自动控制系统实验报告

合集下载

自动控制预实习报告

自动控制预实习报告

自动控制预实习报告
一、实习目的
1.了解自动控制系统的基本原理和组成。

2.掌握自动控制系统的建模和分析方法。

3.熟悉常见的自动控制系统及其应用。

4.培养动手能力和实践经验。

二、实习内容
1.自动控制系统概论
1.1 自动控制系统的定义和分类
1.2 自动控制系统的基本组成
1.3 自动控制系统的特点和应用领域
2.自动控制系统的数学模型
2.1 传递函数法
2.2 状态空间法
2.3 非线性系统建模
3.自动控制系统的性能分析
3.1 时域性能指标
3.2 频率域性能指标
3.3 稳定性分析
4.自动控制系统的设计
4.1 PID控制器设计
4.2 先进控制方法
5.实验和仿真
5.1 自动控制系统实验装置
5.2 MATLAB/Simulink仿真
三、实习要求
1.认真学习理论知识,掌握基本概念和分析方法。

2.积极参与实验和仿真,培养动手能力。

3.按时完成实习报告,总结实习心得。

四、实习安排
本实习为期4周,包括理论学习、实验和仿真环节。

具体安排如下:第1周:自动控制系统概论、系统建模
第2周:系统性能分析、稳定性分析
第3周:控制系统设计、实验和仿真
第4周:实习总结,完成实习报告
五、实习成果
通过本次实习,预期能够达到以下目标:
1.掌握自动控制系统的基本原理和分析方法。

2.熟悉常见的自动控制系统及其应用。

3.培养动手能力和实践经验。

4.提高综合运用所学知识的能力。

自动控制实训实验报告

自动控制实训实验报告

一、实验目的1. 熟悉并掌握自动控制系统的基本原理和实验方法;2. 理解典型环节的阶跃响应、频率响应等性能指标;3. 培养动手能力和分析问题、解决问题的能力。

二、实验原理自动控制系统是指利用各种自动控制装置,按照预定的规律自动地完成对生产过程或设备运行状态的调节和控制。

本实验主要研究典型环节的阶跃响应和频率响应。

1. 阶跃响应:当系统受到一个阶跃输入信号时,系统输出信号的变化过程称为阶跃响应。

阶跃响应可以反映系统的稳定性、快速性和准确性。

2. 频率响应:频率响应是指系统在正弦输入信号作用下的输出响应。

频率响应可以反映系统的动态性能和抗干扰能力。

三、实验仪器与设备1. 自动控制实验箱;2. 双踪示波器;3. 函数信号发生器;4. 计算器;5. 实验指导书。

四、实验内容与步骤1. 阶跃响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录阶跃响应曲线。

(3)分析阶跃响应曲线,计算系统的超调量、上升时间、调节时间等性能指标。

2. 频率响应实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入正弦信号,改变频率,观察并记录频率响应曲线。

(3)分析频率响应曲线,计算系统的幅频特性、相频特性等性能指标。

3. 系统校正实验(1)搭建实验电路,连接好实验箱和示波器。

(2)输入阶跃信号,观察并记录未校正系统的阶跃响应曲线。

(3)根据期望的性能指标,设计校正环节,并搭建校正电路。

(4)输入阶跃信号,观察并记录校正后的阶跃响应曲线。

(5)分析校正后的阶跃响应曲线,验证校正效果。

五、实验结果与分析1. 阶跃响应实验(1)实验结果:根据示波器显示的阶跃响应曲线,计算得到系统的超调量为10%,上升时间为0.5s,调节时间为2s。

(2)分析:该系统的稳定性较好,但响应速度较慢,超调量适中。

2. 频率响应实验(1)实验结果:根据示波器显示的频率响应曲线,计算得到系统的幅频特性在0.1Hz到10Hz范围内基本稳定,相频特性在0.1Hz到10Hz范围内变化不大。

自动控制原理实验报告

自动控制原理实验报告

实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。

实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。

利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。

时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。

K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。

自动控制系统综合实验综 合 实 验 报 告

自动控制系统综合实验综 合 实 验 报 告

综合实验报告实验名称自动控制系统综合实验题目指导教师设计起止日期2013年1月7日~1月18日系别自动化学院控制工程系专业自动化学生姓名班级 学号成绩前言自动控制系统综合实验是在完成了自控理论,检测技术和仪表,过程控制系统等课程后的一次综合训练。

要求同学在给定的时间内利用前期学过的知识和技术在过程控制实验室的现有设备上,基于mcgs组态软件或step7、wincc组态软件设计一个监控系统,完成相应参数的控制。

在设计工作中,学会查阅资料、设计、调试、分析、撰写报告等,达到综合能力培养的目的。

目录前言 (1)第一章、设计题目 (2)第二章、系统概述 (2)第一节、实验装置的组成 (2)第二节、MCGS组态软件 (7)第三章、系统软件设计 (10)实时数据库 (10)设备窗口 (12)运行策略 (15)用户窗口 (17)主控窗口 (26)第四章、系统在线仿真调试 (27)第五章、课程设计总结 (34)第六章、附录 (34)附录一、宇光智能仪表通讯规则 (34)第一章、设计题目题目1 单容水箱液位定值控制系统选择上小水箱、上大水箱或下水箱作为被测对象,实现对其液位的定值控制。

实验所需设备:THPCA T-2型现场总线控制系统实验装置(常规仪表侧),水箱装置,AT-1挂件,智能仪表,485通信线缆一根(或者如果用数据采集卡做,AT-4 挂件,AT-1挂件、PCL通讯线一根)。

实验所需软件:MCGS组态软件要求:1.用MCGS软件设计开发,包括用户界面组态、设备组态、数据库组态、策略组态等,连接电路,实现单容水箱的液位定值控制;2.施加扰动后,经过一段调节时间,液位应仍稳定在原设定值;3.改变设定值,经过一段调节时间,液位应稳定在新的设定值。

第二章、系统概述第一节、实验装置的组成一、被控对象1.水箱:包括上水箱、下水箱和储水箱。

上、下水箱采用淡蓝色优质有机玻璃,不但坚实耐用,而且透明度高,便于学生直接观察液位的变化和记录结果。

自动控制系统实验报告

自动控制系统实验报告

自动控制系统实验报告
《自动控制系统实验报告》
摘要:本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性。

通过实验结果的分析和总结,得出了对于自动控制系统设计和优化的一些有益的结论。

1. 引言
自动控制系统是现代工程中的重要组成部分,它能够实现对系统的自动调节和控制,提高系统的稳定性、性能和鲁棒性。

因此,对自动控制系统的研究和实验具有重要意义。

2. 实验目的
本实验旨在通过对自动控制系统的实验研究,探讨系统的稳定性、性能和鲁棒性等方面的特性,为系统设计和优化提供参考依据。

3. 实验内容
本实验采用了XXX控制系统作为研究对象,通过对系统的参数调节和实验数据的采集,分析系统的稳定性、性能和鲁棒性等方面的特性。

4. 实验结果分析
通过实验数据的分析和处理,得出了系统的稳定性较好,在一定范围内能够实现对系统的有效控制;系统的性能表现良好,能够满足实际工程的需求;系统的鲁棒性较强,对外部扰动具有一定的抵抗能力。

5. 结论
通过本实验的研究,得出了对于自动控制系统设计和优化的一些有益的结论,为相关工程应用提供了一定的参考价值。

6. 展望
未来可以进一步深入研究自动控制系统的优化设计和应用,为工程实践提供更为有效的控制方案。

综上所述,通过对自动控制系统的实验研究,得出了一些有益的结论,为相关工程应用提供了一定的参考价值。

希望本实验的研究成果能够为自动控制系统的设计和优化提供一定的指导和帮助。

2023年自动控制原理实验系统超前校正实验报告

2023年自动控制原理实验系统超前校正实验报告

试验五 系统超前校正(4课时)本试验为设计性试验 一、试验目旳1. 理解和观测校正装置对系统稳定性及动态特性旳影响。

2. 学习校正装置旳设计和实现措施。

二、试验原理工程上常用旳校正措施一般是把一种高阶系统近似地简化成低阶系统, 并从中找出少数经典系统作为工程设计旳基础, 一般选用二阶、三阶经典系统作为预期经典系统。

只要掌握经典系统与性能之间旳关系, 根据设计规定, 就可以设计系统参数, 进而把工程实践确认旳参数推荐为“工程最佳参数”, 对应旳性能确定为经典系统旳性能指标。

根据经典系统选择控制器形式和工程最佳参数, 据此进行系统电路参数计算。

在工程设计中, 常常采用二阶经典系统来替代高阶系统(如采用主导极点、偶极子等概念分析问题)其动态构造图如图7-1所示。

同步还常常采用“最优”旳综合校正措施。

图7-1二阶经典系统动态构造图二阶经典系统旳开环传递函数为)2()1()(2n n s s Ts s Ks G ξωω+=+= 闭环传递函数2222)(nn ns s s ωξωω++=Φ 式中 , 或者 二阶系统旳最优模型 (1)最优模型旳条件根据控制理论, 当 时, 其闭环频带最宽, 动态品质最佳。

把 代入 得到, , 这就是进行校正旳条件。

(2)最优模型旳动态指标为%3.4%100%21/=⨯=--ξξπσe,T t ns 3.43≈=ω三、试验仪器及耗材1.EL —AT3自动控制原理试验箱一台; 2.PC 机一台; 3.数字万用表一块 4.配套试验软件一套。

四、试验内容及规定未校正系统旳方框图如图7-2所示, 图7-3是它旳模拟电路。

图7-2未校正系统旳方框图矫正后未调整电路图图7-3未校正系统旳模拟电路设计串联校正装置使系统满足下述性能指标(1) 超调量%σ≤5% (2) 调整时间t s ≤1秒(3) 静态速度误差系数v K ≥20 1/秒 1. 测量未校正系统旳性能指标 (1)按图7-3接线;(2)加入单位阶跃电压, 观测阶跃响应曲线, 并测出超调量 和调整时间ts 。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓 名班 级学 号指导教师1自动控制原理实验报告(一)一.实验目的1.了解掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2.观察分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

3.了解掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

4.研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

5.掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标σ%、t p 、t s 的计算。

6.观察和分析Ⅰ型二阶闭环系统在欠阻尼、临界阻尼、过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标σ%、t p 值,并与理论计算值作比对。

二.实验过程与结果1.观察比例环节的阶跃响应曲线1.1模拟电路图1.2传递函数(s)G(s)()o i U K U s == 10R K R =1.3单位阶跃响应U(t)K 1.4实验结果1.5实验截图2342.观察惯性环节的阶跃响应曲线2.1模拟电路图2.2传递函数(s)G(s)()1o i U KU s TS ==+10R K R =1T R C =2.3单位阶跃响应0(t)K(1e)tTU-=-2.4实验结果2.5 实验截图5673.观察积分环节的阶跃响应曲线3.1模拟电路图3.2传递函数(s)1G(s)()TS o i U U s ==i 0T =R C3.3单位阶跃响应01(t)i U t T =3.4 实验结果3.5 实验截图89104.观察比例积分环节的阶跃响应曲线4.1模拟电路图4.2传递函数0(s)1(s)(1)(s)i i U G K U T S ==+10K R R =1i T R C=4.3单位阶跃响应1 (t)(1)U K tT=+ 4.4实验结果4.5实验截图1112135.观察比例微分环节的阶跃响应曲线5.1模拟电路图5.2传递函数0(s)1(s)()(s)1i U TSG K U S τ+==+12312(R )D R R T CR R =++3R C τ=120R R K R +=141233(R //R )R D K R +=0.06D D T K sτ=⨯=5.3单位阶跃响应0(t)()U KT t Kδ=+5.4实验结果截图6.观察比例积分微分(PID )环节的响应曲线6.1模拟电路图156.2传递函数0(s)(s)(s)p p p d i i K U G K K T S U T S ==++123212(R )C d R R T R R =++i 121(R R )C T =+120p R R K R +=1233(R //R )R D K R +=32R C τ= D D T K τ=⨯6.3单位阶跃响应0(t)()p p D p K U K T t K tTδ=++6.4实验观察结果截图16三.实验心得这个实验,收获最多的一点:就是合作。

自动控制原理实验报告

自动控制原理实验报告

一、实验目的1. 理解自动控制原理的基本概念,掌握自动控制系统的组成和基本工作原理。

2. 熟悉自动控制实验设备,学会使用相关仪器进行实验操作。

3. 通过实验验证自动控制理论在实际系统中的应用,加深对理论知识的理解。

二、实验原理自动控制原理是研究自动控制系统动态过程及其控制规律的科学。

实验主要验证以下原理:1. 线性时不变系统:系统在任意时刻的输入与输出之间关系可用线性方程表示,且系统参数不随时间变化。

2. 稳定性:系统在受到扰动后,能够逐渐恢复到稳定状态。

3. 控制器设计:通过控制器的设计,使系统满足预定的性能指标。

三、实验设备1. 自动控制实验台2. 计算机及控制软件3. 测量仪器(如示波器、信号发生器、数据采集器等)四、实验内容1. 线性时不变系统阶跃响应实验2. 线性时不变系统频率响应实验3. 控制器设计实验五、实验步骤1. 线性时不变系统阶跃响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为阶跃信号,观察并记录输出信号;(3)分析阶跃响应曲线,计算系统动态性能指标。

2. 线性时不变系统频率响应实验(1)搭建实验电路,连接好相关仪器;(2)设置输入信号为正弦信号,改变频率,观察并记录输出信号;(3)分析频率响应曲线,计算系统频率特性指标。

3. 控制器设计实验(1)根据系统性能指标,选择合适的控制器类型;(2)搭建实验电路,连接好相关仪器;(3)调整控制器参数,观察并记录输出信号;(4)分析控制器效果,验证系统性能指标。

六、实验结果与分析1. 线性时不变系统阶跃响应实验(1)实验结果:绘制阶跃响应曲线,计算系统动态性能指标;(2)分析:与理论值进行对比,验证系统动态性能。

2. 线性时不变系统频率响应实验(1)实验结果:绘制频率响应曲线,计算系统频率特性指标;(2)分析:与理论值进行对比,验证系统频率特性。

3. 控制器设计实验(1)实验结果:调整控制器参数,观察并记录输出信号;(2)分析:验证系统性能指标,评估控制器效果。

自动控制实验报告

自动控制实验报告

自动控制实验报告自动控制实验报告「篇一」一、实验目的1、掌握直流稳压电源的功能、技术指标和使用方法;2、掌握任意波函数新号发生器的功能、技术指标和使用方法;3、掌握四位半数字万用表功能、技术指标和使用方法;4、学会正确选用电压表测量直流、交流电压。

二、实验原理(一)GPD—3303型直流稳压电源主要特点:1、三路独立浮地输出(CH1、CH2、FIXED)2、 CH1、CH2稳压值0―32 V,稳流值0―3。

2A3、两路串联(SER/IEDEP),两路并联(PARA/IEDEP)(二)RIGOL DG1022双通道函数/任意波函数信号发生器主要特点1、双通道输出,可实现通道耦合,通道复制2、输出五种基本波形:正弦波、方波、锯齿波、脉冲波、白噪声,并内置48种任意波形三、实验仪器1、直流稳压电源1台2、数字函数信号发生器1台3、数字万用表1台4、电子技术综合试验箱1台四、实验数据记录与误差分析1、直流电压测量(1)固定电源测量:测量稳压电源固定电压2.5V、3.3V、5V;误差分析:E1=|2.507—2.5|÷2。

5×100%=0.28%E2=|3.318—3。

3|÷3.3×100%=0.55%E3=|5.039—5|÷5×100%=0.78%(2)固定电源测量:测量实验箱的固定电压±5V、±12V、—8V;误差分析:E1=|5.029—5|÷5×100%=0.58%E2=|5.042—5|÷5×100%=0.84%E3=|11.933—12|÷12×100%=0.93%E3=|11.857—12|÷12×100%=0.56%E3=|8.202—8|÷8×100%=2.5%(3)可变电源测量;误差分析:E1=|6.016—6|÷6×100%=0.27%E2=|12.117—12|÷12×100%=0.98% E3=|18.093—18|÷18×100%=0.51%(4)正、负对称电源测量;2、正弦电压(有效值)测量(1)正弦波fs=1kHz;(2)正弦波fs=100kHz;3、实验箱可调直流信号内阻测量4、函数信号发生器内阻(输出电阻)的测量;自动控制实验报告「篇二」尊敬的各位领导、同事:大家好!在过去的一年多里,因为有公司领导的关心和指导,有热心的同事们的努力配合和帮助,所以能较圆满的完成质检部门的前期准备工作和领导交代的其他工作,作为质检专责我的主要工作职责就掌握全厂的工艺,负责全厂的质量工作,审核化验结果,并定期向上级领导做出汇报,编写操作规程并组织实施,编写质量和实验室的管理制度以及实验设备的验收等工作。

自动控制系统实验报告

自动控制系统实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握自动控制系统的基本分析方法;3. 熟悉自动控制系统的实验操作步骤;4. 分析实验数据,提高对自动控制系统的理解和应用能力。

二、实验原理自动控制系统是一种根据给定输入信号,通过反馈和调节作用,使系统输出信号能够自动跟踪输入信号的系统。

自动控制系统主要由被控对象、控制器和反馈环节组成。

三、实验设备1. 自动控制系统实验箱;2. 数据采集卡;3. 计算机;4. 电源;5. 实验接线板。

四、实验内容1. 自动控制系统组成原理实验;2. 自动控制系统基本分析方法实验;3. 自动控制系统实验操作步骤实验。

五、实验步骤1. 自动控制系统组成原理实验(1)观察实验箱内各模块的连接情况,了解被控对象、控制器和反馈环节的连接方式;(2)按照实验指导书的要求,将实验箱内的模块正确连接;(3)启动实验箱,观察系统运行情况,分析系统组成原理。

2. 自动控制系统基本分析方法实验(1)根据实验指导书的要求,设置实验参数;(2)启动实验箱,进行实验操作;(3)采集实验数据,记录实验结果;(4)分析实验数据,掌握自动控制系统基本分析方法。

3. 自动控制系统实验操作步骤实验(1)按照实验指导书的要求,设置实验参数;(2)启动实验箱,进行实验操作;(3)观察系统运行情况,分析实验操作步骤;(4)记录实验数据,分析实验结果。

六、实验结果与分析1. 自动控制系统组成原理实验实验结果表明,自动控制系统由被控对象、控制器和反馈环节组成,通过反馈和调节作用实现系统输出信号的自动跟踪。

2. 自动控制系统基本分析方法实验实验结果表明,通过实验数据可以分析自动控制系统的稳定性、速度响应、稳态误差等性能指标,从而掌握自动控制系统基本分析方法。

3. 自动控制系统实验操作步骤实验实验结果表明,按照实验指导书的要求进行实验操作,可以顺利完成实验任务,达到实验目的。

七、实验结论1. 通过本次实验,掌握了自动控制系统的基本概念和组成;2. 掌握了自动控制系统基本分析方法;3. 熟悉了自动控制系统的实验操作步骤;4. 提高了分析实验数据、解决实际问题的能力。

自动控制实践实验报告

自动控制实践实验报告

一、实验目的1. 理解自动控制系统的基本概念和原理;2. 掌握自动控制系统的基本分析方法;3. 培养动手操作能力和实验技能;4. 提高对自动控制系统的设计、调试和优化能力。

二、实验原理自动控制系统是一种利用反馈控制原理,使被控对象的输出量能够跟踪给定输入量的系统。

本实验主要研究线性定常系统的稳定性、动态性能和稳态性能。

三、实验设备1. 自动控制实验台;2. 实验仪器:信号发生器、示波器、信号调理器、数据采集卡等;3. 实验软件:MATLAB/Simulink。

四、实验内容1. 系统搭建与调试(1)搭建实验台,连接实验仪器;(2)设置信号发生器,产生不同频率、幅值的信号;(3)调整信号调理器,对信号进行放大、滤波等处理;(4)将处理后的信号输入实验台,观察系统的响应。

2. 稳定性分析(1)根据实验数据,绘制系统的伯德图;(2)根据伯德图,判断系统的稳定性;(3)通过改变系统参数,观察对系统稳定性的影响。

3. 动态性能分析(1)根据实验数据,绘制系统的阶跃响应曲线;(2)根据阶跃响应曲线,分析系统的上升时间、超调量、调节时间等动态性能指标;(3)通过改变系统参数,观察对系统动态性能的影响。

4. 稳态性能分析(1)根据实验数据,绘制系统的稳态误差曲线;(2)根据稳态误差曲线,分析系统的稳态性能;(3)通过改变系统参数,观察对系统稳态性能的影响。

五、实验结果与分析1. 系统搭建与调试通过搭建实验台,连接实验仪器,观察系统的响应,验证了实验系统的可行性。

2. 稳定性分析根据伯德图,判断系统在原参数下的稳定性。

通过改变系统参数,观察对系统稳定性的影响,得出以下结论:(1)系统在原参数下稳定;(2)减小系统参数,系统稳定性提高;(3)增大系统参数,系统稳定性降低。

3. 动态性能分析根据阶跃响应曲线,分析系统的动态性能指标:(1)上升时间:系统在给定输入信号作用下,输出量达到稳态值的80%所需时间;(2)超调量:系统在达到稳态值时,输出量相对于稳态值的最大偏差;(3)调节时间:系统在给定输入信号作用下,输出量达到稳态值的95%所需时间。

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》

自动控制原理实验报告《线性控制系统时域分析》一、实验目的1. 理解线性时间不变系统的基本概念,掌握线性时间不变系统的数学模型。

2. 学习时域分析的基本概念和方法,掌握时域分析的重点内容。

3. 掌握用MATLAB进行线性时间不变系统时域分析的方法。

二、实验内容本实验通过搭建线性时间不变系统,给出系统的数学模型,利用MATLAB进行系统的时域测试和分析,包括系统的时域性质、单位脉冲响应、单位阶跃响应等。

三、实验原理1. 线性时间不变系统的基本概念线性时间不变系统(Linear Time-Invariant System,简称LTI系统)是指在不同时间下的输入信号均可以通过系统输出信号进行表示的系统,它具有线性性和时不变性两个重要特性。

LTI系统的数学模型可以表示为:y(t) = x(t) * h(t)其中,y(t)表示系统的输出信号,x(t)表示系统的输入信号,h(t)表示系统的冲激响应。

2. 时域分析的基本概念和方法时域分析是一种在时间范围内对系统进行分析的方法,主要涉及到冲激响应、阶跃响应、单位脉冲响应等方面的内容。

针对不同的输入信号,可以得到不同的响应结果,从而确定系统的时域特性。

四、实验步骤与结果1. 搭建线性时间不变系统本实验中,实验者搭建了一个简单的一阶系统,系统的阻尼比为0.2,系统时间常数为1。

搭建完成后,利用信号发生器输出正弦信号作为系统的输入信号。

2. 获取系统的响应结果利用MATLAB进行系统的时域测试和分析,得到了系统的冲激响应、单位阶跃响应和单位脉冲响应等结果。

其中,冲激响应、阶跃响应和脉冲响应分别如下所示:冲激响应:h(t) = 0.2e^(-0.2t) u(t)阶跃响应:H(t) = 1-(1+0.2t) e^(-0.2t) u(t)脉冲响应:g(t) = h(t) - h(t-1)3. 绘制响应图表通过绘制响应图表,可以更好地展示系统的时域性质。

下图展示了系统的冲激响应、阶跃响应和脉冲响应的图表。

自动控制实验报告

自动控制实验报告

⾃动控制实验报告试验⼀⾮线性系统分析实验报告2.1典型⾮线性环节⼀、实验⽬的1、掌握各典型⾮线性环节模拟电路的构成⽅法,掌握TDN-AC/ACS设备的使⽤⽅法。

2、了解参数变化对典型⾮线性环节动态特性的影响。

⼆、实验要求1、观察各种典型⾮线性环节的动态特性曲线2观测参数变化对典型⾮线性环节动态特性曲线的影响三、实验步骤1、⾸先使⽤MATLAB对继电特性、饱和特性、死区特性和间隙特性进⾏观测在MA TLAB中新建MODEL区,建⽴仿真模型如下:设置各参数和⽰波器观测范围运⾏,结果如下:(1)间隙特性(2)继电特性(3)饱和特性(4)死区特性2、接下来对四种继电特性⽤实验箱模拟,按照实验指导书中的电路图,搭建真实特性电路图,并给以输⼊,⽤⽰波器观测波形,波形如下:(1)继电特性波形如下:从图中可见U0从正到负或由负到正跳变时不能实现直接跳变,要有⼀个⼩的下降或上升过程。

(2)饱和特性从图可见,跳变过程并不是⼀条直线,⽽是圆滑的曲线。

(3)死区特性可见除U0到零时与仿真曲线有所不同以外,其他基本相同(4)间隙特性间隙特性与仿真基本相同2.2⾮线性系统的相平⾯分析法⼀、实验⽬的1、掌握⽤模拟电路构成⾮线性系统的⽅法,掌握TDN-AC/ACS设备的使⽤⽅法。

2、掌握⽤相平⾯法分析⾮线性系统的原理和⽅法。

⼆、实验要求1、观测各种⾮线性系统的相轨迹2、观测参数变化对⾮线性系统的相轨迹的影响三、实验过程(1)继电型⾮线性系统1、⾸先使⽤MA TLAB对⾮线性系统进⾏仿真搭建仿真电路图,设置各参数运⾏结果如下:2、按照实验指导书中图2.2-2中的继电型⾮线性系统模拟电路搭建实体电路图,调节幅值旋钮从⽰波器上观测到⼀簇相轨迹,⼤致图形如下从图中可见,纵坐标轴将相平⾯分成两个区域,系统在阶跃信号作⽤下,沿相轨迹运动,若继电特性是理想的,则逐渐收敛于原点。

(2)带速度负反馈的继电型⾮线性系统1、⾸先:在MATLAB中建⽴模拟电路图,模拟带速度负反馈的继电型⾮线性系统。

自动控制实验报告

自动控制实验报告

一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn)对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:见图1图1(2) 对应的模拟电路图图2(3) 理论分析导出系统开环传递函数,开环增益。

系统开环传递函数为:G(S) = =开环增益为:K=K1/K0(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图2),s 1T 0=, s T 2.01=,R200K 1= R200K =⇒系统闭环传递函数为:KS S KS S S W n n n 5552)(2222++=++=ωζωω 其中自然振荡角频率:R1010T K 1n ==ω;阻尼比:40R1025n =ω=ζ2.典型的三阶系统稳定性分析 (1) 结构框图图3(2) 模拟电路图图4(3) 理论分析系统的开环传函为:)1S 5.0)(1S 1.0(S R 500)S (H )S (G ++=(其中R 500K =),系统的特征方程为:0K 20S 20S 12S 0)S (H )S (G 123=+++⇒=+。

(4) 实验内容从Routh 判据出发,为了保证系统稳定,K 和R 如何取值,可使系统稳定,系统临界稳定,系统不稳定三、 实验现象分析1.典型二阶系统瞬态性能指标表1其中21e Mp ζ-ζπ-=,2np 1t ζ-ωπ=,n s 4t ζω=,21p e 1)t (C ζ-ζπ-+=2.典型三阶系统在不同开环增益下的响应情况由Routh判据得:S3 1 20S212 20KS10S020K 0要使系统稳定则第一列应均为正数,所以得得0<K<12即R>41.7KΩ时,系统稳定K=12 即R=41.7KΩ时,系统临界稳定K>12即R<41.7KΩ时,系统不稳定二线性系统的根轨迹分析1.绘制图3系统的根轨迹由开环传递函数分母多项式得最高次为3,所以根轨迹条数为3。

自动控制实验报告

自动控制实验报告

一、实验目的1. 熟悉并掌握自动控制实验系统的基本操作方法。

2. 了解典型线性环节的时域响应特性。

3. 掌握自动控制系统的校正方法,提高系统性能。

二、实验设备1. 自动控制实验系统:包括计算机、XMN-2自动控制原理模拟实验箱、CAE-PCI软件、万用表等。

2. 电源:直流稳压电源、交流电源等。

三、实验原理自动控制实验系统主要由模拟实验箱和计算机组成。

通过模拟实验箱,可以搭建不同的自动控制系统,并通过计算机进行实时数据采集、分析、处理和仿真。

四、实验内容及步骤1. 搭建比例环节实验(1)根据实验要求,搭建比例环节实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析比例环节的时域响应特性。

2. 搭建积分环节实验(1)根据实验要求,搭建积分环节实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析积分环节的时域响应特性。

3. 搭建比例积分环节实验(1)根据实验要求,搭建比例积分环节实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析比例积分环节的时域响应特性。

4. 搭建系统校正实验(1)根据实验要求,搭建系统校正实验电路。

(2)设置输入信号,观察并记录输出信号。

(3)分析系统校正前后的时域响应特性。

五、实验结果与分析1. 比例环节实验结果实验结果显示,比例环节的输出信号与输入信号成正比关系,且响应速度较快。

2. 积分环节实验结果实验结果显示,积分环节的输出信号与输入信号成积分关系,且响应速度较慢。

3. 比例积分环节实验结果实验结果显示,比例积分环节的输出信号既具有比例环节的快速响应特性,又具有积分环节的缓慢响应特性。

4. 系统校正实验结果实验结果显示,通过校正后的系统,其响应速度和稳态误差均有所提高。

六、实验结论1. 通过本次实验,掌握了自动控制实验系统的基本操作方法。

2. 熟悉了典型线性环节的时域响应特性。

3. 学会了自动控制系统的校正方法,提高了系统性能。

七、实验感想本次实验让我深刻认识到自动控制理论在实际工程中的应用价值。

自动控制系统标准实验报告

自动控制系统标准实验报告

实验日期年月日组号同组人实验一. 开环直流调速系统研究一、实验目的:1.了解晶闸管直流调速系统实验装置的组成。

2.熟悉直流调速系统的组成及基本结构。

3.掌握晶闸管直流调速系统参数及开环系统调速特性的测定。

二、实验内容:1.测定晶闸管直流调速系统主电路的总电阻R、总电阻L2.测定晶闸管直流调速系统主电路电磁时间常数Tl3.测定直流电动机机组的飞轮惯量GD24.测定直流电动机电动势系数Ce和转矩系数Cm:U=f(I)5.测定晶闸管直流调速系统机电时间常数Tm6.测定晶闸管直流调速系统的开环系统调速特性n=f(U)三、实验仪器和设备:1.电机机组一套:(直流电动机-交流电动机-直流发电机-测速发电机-编码器)。

2.直流发电机:额定功率350W、额定转速1440r/min、额定电压165V、额定励磁电流2.0A、额定励磁电压200V、额定励磁电流0.45A。

3.直流电动机:额定功率500W、额定转速1400r/min、额定电压220V、额定励磁电流2.3A、额定励磁电压200V、额定励磁电流0.35A。

4.IPS-n电机转速测量仪。

5.三相调压器:调压范围0~420V/50Hz、视载功率4KW、电流4A。

6.直流电压表、电流表、负载单元、可变电阻器和开关导线等。

四、实验线路及参数测量:RP1图1开环直流开环调速系统实验日期年月日组号同组人1.测定晶闸管直流调速系统主电路的总电阻R、总电阻L2.测定晶闸管直流调速系统主电路电磁时间常数Tl3.测定直流电动机机组的飞轮惯量GD24.测定直流电动机电动势系数Ce和转矩系数Cm:U=f(I)5.测定晶闸管直流调速系统机电时间常数Tm6.测定晶闸管直流调速系统的开环系统调速特性n=f(U)五、特性曲线按开环系统调速实验数据,画出其调速特性曲线n=f(U)六、思考题1.在做空载实验时,为什么不能反复调节励磁电流的大小?答:在做空载实验时,由于发电机励磁回路中存在励磁电流和发电机输出电压的磁滞效应,反复调节励磁电流使得在同一点的励磁电流下测出两个不同的输出电压。

自动控制原理_实验报告

自动控制原理_实验报告

一、实验目的1. 理解自动控制系统的基本概念和组成;2. 掌握典型环节的传递函数和响应特性;3. 熟悉PID控制器的原理和参数整定方法;4. 通过实验验证理论知识的正确性,提高实际操作能力。

二、实验设备1. 自动控制原理实验箱;2. 示波器;3. 数字多用表;4. 个人电脑;5. 实验指导书。

三、实验原理自动控制系统是一种根据给定输入信号自动调节输出信号的系统。

它主要由控制器、被控对象和反馈环节组成。

控制器根据被控对象的输出信号与给定信号的偏差,通过调节控制器的输出信号来改变被控对象的输入信号,从而实现对被控对象的控制。

1. 典型环节(1)比例环节:比例环节的传递函数为G(s) = K,其中K为比例系数。

比例环节的响应特性为输出信号与输入信号成线性关系。

(2)积分环节:积分环节的传递函数为G(s) = 1/s,其中s为复频域变量。

积分环节的响应特性为输出信号随时间逐渐逼近输入信号。

(3)比例积分环节:比例积分环节的传递函数为G(s) = K(1 + 1/s),其中K为比例系数。

比例积分环节的响应特性为输出信号在比例环节的基础上,逐渐逼近输入信号。

2. PID控制器PID控制器是一种常用的控制器,其传递函数为G(s) = Kp + Ki/s + Kd(s/s^2),其中Kp、Ki、Kd分别为比例系数、积分系数和微分系数。

PID控制器可以实现对系统的快速、稳定和精确控制。

四、实验内容及步骤1. 实验一:典型环节的阶跃响应(1)搭建比例环节电路,观察并记录输出信号随时间的变化曲线;(2)搭建积分环节电路,观察并记录输出信号随时间的变化曲线;(3)搭建比例积分环节电路,观察并记录输出信号随时间的变化曲线。

2. 实验二:PID控制器参数整定(1)搭建PID控制器电路,观察并记录输出信号随时间的变化曲线;(2)通过改变PID控制器参数,观察并分析系统响应特性;(3)根据系统响应特性,整定PID控制器参数,使系统达到期望的响应特性。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告实验报告:自动控制原理一、实验目的本次实验的目的是通过设计并搭建一个简单的自动控制系统,了解自动控制的基本原理和方法,并通过实际测试和数据分析来验证实验结果。

二、实验装置和仪器1. Arduino UNO开发板2.电机驱动模块3.直流电机4.旋转角度传感器5.杜邦线6.电源适配器三、实验原理四、实验步骤1. 将Arduino UNO开发板与电机驱动模块、旋转角度传感器和直流电机进行连接。

2. 编写Arduino代码,设置电机的控制逻辑和旋转角度的反馈机制。

3. 将编写好的代码上传至Arduino UNO开发板。

4.将电源适配器连接至系统,确保实验装置正常供电。

5.启动实验系统并观察电机的转动情况。

6.记录电机的转动角度和实际目标角度的差异,并进行数据分析。

五、实验结果和数据分析在实际操作中,我们设置了电机的目标转动角度为90度,待实验系统运行后,我们发现电机实际转动角度与目标角度存在一定的差异。

通过对数据的分析,我们发现该差异主要由以下几个方面导致:1.电机驱动模块的响应速度存在一定的延迟,导致电机在到达目标角度时出现一定的误差。

2.旋转角度传感器的精度有限,无法完全准确地测量电机的实际转动角度。

这也是导致实际转动角度与目标角度存在差异的一个重要原因。

3.电源适配器的稳定性对电机的转动精度也有一定的影响。

六、实验总结通过本次实验,我们了解了自动控制的基本原理和方法,并通过实际测试和数据分析了解了自动控制系统的运行情况。

同时,我们也发现了实际系统与理论预期之间存在的一些差异,这些差异主要由电机驱动模块和旋转角度传感器等因素引起。

为了提高自动控制系统的精度,我们需要不断优化和改进这些因素,并进行相应的校准和调试。

实验的结果也提醒我们,在实际应用中,需要考虑各种因素的影响,以确保自动控制系统的可靠性和准确性。

自动控制实验报告一-控制系统的稳定性分析

自动控制实验报告一-控制系统的稳定性分析

实验一控制系统的稳定性分析一、实验目的1.观察系统的不稳定现象。

2.研究系统开环增益和时间常数对稳定性的影响。

二、实验仪器1.自动控制系统实验箱一台2.计算机一台三、实验内容系统模拟电路图如图系统模拟电路图其开环传递函数为:G( s)=10K/s(0.1s+1)(Ts+1)式中 K1=R3/R2 ,R2=100K , R3=0~ 500K; T=RC,R=100K ,C=1 f 或 C=0.1 f 两种情况。

四、实验步骤1. 连接被测量典型环节的模拟电路。

电路的输入U1 接 A/D、D/A 卡的 DA1输出,电路的输出 U2 接 A/D、D/A 卡的 AD1 输入,将纯积分电容两端连在模拟开关上。

检查无误后接通电源。

2.启动计算机,在桌面双击图标[ 自动控制实验系统 ] 运行软件。

3. 在实验项目的下拉列表中选择实验三[ 控制系统的稳定性分析]5. 取 R3 的值为 50K , 100K,200K,此时相应的 K=10, K1=5, 10, 20。

观察不同R3值时显示区内的输出波形(既 U2的波形 ) ,找到系统输出产生增幅振荡时相应的R3及 K 值。

再把电阻 R3 由大至小变化,即 R3=200k ,100k, 50k ,观察不同 R3值时显示区内的输出波形 ,找出系统输出产生等幅振荡变化的R3 及 K 值,并观察U2的输出波形。

五、实验数据1模拟电路图2.画出系统增幅或减幅振荡的波形图。

C=1uf 时:R3=50K K=5:R3=100K K=10 R3=200K K=20:等幅振荡: R3=220k:增幅振荡: R3=220k:R3=260k:C=0.1uf 时:R3=50k:R3=100K: R3=200K:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制系统实验报告学号:班级:姓名:老师:一.运动控制系统实验实验一.硬件电路的熟悉和控制原理复习巩固实验目的:综合了解运动控制实验仪器机械结构、各部分硬件电路以及控制原理,复习巩固以前课堂知识,为下阶段实习打好基础。

实验内容:了解运动控制实验仪的几个基本电路:单片机控制电路(键盘显示电路最小应用系统、步进电机控制电路、光槽位置检测电路)ISA运动接口卡原理(搞清楚译码电路原理和ISA总线原理)步进电机驱动检测电路原理(高低压恒流斩波驱动电路原理、光槽位置检测电路)两轴运动十字工作台结构步进电机驱动技术(掌握步进电机三相六拍、三相三拍驱动方法。

)微机接口技术、单片机原理及接口技术,数控轮廓插补原理,计算机高级语言硬件编程等知识。

实验结果:步进电机驱动技术:控制信号接口:(1)PUL:单脉冲控制方式时为脉冲控制信号,每当脉冲由低变高是电机走一步;双脉冲控制方式时为正转脉冲信号。

(2)DIR:单脉冲控制方式时为方向控制信号,用于改变电机转向;双脉冲控制方式时为反转脉冲信号。

(3)OPTO :为PUL 、DIR 、ENA 的共阳极端口。

(4)ENA :使能/禁止信号,高电平使能,低电平时驱动器不能工作,电机处于自由状 态。

电流设定:(1)工作电流设定:(2)静止电流设定:静态电流可用SW4 拨码开关设定,off 表示静态电流设为动态电流的一半,on 表示静态电流与动态电流相同。

一般用途中应将SW4 设成off ,使得电机和驱动器的发热减少,可靠性提高。

脉冲串停止后约0.4 秒左右电流自动减至一半左右(实际值的60%),发热量理论上减至36%。

(3)细分设定:(4)步进电机的转速与脉冲频率的关系电机转速v = 脉冲频率P * 电机固有步进角e / (360 * 细分数m)逐点比较法的直线插补和圆弧插补:一.直线插补原理:如图所示的平面斜线AB ,以斜线起点A 的坐标为x0,y0,斜线AB 的终点坐标为(xe ,ye),则此直线方程为:0000Y Ye X Xe Y Y X X --=-- 取判别函数F =(Y —Y0)(Xe —Xo)—(X-X0)(Ye —Y0)用逐点比较法加工时,每一次只在一个坐标方向给出一个脉冲,使运动件在该坐标方向上进给一步,因此刀具的运动轨迹是折线,而不是斜线AB。

折线拐点M与斜线AB之间的位置关系有如下三种情况:1)M点在AB线的上方.判别函数F>0;2)M点在AB线上,F=03)M点在AB线的下方,F<0象限判别和电机方向方向第一象限第二象限第三象限第四象限Xe-X0 >0 <0 <0 >0Ye-Y0 >0 >0 <0 <0 X向电机正反反正Y向电机正正反反二.圆弧插补原理:图中AB是被加工圆弧。

加工程序中给出的已知条件通常是A点B点的坐标值,圆心O’点相对圆弧起点A的增量坐标值。

由图可知:圆心O’点相对A点的增量坐标值为(—Io,—Jo)。

改变符号后就成为A点相对O’点的增量值Io,Jo。

由此可求出圆弧的半径值R:R2=Io2+Jo2在以圆心O’点为原点的I、J坐标系中,圆的方程可表示为:I2+J2=R2设刀具已位于M1点,则Mi点对圆弧AB的位置有三种情况:1)Mi在圆弧外侧,则0’Mi>R,Ii2+Ji2>R22)Mi在圆弧上,则0’Mi=R,Ii2+Ji2=R23)Mi在圆弧内侧,0’Mi<R,Ii2+Ji2<R2在第一象陨顺时针加工圆弧(顺圆弧)和第二、三、四象限加工顺圆弧和逆圆弧时,判别式都不相同。

带符号运算时,无论在哪个象限工作,顺圆弧或逆圆弧,归纳起来有如下四种情1.+X方向走一步I i+1= Ii+1F i+1 = Fi+2Ii+12.-X方向走一步I i+1= Ii-1F i+1 = Fi-2Ii+13.+Y方向走一步J i+1=Ji+1F i+1 = Fi+2Ji+14.-Y方向走一步J i+1=Ji+1F i+1 = Fi+2Ji+1四个象限进给方向象限判断和电机转向第一象限第二象限第三象限第四象限Ii的符号+ - - +Ji的符号+ + - -X向电机顺圆+ + - - 逆圆- - + +X向电机顺圆- + + - 逆圆+ - - +实验二.键盘显示综合实验实验目的:1、复习单片机键盘显示编制方法2、为下步工作奠定基础实验内容:1、编制键盘扫描程序和数码管的静态显示程序2、编制键盘数据输入程序3、编制十进制到二进制转换程序4、编制二进制到十进制转换程序5、编写显示程序6、编制功能键跳转程序7、联机作总体调试实验结果:#include <reg51.h> //库文件#include <stdio.h>#include <stdlib.h>#include <intrins.h>sbit P32=P3^2;#define LEDLen 8 //六个八段管#define mode 0x81 //8255工作模式 //方式0,A口、B口及上C口作为输出,下C口作为输入#define LEDSEL P2#define LEDSEL_0 0x60 //八段管地址#define LEDSEL_1 0x64#define LEDSEL_2 0x68#define LEDSEL_3 0x6C#define LEDSEL_4 0x70#define LEDSEL_5 0x74#define LEDSEL_6 0x78#define LEDSEL_7 0x7C#define uchar unsigned char#define uint unsigned int//code uchar hang[] = {0X01,0X02,0X04,0X08,0X10,0X20,0X40,0X80};code uchar lie[][8]={0xFF,0x99,0x00,0x00,0x00,0x81,0xC3,0xE7,0xFF,0xFF,0xDB,0x81,0x81,0xC3,0xE7,0xFF};#define Tick 200#define T100us (256-200)unsigned int C100us = Tick; // 200us记数单元unsigned char Bit = 0;unsigned char SelectLed[LEDLen] ={LEDSEL_0, LEDSEL_1, LEDSEL_2, LEDSEL_3, LEDSEL_4, LEDSEL_5, LEDSEL_6, LEDSEL_7};xdata unsigned char CS8255 _at_ 0x60; //8255xdata unsigned char PA _at_ 0x6000; //8255的PA口xdata unsigned char PB _at_ 0x6001; //8255的PB口xdata unsigned char PC _at_ 0x6002; //8255的PC口xdata unsigned char CTL _at_ 0x6003; //8255控制字地址unsigned char LEDBUFF[8];code unsigned char KeyTable[] = //键值表{0x7E, 0xBE, 0xDE, 0xEE,0x7D, 0xBD, 0xDD, 0xED,0x7B, 0xBB, 0xDB, 0xEB,0x77, 0xB7, 0xD7, 0xE7};code unsigned char SWEEP[] = //扫描信号{0x7f, 0xBf, 0xDF, 0xEF} ;code unsigned char LEDMAP[] = //八段显示管键码{0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07,0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5e, 0x79, 0x71};//延时void delay( unsigned int CNT ){unsigned char i;while ( CNT-- != 0)for( i=100; i != 0; --i) ;}unsigned char TestKey(){unsigned char i, Temp;Temp = PC; //PC是变化的i = ~Temp & 0x0f;return i;unsigned char GetKey (){unsigned char i, Num=16;if( TestKey() ){for(i=0; i<16; i++){if( KeyTable[i] == PC ) //有键按下时{Num = i; //确定键值do{delay(200); //消除键抖动}while ( TestKey() ); // 等待按键松开return Num; //返回键值}}}return Num;}void DisplayResult(unsigned char Num){LEDBUFF[7] = LEDMAP[ Num ];}void DisplayLED(){unsigned char i;for(i=0; i<8; ++i){LEDSEL = SelectLed[i];PB = LEDBUFF[i];delay(1);}}实验三.步进电机单片机控制实验(1)实验目的:1、掌握步进电机控制基本方法2、测试出步进电机工作频率范围,确定其正常工作中脉冲频率3、掌握步进电机加减速控制方法实验内容:1、编制步进电动机正反转实验:采用三相六拍和三相三拍控制方式分别编写步进电动机正反转程序。

2、步进电动机的频率特性测定实验:改变延时大小,测试步进电动机频率特性,找出不失步的最大频率。

3、编制步进电动机加减速程序,要求实现梯形加减速曲线。

4、结合键盘显示程序编制X、Y轴点动实验:实现+X、+Y、-X、-Y四个方向的点动功能,按下某个功能键+X,工作台即向该正方向运动,松开该键工作台停止运动。

实验结果:控制电机直线插补子程序:void line(int x1, int y1, int x2, int y2){int dx, dy, n, k, i, f;int x, y;dx = abs(x2-x1);dy = abs(y2-y1);n = dx + dy;if (x2 >= x1) {k = y2 >= y1 ? 1: 4;x = x1;y = y1;} else {k = y2 >= y1 ? 2: 3;x = x2;y = y2;}for (i = 0, f = 0; i < n; i++)if (f >= 0)switch (k) {case 1:f -= dy;PA = 0xff;delay(2); //X轴正转PA = 0xfe;delay(2);break;case 2:f -= dx;PA = 0xff;delay(2);PA = 0xef;delay(2); //Y轴正转break;case 3:f -= dy;PA = 0xfd;delay(2);PA = 0xfc;delay(2); //X轴反转break;case 4:f -= dx;PA = 0xdf;delay(2);PA = 0xcf;delay(2); //Y轴反转break;}elseswitch (k) {case 1:f += dx;PA = 0xff;delay(2);PA = 0xef;delay(2); //Y轴正转break;case 2:f += dy;PA = 0xfd;delay(2);PA = 0xfc;delay(2); //X轴反转break;case 3:f += dx;PA = 0xdf;delay(2);PA = 0xcf;delay(2); //Y轴反转break;case 4:f += dy;PA = 0xff;delay(2); //X轴正转PA = 0xfe;delay(2);break;}}实验四.步进电机单片机控制实验(2)实验目的:1、掌握运动控制系统常用控制方法2、掌握直线的逐点比较插补方法实验内容:1、编制第一象限直线插补程序。

相关文档
最新文档