材料力学公式汇总
材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
材料力学公式大全

材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x 轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式,29.平⾯应⼒状态的三个主应⼒,,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c)⼀端固定、⼀端铰⽀µ=(d)两端固定µ=68. 压杆的长细⽐或柔度计算公式,69. 细长压杆临界应⼒的欧拉公式70. 欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。
材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式

材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
材料力学公式汇总

材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
材料力学公式大全pdf

材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。
以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。
5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。
6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。
7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。
8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。
9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。
10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。
以上就是材料力学公式大全pdf。
希望能对大家学习和应用材料力学有所帮助。
材料力学的基本计算公式

材料力学的基本计算公式材料力学是研究材料在力的作用下的行为和性能的学科。
在材料力学中,有一些基本的计算公式,可以用于分析材料的力学性质。
下面是一些常用的材料力学的基本计算公式。
1.弹性应变材料在受力作用下会发生变形,这种变形可以用应变来描述。
弹性应变是材料在弹性阶段的变形量与初试长度之比。
可以通过以下公式计算弹性应变:ε=δL/L其中,ε为弹性应变,δL为变形量,L为初始长度。
2.弹性模量弹性模量衡量了材料在弹性阶段的刚度,可以用于描述材料的抗拉强度。
对于线性弹性材料,弹性模量可以通过以下公式计算:E=σ/ε其中,E为弹性模量,σ为应力,ε为弹性应变。
3.科尔莫戈洛夫方程科尔莫戈洛夫方程可以用于计算材料在复合应力状态下的应变。
对于一般的受应力状态(平面应力和轴对称应力),科尔莫戈洛夫方程可以表示为:σ=S*ε其中,σ为应力,S为应力-应变刚度矩阵,ε为应变。
4.拉伸和压缩应力拉伸和压缩应力计算公式分别如下:拉伸应力:σ=F/A压缩应力:σ=-F/A其中,σ为应力,F为作用力,A为受力面积。
5.剪切应力材料在受剪力作用下会发生剪切变形。
剪切应力可以通过以下公式计算:τ=F/A其中,τ为剪切应力,F为剪切力,A为受力面积。
6.杨氏模量杨氏模量衡量了材料的刚度,可以用于描述材料的弹性性能。
对于拉伸应力-应变状态,杨氏模量可以通过以下公式计算:E=σ/ε其中,E为杨氏模量,σ为拉伸应力,ε为拉伸应变。
7.泊松比泊松比衡量了材料在受力作用下沿垂直方向的变形。
可以通过以下公式计算:ν=-εv/εl其中,ν为泊松比,εv为垂直应变,εl为拉伸应变。
8.巴拉赫公式巴拉赫公式可以用于计算材料的抗拉强度,可以表示为:σy=K*σr^n其中,σy为抗拉强度,K和n为材料的参数,σr为引伸计测得的真实应力。
这些公式是材料力学的基本计算公式,可以用于分析材料的力学性质。
在实际应用中,还会根据具体情况考虑材料的非线性和多轴受力等因素,进行更为深入的分析和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1材料力学公式汇总一、应力与强度条件 1、拉压 []max maxN A σσ=≤横截2、剪切 []maxQ A ττ=≤受剪挤压 P A σσ⎡⎤=≤⎣⎦挤压挤压挤压挤压投3、圆轴扭转[]max max maxT T P P M M I W ρττ⎛⎞⎛⎞==≤ 4、平面弯曲 ①[]max nmaxn M W σσ=≤②[]max max max nz z M y I σσ+++=≤[]max maxmax nz zM y I σσ−−−=≤③[]ττ≤⋅=bI S Q z *max z max max ⎜⎟⎜⎟⎝⎠⎝⎠5、斜弯曲[]nynz maxnz nymaxM M W W σσ=+≤;6、拉(压)弯组合[]maxmaxn nM N A W σσ=+≤;[]max max z nz M N y A I σσ+++=+≤;[]nz max max z M N y I Aσσ−−−=−≤. 注:“5,6”两式仅供参考.7、轴向拉压斜截面上应力:2cos ;sin 22αασσσατ==横横α8、圆轴弯扭组合: ①第三强度理论[]eq3nnσσ===≤②第四强度理论[]eq4nnσσ===≤9、圆轴拉(压)弯扭组合:①第三强度理论 []eq3σσ=≤ ②第四强度理论 []eq4σσ=≤ 二、变形及刚度条件1、拉压 ∑∫===ΔLEAxx ) N EAL N EANLL d (ii 2、扭转 ()()弧度; T T i i T p p pM x dx M L M LGI GI GI Φ==Σ=∫0180p T L GI θπΦ==⋅(m /D ) 3、弯曲(1)积分法:()'''()();()()()d ;()()d d .n n nEIy x M x EIy x EI x M x x C EIy x M x x x Cx D θ===+=+∫∫∫+边界条件:铰支:挠度为零;固支:挠度和转角都为零。
(2)叠加法:载荷分解法:=()12,...f P P ()()21P f Pf ++…, ()12,...P P θ=()()++21P Pθθ…2逐段刚化法:载荷引起弹性体位移等于将弹性体逐段刚化后该载荷引起位移的叠加。
(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI MLB =θ ;EIML f B 22=; EI PL B 22=θ;EI PL f B 33=; EI qLB 63;EIqL f B 84PA BMABA BqLLL; =θ=EI ML B 3=θ,EI ML A 6=θ EI PL A B 16==θθEIqLA B 243==θθ LLEI ML f c 162=EI PL f c 483= EIqL f c 3844= (4)弹性杆系变形能(注:以下忽略剪力影响)222222222()();;222222();=++.222n ni i n Ti i T T L L i P Pi i i L i M L M L M x dx M L P M L M U U EI EI EI GI GI GI N L N L N x dxU U U U EA EA EA==Σ===Σ===Σ=∫∫∫弯曲扭转拉压拉压杆系总能弯曲扭转x dx U(5) 功能原理:外力做的功=杆系弹性变形能(6) 卡氏第二定理(注:线弹性杆系在P i 力处和方向上位移计算公式)i ii i ii i i i ()()()()()()n n T T P nk k nk Tk k Tk k k k k k k k kk Pk k k n n T T L L L PU M L M M L M NL NP EI P GI P EA P M L M M L M N L N E I P G I P E A P M x M x M x M x N x N x dx dx dx EI P GI P EA P ∂∂∂∂Δ==++∂∂∂∂⎛⎞⎛⎞⎛⎞∂∂∂=++⎜⎟⎜⎟⎜⎟∂∂∂⎝⎠⎝⎠⎝⎠∂∂∂=++∂∂∑∑∑∫∫∫杆系总能i i ∂ (7)莫尔定理(单位力法):(仅在线性弹性杆系所求位移的点和方向上虚加单位力,引起杆系内力为M n 0(x),M T 0(x)和 N 0(x);线性弹性杆在原有力系作用下的内力M n (x),M T (x)和N(x),那么在单位载荷作用点和方向上的位移δ用下公式计算)00000000()()()()()()n n nk nk k Tk Tk k k k k T T k k k P k k k Pk n n T T L L L P 0k kM M L M M L M M L N N L M M L NN LEI GI EA E I G I E A M x M x M x M x N x N x dx dx dx EI GI EAδ⎛⎞⎛⎞⎛=++=++⎜⎟⎜⎟⎜⎝⎠⎝⎠⎝=++∑∑∑∫∫∫⎞⎟⎠(8) 刚度条件:待考察点的位移不超过允许值 三、应力状态与强度理论 1、二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx −−++=ατασστα2cos 2sin 2xy yx +−=注:使截面受拉的正应力为正;使单元体顺时针转的剪应力为正; x 轴逆时针转α角与截面外法线重合的角α为正(-π≤α≤π).32、max min 2x y σσσσ+=± 2tg2xy p x y τασσ−=−;0,0,x y p x y p σσασσα−≥−<最大值角最小值角3、二向应力状态的极值剪应力(面内极值剪应力)及所在截面方位角max minmax min;2σστ−==±tg22x ys xyσσατ−=注:正应力极值面与剪应力极值面间夹角为45o ; 正应力极值面上的剪应力为零; 剪应力极值面上的正应力为平均值(σx +σy )/2.4、三向应力状态的主应力: 321σσσ≥≥(整个单元体的)最大剪应力:231max σστ−=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变)1();x x y E σμσ=− 1();εy y x E σμσ=− ();y μεz x Eσσ=−+ G xy xy τγ=ε(2)、表达形式之二(用应变表示应力)2();x y E 1x σεμεμ=+−2();x 1y y Eσεμεμ=+−0;z σ= xy xy G γτ=6、三向应力状态的广义胡克定律()1;i i j k E εσμσσ⎡⎤=−+⎣⎦ ;ij ij Gτγ= (),,,,;i j k x y z i j k =≠≠ 7、平面应力状态下的应变分析主应变及其方位角 (1)αγαεεεεεα2sin2cos 2⎟⎟⎞⎜⎜⎛−−−++=xy y x y x +−=⎟⎠⎞⎜⎝⎛−αεεγα2sin 22yx αγ2cos 2⎟⎟⎠⎞⎜⎜⎝⎛−xy(2)max min 2x y εεεε+=± yx xyεεγα−=02tg()22212312321312;2U E σσσνσσσσσσ⎡⎤=++−++⎣⎦()212312;6V U E νσσσ−=++ ()()()2221223311;6d V d U U E U U νσσσσσσ+⎡⎤=−+−+−=⎣⎦+ 12312312();;;3(12)3EK K E σσσμσσσσσμ++−Θ=++===Θ− 9、四个强度理论及相当应力 (1)[]111;eq σσσ=≤()2123[];eq σσμσσσ=−+≤ []bbn σσ=—脆性断裂强度理论4(2)[]313;eq σσσσ=−≤4[];eq σσ[]≤s s n σσ= —塑性屈服强度理论 四、压杆稳定1、临界应力与临界轴压力公式(把直杆分为三类)①细长受压杆: p ;λλ≥ 2cr 2max;Eπσλ=()2min2cr L EI P μπ=②中长受压杆:p s ;λλλ≥≥ λσb a −=cr③短粗受压杆:s ;λλ≤ cr σ=s σ 或 b σ2、关于柔度的几个公式: max max;L i μλ⎛⎞=⎜⎟⎝⎠ p λ= b a s s σλ−= 3、惯性半径公式:A I i z = (圆截面 4di z =,矩形截面12min i =(b 为短边长度)) 4、μ的取值:固支-自由2.0;铰支-铰支1.0;固支-铰支0.7;固支-固支0.5 5、稳定性计算:crmax ]st σσ≥实[n五、动载荷(只给出冲击问题的有关公式)能量方程: U V T Δ=Δ+Δ冲击系数: std 211Δ++=hK (自由落体冲击) st20d Δ=g v K (水平冲击) 六、截面几何性质1、 极惯性矩与惯性矩:2P AI dA ρ=∫;()44=132P D I πα−空圆,()34=116P D W πα−空圆,;d Dα=其中22;;z y A A I y dA I z dA ==∫∫(4344(1);==16432z y nz D D I I W W ππ)αα==−−空心圆空心圆空心圆ny空心圆,3;12z bh I =2;6nz bh W =3;12y hb I =26ny hb W =; 尺寸b 与z 轴平行;尺寸h 与y 轴平行 2、惯性矩平移轴公式:22z zc yc ;;y y z I I a A I I a A =+=+。