材料力学公式
材料力学公式汇总
材料力学公式汇总材料力学是研究物质在受力作用下的变形和破坏规律的科学。
在材料力学中,有一些重要的公式常被用来描述材料的力学性能。
下面是一些常见的材料力学公式的汇总。
1. 应力(Stress)的公式:应力是单位面积上的力,通常用σ表示。
常见的应力公式有:①弹性应力公式:σ=Eε其中,σ为应力,E为杨氏模量,ε为材料的应变(strain)。
②纵向应力公式:σ=P/A其中,σ为纵向应力,P为作用在材料上的纵向力,A为材料的受力面积。
③剪切应力公式:τ=F/A其中,τ为剪切应力,F为作用在材料上的剪切力,A为材料的受力面积。
2. 应变(Strain)的公式:应变是物体的变形程度,通常用ε表示。
常见的应变公式有:①纵向应变公式:ε=δL/L其中,ε为纵向应变,δL为物体的纵向位移,L为物体的原始长度。
②剪切应变公式:γ=δθ其中,γ为剪切应变,δθ为物体的剪切角。
③ 体积变形(Poisson's Ratio)公式:ν = -ε_lat / ε_long其中,ν为体积变形,ε_lat为横向应变,ε_long为纵向应变。
3. 弹性模量(Elastic Modulus)的公式:弹性模量是衡量材料抵抗应变的能力,常见的弹性模量公式有:① 杨氏模量(Young's Modulus):E=σ/ε其中,E为杨氏模量,σ为应力,ε为应变。
② 剪切模量(Shear Modulus):G=τ/γ其中,G为剪切模量,τ为剪切应力,γ为剪切应变。
③ 体积模量(Bulk Modulus):K=-∆V/V/∆p其中,K为体积模量,∆V为体积的变化量,V为原始体积,∆p为压力的变化量。
4. 破坏强度(Ultimate Strength)的公式:破坏强度是材料能够承受的最大应力,常见的破坏强度公式有:① 抗拉强度(Tensile Strength):σ_max = F_max / A其中,σ_max为抗拉强度,F_max为材料所能承受的最大拉力,A为受力面积。
材料力学基本概念及计算公式
材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
材料力学公式完全版
材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学常用基本公式
材料力学常用基本公式材料力学是研究材料的力学性质和力学变形行为的学科,涉及到材料的强度、刚度、变形、破坏等方面。
在材料力学的研究中,常用到一些基本公式来描述材料的力学特性。
以下是一些材料力学中常用的基本公式。
1.应力和应变的关系:应力(stress)是单位面积上的力,通常用σ表示,其计算公式为:σ=F/A其中,F是作用在材料上的力,A是该力作用在材料上的面积。
应变(strain)是材料在力作用下发生的变形程度,通常用ε表示,其计算公式为:ε=ΔL/L其中,ΔL是材料受力后的长度变化,L是材料受力前的初始长度。
2.各向同性线弹性材料的胡克定律:胡克定律描述了各向同性线弹性材料在弹性阶段的应力和应变关系,即应力与应变成正比。
胡克定律的公式为:σ=E*ε其中,E是材料的弹性模量,是描述材料对力产生变形的能力大小的物理量。
3.杨氏模量和剪切模量:在胡克定律中,杨氏模量(Young's modulus)是描述材料沿着受力方向的应力和应变关系,剪切模量是描述材料在垂直于受力方向发生剪切变形时的应力和应变关系。
它们的关系公式为:E=2G*(1+μ)其中,E是杨氏模量,G是剪切模量,μ是泊松比,描述了材料的侧向收缩程度和拉伸程度之间的比例关系。
4.流变方程:在一些材料的力学特性中,材料的应力和应变关系不再满足胡克定律,而呈现出非线性特性。
这时可以使用流变方程来描述应力和应变的关系。
其中,最常用的是弹塑性流变方程:σ=K*ε^n其中,σ是应力,ε是应变,K是材料的流变模量,n是流变指数。
5.共轭滑移原理:用于描述材料在微观滑移中的位错模型和宏观弹性力学行为之间的关系。
根据共轭滑移原理,材料在滑移发生时,应变应能量密度在前后变形区是不变的,可以表示为:ε*σ=ε_s*σ_s+ε_d*σ_d其中,ε*和σ*表示综合应变和综合应力,ε_s和σ_s表示剪切滑移应变和剪切滑移应力,ε_d和σ_d表示剪切向应变和剪切向应力。
材料力学公式大全
材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
材料力学公式大全
材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x 轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式,29.平⾯应⼒状态的三个主应⼒,,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c)⼀端固定、⼀端铰⽀µ=(d)两端固定µ=68. 压杆的长细⽐或柔度计算公式,69. 细长压杆临界应⼒的欧拉公式70. 欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。
材料力学公式大全
材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式
材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
材料力学公式大全
材料力学公式大全引言材料力学是材料学和力学的交叉学科,研究材料在外部力作用下的力学行为。
材料力学公式是描述材料力学行为的数学方程式,通过使用这些公式,可以预测和解释材料的力学性能。
本文将介绍一些常见的材料力学公式,帮助读者更好地理解材料的力学行为。
弹性力学霍克定律弹性材料的应力与应变之间的关系可以通过霍克定律来描述。
霍克定律表示为:σ = Eε其中,σ是应力,E是弹性模量,ε是应变。
杨氏模量是一种衡量材料刚度的物理量,表示为:E = σ / ε其中,E是杨氏模量,σ是应力,ε是应变。
泊松比泊松比是一种描述材料压缩应变与正交方向上的伸长应变比例关系的参数。
泊松比的定义如下:ν = -ε_2 / ε_1其中,ν是泊松比,ε_1是材料在一个方向上的伸长应变,ε_2是材料在与该方向正交的方向上的压缩应变。
屈服强度材料的屈服强度是指在材料发生塑性变形之前所能承受的最大应力。
屈服强度可以通过应力-应变曲线中的屈服点来确定。
硬化指数硬化指数是衡量材料抵抗塑性变形的能力的物理量,表示材料在塑性变形过程中的硬度增加速率。
硬化指数可以通过屈服应力与屈服应变之间的关系来计算。
应力松弛应力松弛是指材料在恒定应变条件下,应力随时间逐渐减小的现象。
应力松弛可以通过材料应力与时间之间的关系来描述。
强度理论强度理论是一种预测材料破坏的理论模型。
常用的强度理论包括最大剪应力理论、最大正应力理论和最大能量释放率理论。
裂纹扩展速率裂纹扩展速率是描述材料中裂纹扩展过程的物理量,表示裂纹边缘的扩展速度。
裂纹扩展速率可以通过材料裂纹长度与时间之间的关系来计算。
疲劳力学疲劳寿命疲劳寿命是指材料在循环加载下能够承受的次数或时间。
疲劳寿命可以通过应力与循环次数或时间之间的关系来计算。
疲劳强度是指材料在循环加载下能够承受的最大应力。
疲劳强度可以通过应力循环试验来确定。
结论本文介绍了一些常见的材料力学公式,包括弹性力学、塑性力学、破坏力学和疲劳力学方面的公式。
材料力学公式汇总
材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
材料力学公式
材料力学公式材料力学公式是材料学研究领域中很重要的部分,运用合适的公式能够预测、描述和解释许多材料学现象。
材料力学公式是基于物理和数学原理建立的,有助于我们了解材料的性质和行为。
在这篇文章中,我们将介绍几个常见的材料力学公式,以及它们在材料学中的应用。
1. 晶体弹性常数公式晶体弹性常数通常是材料物理学的一个关键方面,它们描述了材料变形和应力之间的关系。
一些常见的晶体弹性常数公式包括:(1)杨氏模量(E)公式:E = σ/ε其中,E是杨氏模量,σ是单轴应力,ε是单轴应变。
(2)剪切模量(G)公式:G = τ/γ其中,G是剪切模量,τ是剪切应力,γ是剪切应变。
(3)泊松比(ν)公式:ν = -εx/εy其中,εx是沿着x轴的应变,εy是沿着y轴的应变。
这些公式能够帮助我们计算材料在特定应力下的变形和应变。
例如,杨氏模量是一个很重要的性质,因为我们可以通过它来计算材料的应力应变曲线。
对于一些高坚度的材料,剪切模量比杨氏模量更适合用于描述材料的特定弹性行为。
2. 应力公式应力公式是指计算在材料内部力的作用下材料产生的应力的公式。
例如,一些常见的应力公式包括:(1)等效应力(σeq)公式:σeq = ((σ1 - σ2)² + (σ2 - σ3)² + (σ3 - σ1)²)½其中,σ1、σ2和σ3分别是应力的主应力。
(2)应力分布公式:σ = F/A其中,σ是应力,F是力,A 是受力面积。
(3)柯西应力公式:σij = cijklεkl其中,σij 是第i个面上的第j个分量的应力,εkl 是第k个面上的第l个分量的应变,cijkl是材料的柯西弹性常数。
3. 强度和韧度公式强度和韧度公式涉及到材料的机械性能,是材料学中很重要的概念。
一些常见的强度和韧度公式包括:(1)屈服强度公式:σy = Fy/A其中,σy是材料的屈服强度,Fy是达到屈服点所需要的力,A是受力面积。
材料力学公式大全pdf
材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。
以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。
5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。
6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。
7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。
8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。
9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。
10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。
以上就是材料力学公式大全pdf。
希望能对大家学习和应用材料力学有所帮助。
材料力学的基本计算公式
材料力学的基本计算公式材料力学是研究材料在力的作用下的行为和性能的学科。
在材料力学中,有一些基本的计算公式,可以用于分析材料的力学性质。
下面是一些常用的材料力学的基本计算公式。
1.弹性应变材料在受力作用下会发生变形,这种变形可以用应变来描述。
弹性应变是材料在弹性阶段的变形量与初试长度之比。
可以通过以下公式计算弹性应变:ε=δL/L其中,ε为弹性应变,δL为变形量,L为初始长度。
2.弹性模量弹性模量衡量了材料在弹性阶段的刚度,可以用于描述材料的抗拉强度。
对于线性弹性材料,弹性模量可以通过以下公式计算:E=σ/ε其中,E为弹性模量,σ为应力,ε为弹性应变。
3.科尔莫戈洛夫方程科尔莫戈洛夫方程可以用于计算材料在复合应力状态下的应变。
对于一般的受应力状态(平面应力和轴对称应力),科尔莫戈洛夫方程可以表示为:σ=S*ε其中,σ为应力,S为应力-应变刚度矩阵,ε为应变。
4.拉伸和压缩应力拉伸和压缩应力计算公式分别如下:拉伸应力:σ=F/A压缩应力:σ=-F/A其中,σ为应力,F为作用力,A为受力面积。
5.剪切应力材料在受剪力作用下会发生剪切变形。
剪切应力可以通过以下公式计算:τ=F/A其中,τ为剪切应力,F为剪切力,A为受力面积。
6.杨氏模量杨氏模量衡量了材料的刚度,可以用于描述材料的弹性性能。
对于拉伸应力-应变状态,杨氏模量可以通过以下公式计算:E=σ/ε其中,E为杨氏模量,σ为拉伸应力,ε为拉伸应变。
7.泊松比泊松比衡量了材料在受力作用下沿垂直方向的变形。
可以通过以下公式计算:ν=-εv/εl其中,ν为泊松比,εv为垂直应变,εl为拉伸应变。
8.巴拉赫公式巴拉赫公式可以用于计算材料的抗拉强度,可以表示为:σy=K*σr^n其中,σy为抗拉强度,K和n为材料的参数,σr为引伸计测得的真实应力。
这些公式是材料力学的基本计算公式,可以用于分析材料的力学性质。
在实际应用中,还会根据具体情况考虑材料的非线性和多轴受力等因素,进行更为深入的分析和计算。
材料力学基本公式
材料力学基本公式材料力学是研究物质在外力作用下的力学性能和变形规律的学科,是工程学科中的基础学科之一、在材料力学中,有许多基本公式被广泛应用于解决各种工程问题。
以下是材料力学中的一些基本公式。
1.杨氏模量公式:杨氏模量是材料刚度的度量,表示单位应变下单位应力的比例关系。
杨氏模量(E)的计算公式为:E = stress/strain其中stress为应力,strain为应变。
2.材料的胡克定律:胡克定律描述了物质在小应变条件下的弹性变形。
根据胡克定律,应力与应变之间的关系可以表示为:stress = E * strain其中E为杨氏模量。
3.线性弹性模量公式:线性弹性模量也是材料的刚度度量指标,用于描述材料在线弹性阶段的变形特性。
计算线性弹性模量(E)的公式为:E = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
4.泊松比公式:泊松比是一个描述材料在拉伸或压缩过程中沿着一维方向收缩或膨胀的程度的无量纲物理常数。
泊松比(v)的计算公式为:v = - (lateral strain) / (axial strain)其中lateral strain为横向应变,axial strain为轴向应变。
5.拉伸和压缩弹性模量公式:拉伸弹性模量(E)和压缩弹性模量(Ec)是描述材料在拉伸和压缩条件下的弹性变形能力的指标。
计算拉伸弹性模量的公式为:E = (stress2 - stress1) / (strain2 - strain1)计算压缩弹性模量的公式为:Ec = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
6.剪切模量公式:剪切模量用于描述材料在剪切应力作用下的抗剪切能力,是衡量材料的剪切刚度的指标。
材料力学常用公式
- 1 - 材料力学常用公式1、胡克定律:EA l F l N ⋅=∆或εσ⋅=E 2、杆件轴向拉、压强度条件:[]σσ≤=⋅AFN nax max 3、剪切强度条件:[]ττ≤=AF S;挤压强度条件:[]bc bc bc bc F A σσ=≤4、外力偶矩计算公式:min/||||9550||r kWm N n P M =⋅5、圆轴扭转切应力:pI T ρτρ⋅=;扭转强度条件:[]max max t T W ττ=≤6、圆轴扭转变形:p I G lT ⋅⋅=ϕ;扭转刚度条件:[]θπθ≤⋅=0max max 180p GI T7、极惯性矩:Dd,)1(32;32444=-==ααππD I D I p p 空心实心; 扭转截面系数:)1(16;16433αππ-==D W D W p p 空心实心8、梁弯曲正应力:z I yM ⋅=σ;弯曲正应力强度条件:[]σσ≤=zW M max max 9、惯性矩:1212;)1(64;6433444hb I bh I D I D I y z z z ==-==或矩形空心圆实心圆αππ 10、弯曲截面系数:66)1(32;3222433hb W bh W ;D W D W y z z z ==-==或矩形空心圆实心圆αππ11、拉压-弯曲组合变形强度条件:[]][,max max ,max max ,c zN c t z N t W M A F W M A F σσσσ≤-=≤+=12、圆轴弯扭组合变形强度条件:[][]σσσσ≤+=≤+=zr z r W T M W T M 22422375.0或13、压杆临界应力公式:欧拉公式()2222;cr cr EI EF L ππσλμ==;直线公式λσb a cr -= 14、柔度i l μλ=;惯性半径:AI i = 15、压杆的稳定条件:[]cr cr st st A Fn n F F σ==≥ 16、平面应力状态下斜截面应力的一般公式 cos 2sin 222sin 2cos 22x y x yαxy x y xy σσσσσσσαατατατα+-⎧=+-⎪⎪⎨-⎪=+⎪⎩- 2 -17、最大最小正应力:18、主平面方位计算公式:19、面内最大切应力: 20、20、三向应力状态最大切应力:21、胡克定律:21四大强度理论:max 13()2τσσ=-max min 2x y σσσσ+⎫=±⎬⎭132σσσ⎫=±⎬⎭()11231E εσμσσ=-+⎡⎤⎣⎦()22311E εσμσσ=-+⎡⎤⎣⎦()33121Eεσμσσ=-+⎡⎤⎣⎦,11[]r σσσ=≤,313[]r σσσσ=-≤,2123()[]r σσμσσσ=-+≤,4[]r σσ=≤。
材料力学公式完全版
材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
材料力学公式
材料力学公式材料力学是研究材料受到外力作用时产生的力学响应的学科。
在材料力学中,有一些基本的公式和方程描述了材料的力学性能。
1. 应力和应变:在材料受到力的作用下,会产生应力和应变。
应力指物体在单位面积上所受到的力,其公式为σ = F/A,其中σ为应力,F为受力的大小,A为受力的面积。
应变则是物体在受力作用下相对变形的程度,其公式为ε = ΔL / L0,其中ε为应变,ΔL为物体的长度变化量,L0为物体的初始长度。
应变也可以用应力和杨氏模量E的关系来表示,即ε = σ / E。
2. 弹性模量:弹性模量是度量材料抵抗形变的能力的物理量,其公式为E = σ / ε,其中E为弹性模量,σ为应力,ε为应变。
3. 餘弦的拉法則:拉法則指的是在材料受到外力作用时,单位长度的材料的应变跟外力的共线部分之间的关系。
对于一维应力状态,拉法則可以表示为ε = h / l,其中ε为应变,h为变形高度,l为原长度。
4. 荷重和变形的关系:在材料受到沉重的作用下,会发生变形。
根据胡克定律,荷重和变形之间存在线性关系,即F = k · ΔL,其中F为受力大小,k为弹性系数,ΔL为变形量。
5. 弯曲应力与弯矩的关系:在材料受到弯曲作用时,会产生弯曲应力。
根据梁的基本方程,弯曲应力与弯矩之间存在直接的关系,即σ = M / S,其中σ为弯曲应力,M为弯矩,S为截面积的形状因子。
6. 無限長結構在受到拉力作用時的應力分佈:当无限长的材料受到拉力作用时,会产生应力分布。
根据克氏和传奇方程,在横向拉伸力作用下,材料中的应力分布满足σ = E · ε,其中σ为应力,E为弹性模量,ε为应变。
以上介绍了材料力学中的一些基本公式和方程,它们是研究和描述材料力学性能的基础。
在实际应用中,这些公式和方程能够帮助工程师和科学家更好地理解和解释材料的力学行为。
材料力学公式大全
材料力学公式大全材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
在工程设计和分析中,材料力学公式起着至关重要的作用。
下面为大家详细介绍一些常见的材料力学公式。
一、应力与应变1、正应力公式:轴向拉伸与压缩时,正应力$\sigma =\frac{F}{A}$,其中$F$ 是轴力,$A$ 是横截面面积。
圆轴扭转时,横截面上的切应力$\tau =\frac{T}{Ip}$,$T$ 是扭矩,$Ip$ 是极惯性矩。
2、线应变公式:轴向拉伸与压缩时,线应变$\epsilon =\frac{\Delta L}{L}$,$\Delta L$ 是长度的改变量,$L$ 是原长。
3、切应变公式:圆轴扭转时,切应变$\gamma =\frac{r\theta}{L}$,$r$ 是半径,$\theta$ 是扭转角,$L$ 是轴的长度。
二、胡克定律1、轴向拉伸与压缩时:$\sigma = E\epsilon$ ,其中$E$ 是弹性模量。
2、剪切胡克定律:$\tau = G\gamma$ ,$G$ 是剪切模量。
三、杆件的内力1、轴力$F_N$ :通过截面法求解,沿杆件轴线方向的内力。
2、扭矩$T$ :外力偶矩对杆件产生的内力。
3、剪力$F_Q$ 和弯矩$M$ :在梁的弯曲分析中,通过截面法求解。
四、梁的弯曲应力1、纯弯曲时的正应力:$\sigma =\frac{M y}{I_z}$,$y$ 是所求应力点到中性轴的距离,$I_z$ 是横截面对于中性轴的惯性矩。
2、横力弯曲时的正应力:需要考虑切应力的影响,进行修正。
五、梁的弯曲变形1、挠度$y$ 和转角$\theta$ 的计算公式:通过积分法或叠加法求解。
2、挠曲线近似微分方程:$EIz''= M(x)$。
六、组合变形1、拉(压)弯组合:分别计算拉伸(压缩)应力和弯曲应力,然后叠加。
2、弯扭组合:先计算弯曲应力和扭转切应力,然后根据强度理论进行强度校核。
材料力学公式
**2001.2.,3.,4.Me=9.55(),:,:/min 5.=,(26.=,T bs bs bs bs Nll EAl l T F A A P KN m P KW n r nT A r r A t Fs Fs Aααστπτ∆=∆=∆=⨯=胡克定律:温度应力:为材料的线膨胀系数挤压应力:其中为挤压面的面积,取承压面在直径平面上的投影面积。
传动轴上的外力偶矩:薄壁圆筒扭转时的截面上的切应力:为圆筒的平均半径)剪切应力:为剪切面上的剪力,A 为剪43434423433447.=G 8.G 2(1)32169.(1)(1)321661210.,6432()(16432p t p t z z z z z z Ed d I W D D I W bh bh W I d d I W D I D d W τγνππππααππππ+⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪=-=-⎪⎪⎩⎩⎧==⎪⎪⎪==⎨⎪⎪=-=-⎪⎩切面的面积,以实际受力的面的个数为准剪切胡克定律:=极惯性矩(对应扭转):;抗扭截面系数:惯性矩:抗弯截面系数:43max max *)3611.=,18012.=13.=14.=115.=16.=,17.=z p tp pzz z s z zs bh I T T I W T GI d G dx Tl GI M EI My M I W F S bI F b ραρττθπϕτρϕρσστ⎧⎪⎪⎪⎨⎪⎪⎪⎩==⨯=三角形的极惯性矩:圆轴扭转的应力:单位长度的扭转角:切应力在斜截面上的分布的表达式:两截面之间的相对扭转角:中性层曲率:弯曲正应力:弯曲切应力:为横截面上的剪力,**z z I S 为矩形截面宽度,为惯性矩,为截面上距中性层为y 的横截面以外部分的面积A 对中性层的静距。
max max max 018.342=23()1()119.""20.cos 2sin 222sin 2cos 22221.tan 222.2s s s x y x y xy x yxy xy x y x y F F F A A AM x M x EI EI αατττωωρρσσσσσατασστατατασσσσ=====+-=+--=+=--+±切应力的近似公式:矩形:;圆形:;圆环:挠曲线近似微分方程:;;任意截面上的应力:主平面:主应力:max minmax 112123.,(224.1()1()1(),,25...(x x y z y y x z z z x y xyyz xzxy yz xz r rEEE GG Ga b σστεσνσσεσνσσεσνσστττγγγσσσσν-=⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦=====-这里最大值、最小值指的是主应力中的最大最小值)广义胡克定律:四个强度理论:最大拉应力理论: (铸铁)最大线伸长理论:[][]2331344342..26.,:27.r r r r r cr c d W EI F σσσσσσσσσσσπ+=-====≤==≤=) (石料)最大切应力理论: (低碳钢)畸变能理论:(钢、铁、铝)当应力单元体只受单向正应力和切应力时,弯扭组合强度校核:抗弯截面系数细长杆压杆欧拉公式:()2228.4l I d i i i A μ===惯性半径:,圆截面:,正方形、长方形:(勿忘单位)[][][][]0max max max max 29.=30.:(),,31.32.33.y y p cr y z y z y Nz y z Nl y iF a b A a b M M W W M F M AW W F A μλλλλλλσσσσσσσσ<<=-=+≤=≤=++≤=≤∆压杆柔度:,其中表示沿方向,i 表示绕y 轴的,两者相互垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、材料力学的任务:强度、刚度和稳定性;应力单位面积上的内力。
平均应力(1.1)全应力(1.2)正应力垂直于截面的应力分量,用符号表示。
切应力相切于截面的应力分量,用符号表示。
应力的量纲:线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。
外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。
当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3-1)式中为该横截面的轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力(3-2)正应力(3-3)切应力(3-4)式中为横截面上的应力。
正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩的为正,反之为负。
两点结论:(1)当时,即横截面上,达到最大值,即。
当=时,即纵截面上,==0。
(2)当时,即与杆轴成的斜截面上,达到最大值,即1.2 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即(3-5)或用轴力及杆件的变形量表示为(3-6)式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
公式(3-6)的适用条件:(a)材料在线弹性范围内工作,即;(b)在计算时,l长度内其N、E、A均应为常量。
如杆件上各段不同,则应分段计算,求其代数和得总变形。
即(3-7)(3)泊松比当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。
即(3-8)表1-1 低碳钢拉伸过程的四个阶段阶段图1-5中线段特征点说明弹性阶段oab比例极限弹性极限为应力与应变成正比的最高应力为不产生残余变形的最高应力屈服阶段bc屈服极限为应力变化不大而变形显著增加时的最低应力强化阶段ce抗拉强度为材料在断裂前所能承受的最大名义应力局部形变阶段ef 产生颈缩现象到试件断裂表1-2 主要性能指标性能性能指标说明弹性性能 弹性模量E当强度性能屈服极限材料出现显著的塑性变形 抗拉强度材料的最大承载能力塑性性能延伸率材料拉断时的塑性变形程度截面收缩率材料的塑性变形程度强度计算许用应力材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。
塑性材料 []= ; 脆性材料 []=其中称为安全系数,且大于1。
强度条件:构件工作时的最大工作应力不得超过材料的许用应力。
对轴向拉伸(压缩)杆件(3-9)按式(1-4)可进行强度校核、截面设计、确定许克载荷等三类强度计算。
2.1 切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。
2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。
2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用表示。
2.4 剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即(3-10)式中G 为材料的切变模量,为材料的又一弹性常数(另两个弹性常数为弹性模量E 及泊松比),其数值由实验决定。
对各向同性材料,E 、 、G 有下列关系 (3-11)2.5.2切应力计算公式横截面上某一点切应力大小为(3-12) 式中为该截面对圆心的极惯性矩,为欲求的点至圆心的距离。
圆截面周边上的切应力为(3-13)式中称为扭转截面系数,R 为圆截面半径。
2.5.3切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。
(2) 极惯性矩和扭转截面系数是截面几何特征量,计算公式见表3-3。
在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。
因此,设计空心轴比实心轴更为合理。
表3-3实心圆 (外径为d )空心圆(外径为D , 内径为d )2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。
因此,强度条件为 (3-14) 对等圆截面直杆 (3-15)式中为材料的许用切应力。
3.1.1中性层的曲率与弯矩的关系 (3-16)式中,是变形后梁轴线的曲率半径;E是材料的弹性模量;是横截面对中性轴Z 轴的惯性矩。
3.1.2横截面上各点弯曲正应力计算公式 (3-17)式中,M是横截面上的弯矩;的意义同上;y是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处(3-18)式中,称为抗弯截面系数。
对于的矩形截面,;对于直径为D的圆形截面,;对于内外径之比为的环形截面,。
若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压应力数值不相等。
3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为(3-19)对于由拉、压强度不等的材料制成的上下不对称截面梁(如T字形截面、上下不等边的工字形截面等),其强度条件应表达为(3-20a)(3-20b)式中,分别是材料的容许拉应力和容许压应力;分别是最大拉应力点和最大压应力点距中性轴的距离。
3.3梁的切应力(3-21)式中,Q是横截面上的剪力;是距中性轴为y的横线与外边界所围面积对中性轴的静矩;是整个横截面对中性轴的惯性矩;b是距中性轴为y处的横截面宽度。
3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布。
切应力计算公式(3-22)最大切应力发生在中性轴各点处,。
3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的95~97%,因此截面上的剪力主要由腹板部分来承担。
切应力沿腹板高度的分布亦为二次曲线。
计算公式为 (3-23)近似计算腹板上的最大切应力: d为腹板宽度 h1为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化。
最大切应力发生在中性轴上,其大小为(3-25)圆环形截面上的切应力分布与圆截面类似。
3.4切应力强度条件梁的最大工作切应力不得超过材料的许用切应力,即 (3-26)式中,是梁上的最大切应力值;是中性轴一侧面积对中性轴的静矩;是横截面对中性轴的惯性矩;b是处截面的宽度。
对于等宽度截面,发生在中性轴上,对于宽度变化的截面,不一定发生在中性轴上。
4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的,则名义切应力为(3-27)剪切强度条件:剪切面上的工作切应力不得超过材料的许用切应力,即(3-28)5.2挤压的实用计算名义挤压应力假设挤压应力在名义挤压面上是均匀分布的,则(3-29)式中,表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影。
当挤压面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的投影面积。
挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力(3-30)1,变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。
相距为l的两个横截面的相对扭转角为(rad) (4.4) 若等截面圆轴两截面之间的扭矩为常数,则上式化为(rad) (4.5)图4.2式中称为圆轴的抗扭刚度。
显然,的正负号与扭矩正负号相同。
公式(4.4)的适用条件:(1)材料在线弹性范围内的等截面圆轴,即;(2)在长度l内,T、G、均为常量。
当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角。
即 (rad) (4.6)当T、沿轴线连续变化时,用式(4.4)计算。
2,刚度条件扭转的刚度条件圆轴最大的单位长度扭转角不得超过许可的单位长度扭转角,即(rad/m) (4.7)式()(4.8)2,挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即(4.9)将上式积分一次得转角方程为(4.10)再积分得挠曲线方程(4.11)式中,C,D为积分常数,它们可由梁的边界条件确定。
当梁分为若干段积分时,积分常数的确定除需利用边界条件外,还需要利用连续条件。
3,梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即,(4.12)3,轴向拉伸或压缩杆件的应变能在线弹性范围内,由功能原理得当杆件的横截面面积A、轴力F N为常量时,由胡克定律,可得(4.14)杆单位体积内的应变能称为应变能密度,用表示。
线弹性范围内,得(4.15)4,圆截面直杆扭转应变能在线弹性范围内,由功能原将与代入上式得(4.16)图4.5根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度:(4.17)5,梁的弯曲应变能在线弹性范围内,纯弯曲时,由功能原理得将与代入上式得(4.18)图4.6横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用式(4.18),积分得全梁的弯曲应变能,即(4.19)2.截面几何性质的定义式列表于下:静矩惯性矩惯性半径惯性积极惯性矩3.惯性矩的平行移轴公式静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1所示。
定义式:,(Ⅰ-1)量纲为长度的三次方。
由于均质薄板的重心与平面图形的形心有相同的坐标和。
则由此可得薄板重心的坐标为同理有所以形心坐标,(Ⅰ-2)或,由式(Ⅰ-2)得知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即,;,则;反之,若图形对某一轴的静矩等于零,则该轴必然通过图形的形心。
静矩与所选坐标轴有关,其值可能为正,负或零。
如一个平面图形是由几个简单平面图形组成,称为组合平面图形。
设第I 块分图形的面积为,形心坐标为,则其静矩和形心坐标分别为,(Ⅰ-3),(Ⅰ-4)§Ⅰ-2 惯性矩和惯性半径惯性矩:平面图形对某坐标轴的二次矩,如图Ⅰ-4所示。