(1)设置仿真参数:在仿真参数设置对话框中,设置仿真时间、步长等参数;(2)运行仿真:点击“开始仿真”按钮,运行仿真实验;(3)观察仿真结果:在示波器模块中,观察系统的输出信号,分析系统性能。
3. 分析仿真结果根据仿真结果,分析以下内容:(1)系统稳定性:通过观察系统的输出信号,判断系统是否稳定;(2)响应速度:分析系统对输入信号的响应速度,评估系统的快速性;(3)超调量:分析系统超调量,评估系统的平稳性;(4)调节时间:分析系统调节时间,评估系统的动态性能。
4. 优化控制策略根据仿真结果,对PID控制器的参数进行调整,以优化系统性能。
调整方法如下:(1)调整比例系数Kp:增大Kp,提高系统的快速性,但可能导致超调量增大;(2)调整积分系数Ki:增大Ki,提高系统的平稳性,但可能导致调节时间延长;(3)调整微分系数Kd:增大Kd,提高系统的快速性,但可能导致系统稳定性下降。
五、实验结果与分析1. 系统稳定性:经过仿真实验,发现该PID控制系统在调整参数后,具有良好的稳定性。
《MATLAB与控制系统仿真》实验报告
《MATLAB与控制系统仿真》实验报告实验报告:MATLAB与控制系统仿真引言在现代控制工程领域中,仿真是一种重要的评估和调试工具。
通过仿真技术,可以更加准确地分析和预测控制系统的行为和性能,从而优化系统设计和改进控制策略。
MATLAB是一种强大的数值计算软件,广泛应用于控制系统仿真。
实验目的本实验旨在掌握MATLAB在控制系统仿真中的应用,通过实践了解控制系统的建模与仿真方法,并分析系统的稳定性和性能指标。
实验内容1.建立系统模型首先,根据控制系统的实际情况,建立系统的数学模型。
通常,控制系统可以利用线性方程或差分方程进行建模。
本次实验以一个二阶控制系统为例,其传递函数为:G(s) = K / [s^2 + 2ζω_ns + ω_n^2],其中,K表示放大比例,ζ表示阻尼比,ω_n表示自然频率。
2.进行系统仿真利用MATLAB软件,通过编写代码实现控制系统的仿真。
可以利用MATLAB提供的函数来定义传递函数,并通过调整参数来模拟不同的系统行为。
例如,可以利用step函数绘制控制系统的阶跃响应图像,或利用impulse函数绘制脉冲响应图像。
3.分析系统的稳定性与性能在仿真过程中,可以通过调整控制系统的参数来分析系统的稳定性和性能。
例如,可以改变放大比例K来观察系统的超调量和调整时间的变化。
通过观察控制系统的响应曲线,可以判断系统的稳定性,并计算出性能指标,如超调量、调整时间和稳态误差等。
实验结果与分析通过MATLAB的仿真,我们得到了控制系统的阶跃响应图像和脉冲响应图像。
通过观察阶跃响应曲线,我们可以得到控制系统的超调量和调整时间。
通过改变放大比例K的值,我们可以观察到超调量的变化趋势。
同时,通过观察脉冲响应曲线,我们还可以得到控制系统的稳态误差,并判断系统的稳定性。
根据实验结果分析,我们可以得出以下结论:1.控制系统的超调量随着放大比例K的增大而增大,但当K超过一定值后,超调量开始减小。
2.控制系统的调整时间随着放大比例K的增大而减小,即系统的响应速度加快。
控制系统仿真实验报告
控制系统仿真实验报告(总19页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除昆明理工大学电力工程学院学生实验报告实验课程名控制系统仿真实验称:开课实验室:计算中心2082015 年 6月 16日实验一电路的建模与仿真一、实验目的1、了解KCL 、KVL 原理;2、掌握建立矩阵并编写M 文件;3、调试M 文件,验证KCL 、KVL ;4、掌握用simulink 模块搭建电路并且进行仿真。
二、实验内容电路如图1所示,该电路是一个分压电路,已知13R =Ω,27R =Ω,20S V V =。
试求恒压源的电流I 和电压1V 、2V 。
IVSV 1V 2图1三、列写电路方程(1)用欧姆定律求出电流和电压 (2)通过KCL 和KVL 求解电流和电压(1) I=Vs/(R1+R2)=2A , V1=I*R1 =6V , V2=I*R2=14V (2) I*R1+I*R2-Vs=0 , V1=I*R1 , V2=I*R2 ,=> I=2A,V1=6V,V2=14V.四、编写M 文件进行电路求解(1)M文件源程序(2)M文件求解结果(1)M文件源程序R1=3;R2=7;Vs=20;I=Vs/(R1+R2)V1=I*R1V2=Vs-V1(2)M文件求解结果I=2V1=6V2=14五、用simulink进行仿真建模(1)给出simulink下的电路建模图(2)给出simulink仿真的波形和数值电流I波形I=2A电压U1波形,U1=6V电压U2波形,U2=14V六、结果比较与分析根据M文件编程输入到matlab中,实验结果与理论计算结果一致。
实验二 数值算法编程实现一、实验目的掌握各种计算方法的基本原理,在计算机上利用MATLAB 完成算法程序的编写拉格朗日插值算法程序,利用编写的算法程序进行实例的运算。
二、实验说明1.给出拉格朗日插值法计算数据表;2.利用拉格朗日插值公式,编写编程算法流程,画出程序框图,作为下述编程的依据;3.根据MATLAB 软件特点和算法流程框图,利用MATLAB 软件进行上机编程; 4.调试和完善MATLAB 程序;5.由编写的程序根据实验要求得到实验计算的结果。
控制系统仿真实验报告(20200717013819)
控制系统仿真实验报告班级:测控 1402 班姓名:王玮学号: 14050402072018 年 01 月实验一经典的连续系统仿真建模方法一实验目的 :1了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。
2掌握机理分析建模方法。
3深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写数值积分法仿真程序。
4掌握和理解四阶 Runge-Kutta法,加深理解仿真步长与算法稳定性的关系。
二实验内容 :1.编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。
(1)将阀位u增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(3)利用 MATLAB 中的 ode45() 函数进行求解,比较与(1)中的仿真结果有何区别。
2.编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1)将阀位增大 10%和减小 10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定?(4)阀位增大 10%和减小 10%,利用 MATLAB中的 ode45() 函数进行求解阶跃响应,比较与( 1)中的仿真结果有何区别。
三程序代码 :龙格库塔 :%RK4文件clccloseH=[1.2,1.4]';u=0.55; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:));xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型 :function dH=f(H,u)k=0.2;u=0.5;Qd=0.15;A=2;a1=0.20412;a2=0.21129;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));2 编写四阶Runge_Kutta公式的计算程序,对线性状态方程(18)式进行仿真:1阀值 u 对仿真结果的影响U=0.45;h=1;U=0.5;h=1;U=0.55;h=1;2 步长 h 对仿真结果的影响:U=0.5;h=5;U=0.5;h=20;U=0.5;h=39U=0.5;h=50由以上结果知 , 仿真步长越大 , 仿真结果越不稳定。
控制系统仿真实验报告
控制系统仿真实验报告班级:测控1402班姓名:王玮学号:072018年01月实验一经典的连续系统仿真建模方法一实验目的:1 了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。
2 掌握机理分析建模方法。
3 深入理解阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab编写数值积分法仿真程序。
4 掌握和理解四阶Runge-Kutta法,加深理解仿真步长与算法稳定性的关系。
二实验内容:1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。
(1)将阀位u 增大10%和减小10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定(3)利用 MATLAB 中的ode45()函数进行求解,比较与(1)中的仿真结果有何区别。
2. 编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真(1)将阀位增大10%和减小10%,观察响应曲线的形状;(2)研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定(4)阀位增大10%和减小10%,利用MATLAB 中的ode45()函数进行求解阶跃响应,比较与(1)中的仿真结果有何区别。
三程序代码:龙格库塔:%RK4文件clccloseH=[,]';u=; h=1;TT=[];XX=[];for i=1:h:200k1=f(H,u);k2=f(H+h*k1/2,u);k3=f(H+h*k2/2,u);k4=f(H+h*k3,u);H=H+h*(k1+2*k2+2*k3+k4)/6;TT=[TT i];XX=[XX H];end;hold onplot(TT,XX(1,:),'--',TT,XX(2,:)); xlabel('time')ylabel('H')gtext('H1')gtext('H2')hold on水箱模型:function dH=f(H,u)k=;u=;Qd=;A=2;a1=;a2=;dH=zeros(2,1);dH(1)=1/A*(k*u+Qd-a1*sqrt(H(1)));dH(2)=1/A*(a1*sqrt(H(1))-a2*sqrt(H(2)));2编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程(18)式进行仿真:1 阀值u对仿真结果的影响U=;h=1; U=;h=1;U=;h=1;2 步长h对仿真结果的影响:U=;h=5; U=;h=20;U=;h=39 U=;h=50由以上结果知,仿真步长越大,仿真结果越不稳定。
控制系统仿真实验一报告
实验一 经典的连续系统仿真建模方法一 实验目的1. 了解和掌握利用仿真技术对控制系统进行分析的原理和步骤。
2. 掌握机理分析建模方法。
3. 深入理解一阶常微分方程组数值积分解法的原理和程序结构,学习用Matlab 编写 数值积分法仿真程序。
4. 掌握和理解四阶 Runge-Kutta 法,加深理解仿真步长与算法稳定性的关系。
二 实验内容1. 编写四阶 Runge_Kutta 公式的计算程序,对非线性模型(3)式进行仿真。
(1) 将阀位u 增大10%和减小10%,观察响应曲线的形状;u=0.45时的图像:010020030040050060070080090010001.251.31.351.41.451.5u=0.55010020030040050060070080090010001.351.41.451.51.551.61.651.7开大或关小阀位之后,稳态值会相应的从原液位上升或下降,这是符合实际的。
(2) 研究仿真步长对稳定性的影响,仿真步长取多大时RK4 算法变得不稳定? 由(1)可知,当步长为40时,仿真结果是稳定的 当步长为80时的图像12345670200400600800100012001400160018002000-140-120-100-80-60-40-20020h (1,1)的数值稳定,但是并不是实际求得的稳态值。
h (1,2)的值显然发散。
进一步取小步长,取hstep=42时,图像出现偏差,但是稳态值不变0200400600800100012001.351.41.451.51.551.61.651.71.75Hstep=65时,图像偏差明显0200400600800100012001400160018000.511.522.53而hsetp=65.7时,图像就发散了020040060080010001200140016001800-25-20-15-10-55(3)利用MATLAB 中的ode45()函数进行求解,比较与(1)中的仿真结果有何区别。
控制系统仿真实验报告
控制系统仿真实验报告姓名:王天雷班级:231142学号:20131004363学院:自动化专业:自动化指导老师:刘峰2017 年 1 月目录7.2.2 (1)7.2.3 (7)7.2.4 (12)7.2.5 (17)7.2.6 (21)7.3.1 (24)总结 (25)7.2.2 控制系统的阶跃响应实验目的:观察学习控制系统的单位阶跃响应 记录单位阶跃响应曲线掌握时间响应分析的一般方法实验内容: 1. 二阶系统1)键入程序,观察并记录单位阶跃响应曲线 First.m close all; clear all; clc;num=[10];den=[1 2 10]; step(num,den); title(‘阶跃响应曲线’);2)键入damp(den) 计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录结果:Eigenvalue (闭环根) Damping (阻尼比) Freq. (rad/s)(无阻尼振荡频率)()102102++=s s sG-1.00e+000 + 3.00e+000i 3.16e-001 3.16e+000 -1.00e+000 - 3.00e+000i 3.16e-001 3.16e+0003)记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:由理论知识知编写代码x.m%返回峰值时间,超调量,调节时间5%,2% function [tr b ts1 ts2]=x(a,wn) wd=wn*(1-a^2)^0.5;%求解wd tp=3.14/wd;%峰值时间b=exp((-3.14*a/(1-a^2)^0.5));%超调量 ts1=3.5/(wn*a),ts2=4.5/(wn*a);%调节时间 计算得到理论值,填入表中3//πωπ==d p t 4.52%(00.9)3.55%n s n t ζωζζω⎧∆=⎪⎪=<<⎨⎪∆=⎪⎩2 1)修改参数,分别实现和的响应曲线,并记录 程序:second.m clear all; close all; clc;n0=10;d0=[1 2 10];step(n0,d0);%原系统,kesai=0.36 hold on;%保持原曲线n1=n0;d1=[1 6.32 10];step(n1,d1);%kesai=1; n2=n0;d2=[1 12.64 10];step(n2,d2);%kesai=2;如图,kesai 分别为0.36,1,2,曲线幅度递减2)修改参数,分别写出程序实现和的响应曲线,并记录程序:third.m clear all; close all; clc;n0=10;d0=[1 2 10];step(n0,d0);%原系统,wn0=10^0.5 hold on;%保持原曲线n1=0.25*n0;d1=[1 1 n1];step(n1,d1);%wn1=0.5*wn0; n2=4*n0;d2=[1 4 n2];step(n2,d2);%wn2=4*wn0=2;1=ζ2=ζ0121w w n =022w w n =如图,wn=2*wn0,wn0,0.5*wn0,上升时间逐渐增长,超调量不变3. 作出以下系统的阶跃响应,并与原系统响应曲线进行比较,作出相应的实验分析结果(1),有系统零点的情况(2),分子、分母多项式阶数相等(3),分子多项式零次项为零(4),原响应的微分,微分系数为1/10程序:%各系统阶跃响应曲线比较G0=tf([10],[1 2 10]);G1=tf([2 10],[1 2 10]);G2=tf([1 0.5 10],[1 2 10]); G3=tf([1 0.5 0],[1 2 10]);G4=tf([1 0 ],[1 2 10]); step(G0,G1,G2,G3,G4); grid on;title(' Step Response 曲线比较');()10210221+++=s s s s G ()102105.0222++++=s s s s s G ()1025.0222+++=s s s s s G ()10222++=s s s s G4.试做一个三阶系统和四阶系统的阶跃响应,并分析实验结果 假设一个三阶和一个四阶系统,如下sys1=tf([1],[1 1 1 1]);sys2=tf([1],[1 1 1 1 1]);step(sys1,sys2);如图,分别为sys1,sys2系统阶跃响应曲线分析1:系统阻尼比和无阻尼振荡频率对系统阶跃相应的影响11123+++=s s s sys 112234++++=s s s ssys解:在欠阻尼响应曲线中,阻尼比越小,超调量越大,上升时间越短,通常取kesai在0.4到0.8之间,此时超调量适度,调节时间较短;若二阶系统的阻尼比不变,振荡频率不同,其阶跃响应的振荡特性相同但响应速度不同,wn越大,响应速度越快。
控制系统仿真实验报告
控制系统仿真实验报告一、实验目的本次控制系统仿真实验的主要目的是通过使用仿真软件对控制系统进行建模、分析和设计,深入理解控制系统的工作原理和性能特点,掌握控制系统的分析和设计方法,提高解决实际控制问题的能力。
二、实验设备与软件1、计算机一台2、 MATLAB 仿真软件三、实验原理控制系统是由控制对象、控制器和反馈环节组成的一个闭环系统。
其工作原理是通过传感器测量控制对象的输出,将其与期望的输出进行比较,得到误差信号,控制器根据误差信号产生控制信号,驱动控制对象,使系统的输出逐渐接近期望的输出。
在仿真实验中,我们使用数学模型来描述控制对象和控制器的动态特性。
常见的数学模型包括传递函数、状态空间方程等。
通过对这些数学模型进行数值求解,可以得到系统的输出响应,从而对系统的性能进行分析和评估。
四、实验内容1、一阶系统的仿真建立一阶系统的数学模型,如一阶惯性环节。
使用 MATLAB 绘制系统的单位阶跃响应曲线,分析系统的响应时间和稳态误差。
2、二阶系统的仿真建立二阶系统的数学模型,如典型的二阶振荡环节。
改变系统的阻尼比和自然频率,观察系统的阶跃响应曲线,分析系统的稳定性、超调量和调节时间。
3、控制器的设计与仿真设计比例控制器(P 控制器)、比例积分控制器(PI 控制器)和比例积分微分控制器(PID 控制器)。
对给定的控制系统,分别使用不同的控制器进行仿真,比较系统的性能指标,如稳态误差、响应速度等。
4、复杂控制系统的仿真建立包含多个环节的复杂控制系统模型,如串级控制系统、前馈控制系统等。
分析系统在不同输入信号下的响应,评估系统的控制效果。
五、实验步骤1、打开 MATLAB 软件,新建脚本文件。
2、根据实验内容,定义系统的数学模型和参数。
3、使用 MATLAB 中的函数,如 step()函数绘制系统的阶跃响应曲线。
4、对响应曲线进行分析,计算系统的性能指标,如超调量、调节时间、稳态误差等。
5、设计控制器,修改系统模型,重新进行仿真,比较系统性能的改善情况。
MATLABSimulink与控制系统仿真实验报告
MATLAB/Simulink 与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++g ,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
控制系统的典型环节的模拟实验报告
控制系统的典型环节的模拟实验报告实验报告:控制系统的典型环节的模拟实验一、实验目的本实验旨在通过模拟实验的方式,深入了解控制系统中的典型环节,包括比例环节、积分环节和微分环节,并对其进行系统性的研究和分析。
二、实验原理1.比例环节:比例环节是最简单的一种控制环节,其输出值与输入值成线性关系,常用来放大或压缩信号。
比例环节的传递函数可以表示为:Gp(s)=Kp。
2.积分环节:积分环节可以在一段时间内不断积累输入变量的累计值,并将其作为输出信号的一部分。
积分环节的传递函数可以表示为:Gi(s)=Ki/s。
3.微分环节:微分环节针对输入信号的变化率进行调节,通过对输入信号进行微分运算得到输出信号的一部分。
微分环节的传递函数可以表示为:Gd(s)=Kd*s。
三、实验内容与步骤1.实验器材:计算机、SIMULINK仿真软件。
2.实验步骤:a)打开SIMULINK仿真软件并创建一个新的模型文件。
b)在模型文件中依次添加比例环节、积分环节和微分环节的模块,并连接起来。
c)设置比例环节、积分环节和微分环节的参数,分别设定Kp、Ki和Kd的取值。
d)构建输入信号和输出信号的模型,设置输入信号的变化规律并得到输出信号。
e)运行模型并观察输出信号的变化情况,记录实验结果。
f)分析实验结果,比较不同控制环节对输出信号的影响。
四、实验结果与分析在实验中,我们分别设置比例环节、积分环节和微分环节的参数,得到了不同的输出信号。
以比例环节为例,当Kp=1时,输入信号与输出信号相等;当Kp>1时,输出信号的幅度大于输入信号的幅度;当Kp<1时,输出信号的幅度小于输入信号的幅度。
类似地,当Ki和Kd的取值不同时,输出信号的变化也会有所不同。
通过实验结果的分析,我们可以得出以下结论:1.比例环节的作用是放大或压缩输入信号的幅度,可以用于控制输出信号的增益。
2.积分环节的作用是对输入信号进行积分运算,可以平滑输出信号的变化,同时可以消除稳态误差。
控制系统计算机仿真及辅助设计实验报告
阶跃
num=[0.8,0,-20];
den=[1,0,-40,0];
sys=tf(num,den);
t=0:0.01:1;
step(sys,t)
实验图形
室温控制系统校正装置设计
已知某室温控制系统为单位负反馈,某开环传递函数为: ,试用Bode图设计法对系统进行滞后串联校正设计,使系统满足;
系统在斜坡信号作用下,系统的速度误差系数 ≥30
(2)比较这几种方法:
对于四阶龙格-库塔方法
真值
1
0.9048
0.8187
0.7408
0.6703
0.6065
0.5488
0.4966
0.4493
0.4066
0.3679
龙库
1
0.9048
0.8187
0.7408
0.6703
0.6065
0.5488
0.4966
0.4493
0.4066
0.3679
误差
step(sys,t)
单位脉冲响应图像
单位阶跃响应图像
实验二
2-2.用MATLAB语言求下列系统的状态方程、传递函数、零极点增益、和部分分式形式的模型参数,并分别写出其相应的数学模型表达式:
1.G(s)=
2. =
Y=[0 2 0 2] X
1.解:(1)状态方程模型参数:
编写MATLAB程序如下
>> num=[1 7 24 24];
(1)m文件程序为h=0.1;
disp('函数的数值解为'); %显示‘’中间的文字%
disp('y=');%同上%
y=1;
MATLAB控制系统仿真实验报告
清华大学自动化工程学院实验报告课程:控制系统仿真专业自动化班级 122姓名学号指导教师:时间: 2015 年 10 月 19 日— 10 月 28 日目录实验一 MATLAB环境的熟悉与基本运算 (1)实验二 MATLAB语言的程序设计 (6)实验三 MATLAB的图形绘制 (9)实验四采用SIMULINK的系统仿真 (14)实验五控制系统的频域与时域分析 (17)实验六控制系统PID校正器设计法 (23)实验一 MATLAB环境的熟悉与基本运算一、实验时间及地点:实验时间:2015.10.19上午8:30—9:30实验地点:计算中心二、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算三、实验内容:1、新建一个文件夹(自己的名字命名,在机器的最后一个盘符)2、启动MATLAB6.5,将该文件夹添加到MATLAB路径管理器中。
3、保存,关闭对话框4、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)5、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
6、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。
注意:每一次M-file的修改后,都要存盘。
练习A:(1)help rand,然后随机生成一个2×6的数组,观察command window、command history和workspace等窗口的变化结果(2)学习使用clc、clear,了解其功能和作用(3)输入一个2维数值数组,体会标点符号的作用(空格和逗号的作用)。
(4)一维数组的创建和寻访,创建一个一维数组(1×8)X,查询X数组的第2个元素,查询X数组的第3个元素到第6个元素,查询X数组的第5个元素到最后一个元素,查询X数组的第3、2、1个元素,查询X数组中≤5元素,将X数组的第2个元素重新赋值为111,实例expm1。
控制系统仿真实验报告
控制系统仿真实验报告控制系统仿真实验报告引言控制系统是现代科学技术中的重要组成部分,广泛应用于工业生产、交通运输、航空航天等领域。
为了验证和优化控制系统的设计方案,仿真实验成为一种重要的手段。
本篇文章将对控制系统仿真实验进行详细的报告和分析。
一、实验目的本次控制系统仿真实验旨在通过模拟真实的控制系统运行环境,验证控制系统的性能和稳定性。
具体目标包括:1. 验证控制系统的闭环性能,包括稳定性、响应速度和误差补偿能力。
2. 评估不同控制策略在系统性能上的差异,比较PID控制、模糊控制等算法的效果。
3. 优化控制系统的设计方案,提高系统的控制精度和鲁棒性。
二、实验装置和方法本次实验采用MATLAB/Simulink软件进行仿真。
通过搭建控制系统的数学模型,并设置不同的控制参数和输入信号,模拟真实的控制环境。
具体步骤如下:1. 建立控制系统的数学模型,包括被控对象、传感器、执行器等部分。
2. 设计不同的控制策略,如PID控制器、模糊控制器等,并设置相应的参数。
3. 设置输入信号,模拟系统的工作条件和外部干扰。
4. 运行仿真实验,记录系统的输出响应、误差曲线和稳定性指标。
5. 分析实验结果,对比不同控制策略的性能差异,优化控制系统的设计方案。
三、实验结果与分析通过多次仿真实验,我们得到了一系列实验结果,并进行了详细的分析。
以下是其中的一些重要发现:1. PID控制器在大部分情况下表现出良好的控制性能,能够实现较快的响应速度和较小的稳态误差。
然而,在某些复杂系统中,PID控制器可能存在过调和震荡的问题。
2. 模糊控制器在处理非线性系统时表现出较好的鲁棒性,能够适应不同工况下的控制要求。
但是,模糊控制器的设计和参数调整相对复杂,需要较多的经验和专业知识。
3. 对于一些特殊的控制系统,如高阶系统和时变系统,需要采用更为复杂的控制策略,如自适应控制、鲁棒控制等。
这些策略能够提高系统的鲁棒性和适应性,但也增加了控制系统的设计和调试难度。
控制仿真实验报告
实验名称:基于MATLAB/Simulink的PID控制器参数优化仿真实验日期:2023年11月10日实验人员:[姓名]实验指导教师:[指导教师姓名]一、实验目的1. 理解PID控制器的原理及其在控制系统中的应用。
2. 学习如何使用MATLAB/Simulink进行控制系统仿真。
3. 掌握PID控制器参数优化方法,提高控制系统的性能。
4. 分析不同参数设置对系统性能的影响。
二、实验原理PID控制器是一种广泛应用于控制领域的线性控制器,它通过将比例(P)、积分(I)和微分(D)三种控制作用相结合,实现对系统输出的调节。
PID控制器参数优化是提高控制系统性能的关键。
三、实验内容1. 建立控制系统模型。
2. 设置PID控制器参数。
3. 进行仿真实验,分析系统性能。
4. 优化PID控制器参数,提高系统性能。
四、实验步骤1. 建立控制系统模型使用MATLAB/Simulink建立被控对象的传递函数模型,例如:```G(s) = 1 / (s^2 + 2s + 5)```2. 设置PID控制器参数在Simulink中添加PID控制器模块,并设置初始参数,例如:```Kp = 1Ki = 0Kd = 0```3. 进行仿真实验设置仿真时间、初始条件等参数,运行仿真实验,观察系统输出曲线。
4. 分析系统性能分析系统在给定参数下的响应性能,包括超调量、调节时间、稳态误差等指标。
5. 优化PID控制器参数根据分析结果,调整PID控制器参数,优化系统性能。
可以使用以下方法:- 试凑法:根据经验调整参数,观察系统性能变化。
- Ziegler-Nichols方法:根据系统阶跃响应,确定参数初始值。
- 遗传算法:使用遗传算法优化PID控制器参数。
6. 重复步骤3-5,直至系统性能满足要求五、实验结果与分析1. 初始参数设置初始参数设置如下:```Kp = 1Ki = 0Kd = 0```仿真结果如图1所示:![图1 初始参数设置下的系统输出曲线](https:///5Q8w6zQ.png)从图1可以看出,系统存在较大的超调量和较长的调节时间,稳态误差较大。
控制系统仿真与设计实验报告
控制系统仿真与设计实验报告姓名:班级:学号:指导老师:刘峰7.2.2控制系统的阶跃响应一、实验目的1。
观察学习控制系统的单位阶跃响应;2。
记录单位阶跃响应曲线;3.掌握时间相应的一般方法;二、实验内容1.二阶系统G(s)=10/(s2+2s+10)键入程序,观察并记录阶跃响应曲线;录系统的闭环根、阻尼比、无阻尼振荡频率;记录实际测去的峰值大小、峰值时间、过渡时间,并与理论值比较。
(1)实验程序如下:num=[10];den=[1 2 10];step(num,den);响应曲线如下图所示:(2)再键入:damp(den);step(num,den);[y x t]=step(num,den);[y,t’]可得实验结果如下:实际值理论值峰值 1.3473 1.2975 峰值时间1。
0928 1。
0649 过渡时间+%5 2.4836 2.6352+%2 3.4771 3。
51362。
二阶系统G(s)=10/(s2+2s+10)试验程序如下:num0=[10];den0=[1 2 10];step(num0,den0);hold on;num1=[10];den1=[1 6.32 10];step(num1,den1);hold on;num2=[10];den2=[1 12.64 10];step(num2,den2);响应曲线:(2)修改参数,分别实现w n1= (1/2)w n0和w n1= 2w n0响应曲线试验程序:num0=[10];den0=[1 2 10];step(num0,den0);hold on;num1=[2.5];den1=[1 1 2。
5];step(num1,den1);hold on;num2=[40];den2=[1 4 40];step(num2,den2);响应曲线如下图所示:3。
时作出下列系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际系统摆杆转动轴心到杆质心的长度为 l=0.25m,则系统的状态方程为:
1 0 0 0 0 0 0 29 .4
1 y 0
0 0
0 1
x1 0 x2 0 u 0 x3 0 x4
编写程序观察系统的单位阶跃响应曲线,程序如下: m = 0.109;M = 1.096; b = 0.1;l = 0.25;
实验四
一级倒立摆状态反馈设计及时间响应
(一)实验题目 设计状态反馈阵 K (1)直线一级倒立摆系统稳定性分析; (2)检验系统可控性; (3)根据调整时间和超调量的要求,并留有一定的裕量,选取期望的闭 环极点;写出希望的闭环特征多项式。 (4)状态反馈设计
u r Kx
式中 r — r × 1 参考输入; K — r × n 状态反馈阵。 状态反馈闭环系统希望的极点:
图 4-3 状态反馈闭环系统时间响应波形
(四)实验分析 从图 4-3 中可以看出, 引入状态反馈改变系统的极点后,系统状态响应波形 明显得到改善, 状态变量的过渡过程均变得平稳且快速。由于状态反馈改变了极 点,从而影响了系统的静态增益值,要恢复原系统的静态增益值,需要在输出端 补偿一个倍数。 静态补偿状态反馈的闭环系统结构图以及其时间响应波形如下图所示:
I = 0.0034;g = 9.8; G = tf(m*l,[I+m*l^2,0,-m*g*l]); t = 0:0.1:5; c = step(G,t); plot(t,c); grid;
图 3-2
直线一级倒立摆单位阶跃响应曲线
2. 按照状态变量图做出 Simulink 仿真模型如下图所示:
图 3-3 Simulink 仿真模型
0 x x 0 0 0
0 1 x x 0 2 x3 0 0 x4
1 0 0
0
0 0 3g 0 4l
0 x 0 x 0 1 1 0 u 3 0 4l
K Ess Overshoot(%) Ts(s) 5 0.2857 34.6099 4.7766
表1
8 0.20000 43.5125 5.6730
9 0.1818 45.7812 5.5325
12 0.1429 51.6704 5.7655
不同 K 值下系统响应的参数
(四)实验结果与分析 从理论上分析,系统的传递函数为 G s
图 1-2 用 MATLAB 编写程序
程序如下: k=6; z=-2; p=[-1;-1-1.732j;-1+1.732j]; G=zpk(z,p,k); H=feedback(G,1); t=0:0.05:7; C=step(H,t); plot(t,C,'-'); grid on;
3.取不同 K 值,观察系统的单位阶跃响应曲线,绘图进行比较。
图 2-1
校正前系统阶跃响应曲线
可以看出原系统的响应速度非常慢, 所以要通过校正来改善系统的动态性能, 可以采用串联超前校正。 原系统为Ⅰ型系统,容易求出系统的速度误差系数为
K lim
s 0
s 400 2 s ( s 30 s 200)
2
根据实验要求速度误差系数为 10 ,那么 KV 10 / 2 5 ,此时系统的开环 传函为: G s
0 x1 0 x 0 2 1 u 1 x3 0 0 x 3 4
x x 1 0 0 0 x 0 y 0 u 0 0 1 0
控制系统仿真综合实验 设计与报告
班级:自动化四班 姓名:王经纬 学号:201200171162
实验一
遥控侦查车速度控制
(一)实验背景 此遥控车曾用于联合国维和任务。考虑其速度控制系统如下图所示,参考 速度 R(s)通过无线通讯发送给小车,小车运动过程受到石块、凹凸地形等的扰 动为 Td(s),控制目标是实现较低的稳态误差和低超调的单位阶跃响应。
0.015 CartPos CartSpd PendAng PendSpd
0.01
0.005
0
-0.005
-0.01
0
0.5
1
1.5
2
2.5
3
图 4-1
状态反馈后时间响应曲线
2.按照状态变量图做出 Simulink 仿真模型如下图所示:
图 4-2 状态反馈闭环系统 Simulink 结构图
3.设置仿真参数,启动仿真过程,得到的响应波形如下图所示:
(一)实验题目 用现代控制理论对直线一级倒立摆系统进行分析, 并用 Simulink 对系统进 行仿真。
图 3-1 直线一级倒立摆
(二)实验要求 1. 用解析法求出系统的单位阶跃响应表达式,分析系统的响应性能; 2. 使用 Simulink 实现系统的仿真模型,观察系统的单位阶跃响应波形; 3. 整理实验数据和波形记录,比较仿真结果与解析结果的区别。 (三)实验步骤与内容 1. 用解析法建立倒立摆数学模型如下:
3. 设置仿真参数,启动仿真过程,得到的响应波形如下图所示:
图 3-4
Simulink 仿真响应波形
(四)实验分析 系统的特征方程:
s 1 0 0 0 s 0 0 sI A s 4 29.4 s 2 0 0 s 1 0 0 29.4 s
系统的四个特征根为[0 0 -5.42 5.42],由于有一个特征根在 s 的右半 平面,所以系统是不稳定的。从图 3-2 和图 3-4 中可以看出,系统在单位阶跃响 应输入下,不能稳定在平衡位置,系统几乎没有任何调节作用。
图 1-3
不同 K 值时系统曲线图 1
图 1-4
不同 K 值时系统曲线图 2
4.编写程序得到不同 K 值下的系统参数,并列表进行比较。 程序如下: k=8; z=-2; p=[-1;-1-1.732j;-1+1.732j]; G=zpk(z,p,k); H=feedback(G,1); C=dcgain(H); Ess=1-C [c,t]=step(H); [Y,k]=max(c); Overshoot=100*(Y-C)/C n=1; while c(n)<C n=n+1; end risetime=t(n); i=length(t); while(c(i)>0.98*C)&&(c(i)<1.02*C) i=i-1; end Ts=t(i)
(二)实验要求 1. 使用 Matlab 进行仿真; 2. 分析不同 K 值的情况下,系统的单位阶跃响应曲线,并绘图进行比较; 3. 列表对系统响应各性能进行比较,并确定你认为合适的参数值。 (三)实验内容及步骤 1.运行 MATLAB,进行仿真实验。
图 1-1
运行 MATLAB
2.编写遥控车速度控制系统在单位阶跃响应下的曲线程序。
Pj=poly(J); M=[B A*B A^2*B A^3*B]; W=[Pa(4) Pa(3) Pa(2) 1;Pa(3) Pa(2) 1 0;Pa(2) 1 0 0;1 0 0 0]; T=M*W; K=[Pj(5)-Pa(5) Pj(4)-Pa(4) Pj(3)-Pa(3) Pj(2)-Pa(2)]*inv(T) Ac=[(A-B*K)]; Bc=[B]; Cc=[C]; Dc=[D]; T=0:0.005:5; U=0.2*ones(size(T)); Cn=[1 0 0 0]; [Y X]=lsim(Ac,Bc,Cc,Dc,U,T); plot(T,X(:,1),'-'); hold on; plot(T,X(:,2),'- .'); hold on; plot(T,X(:,3),'.'); hold on; plot(T,X(:,4),'-') legend('CartPos','CartSpd','PendAng','PendSpd') 计算得 K= -95.2381 -46.2585 137.5460 24.7528 状态反馈后时间响应曲线如下:
实验二
(一)实验题目 被控对象传函为 G s (1)速度误差系数为 10 (2)相角裕量为 45 度
连续系统的频率法校正
400 ,要求: s s 30 s 200
ห้องสมุดไป่ตู้
2
(二)实验要求 1. 描述你的校正方法,并利用 MATLAB 编程计算; 2. 写出校正后系统的开环传递函数,并画出伯德图,计算相角裕度等; 3. 比较校正前后系统的阶跃响应曲线及性能指标,说明校正装置的作用。 (三)实验步骤与内容 1. 选取校正方法,进行理论计算 首先,观察一下原系统的阶跃响应曲线,程序如下: sys1=tf(2,[0.005,0.15,1,0]); H1=feedback(sys1,1); step(H1); grid; 曲线如下:
K s 2 ,容易推知,在 s 1 s 2 2s 4
单位阶跃输入下, 系统稳态误差会随着 K 值的增大而减小,超调量和调节时间都 随着 K 值的增大而增大,这和仿真实验的结果是相吻合的。从图 1-3 和 1-4 中可 以看见,当 K 值取 6 到 11 时,系统的性能是比较好的,加上表 1 的参数分析, 当 K 值取 9 时,系统的调节时间和超调量都比较适中,稳态误差相对较小。
图 2-2
校正前系统阶跃响应曲线
3.编写程序观察校正前后系统的阶跃响应曲线及性能指标 程序如下: sys1=tf(2,[0.005,0.15,1,0]); sys2=tf(10*[0.12,1],conv([0.005,0.15,1,0],[0.048,1])); H1=feedback(sys1,1); H2=feedback(sys2,1); step(H1); hold; step(H2,'r'); grid;