材料力学公式大全(机械)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学常用公式

1.外力偶矩计算公式(P功率,n转速)

2.弯矩、剪力和荷载集度之间的关系式

3.轴向拉压杆横截面上正应力的计算公式(杆件横截面

轴力F N,横截面面积A,拉应力为正)

4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x

轴正方向逆时针转至外法线的方位角为正)

5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;

拉伸前试样直径d,拉伸后试样直径d1)

6.纵向线应变和横向线应变

7.泊松比

8.胡克定律

9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式

11.轴向拉压杆的强度计算公式

12.许用应力,脆性材料,塑性材料

13.延伸率

14.截面收缩率

15.剪切胡克定律(切变模量G,切应变g )

16.拉压弹性模量E、泊松比和切变模量G之间关系式

17.圆截面对圆心的极惯性矩(a)实心圆

(b)空心圆

18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点

到圆心距离r)

19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆

(b)空心圆

21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转

切应力计算公式

22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式

23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如

阶梯轴)时或

24.等直圆轴强度条件

25.塑性材料;脆性材料

26.扭转圆轴的刚度条件? 或

27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式

,

28.平面应力状态下斜截面应力的一般公式

,

29.平面应力状态的三个主应力,

,

30.主平面方位的计算公式

31.面内最大切应力

32.受扭圆轴表面某点的三个主应力,,

33.三向应力状态最大与最小正应力 ,

34.三向应力状态最大切应力

35.广义胡克定律

36.四种强度理论的相当应力

37.一种常见的应力状态的强度条件,

38.组合图形的形心坐标计算公式,

39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正

交坐标轴的惯性矩之和的关系式

40.截面图形对轴z和轴y的惯性半径? ,

41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积

为A)

42.纯弯曲梁的正应力计算公式

43.横力弯曲最大正应力计算公式

44.矩形、圆形、空心圆形的弯曲截面系数? ,

45.几种常见截面的最大弯曲切应力计算公式(为中性轴一

侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)

46.矩形截面梁最大弯曲切应力发生在中性轴处

47.工字形截面梁腹板上的弯曲切应力近似公式

48.轧制工字钢梁最大弯曲切应力计算公式

49.圆形截面梁最大弯曲切应力发生在中性轴处

50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处

51.弯曲正应力强度条件

52.几种常见截面梁的弯曲切应力强度条件

53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条

件或,

54.梁的挠曲线近似微分方程

55.梁的转角方程

56.梁的挠曲线方程?

57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶

部边缘处的正应力计算公式

58.偏心拉伸(压缩)

59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度

条件表达式,

60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩

61.圆截面杆横截面上有两个弯矩和同时作用时强度计算

公式

62.

63.弯拉扭或弯压扭组合作用时强度计算公式

64.剪切实用计算的强度条件

65.挤压实用计算的强度条件

66.等截面细长压杆在四种杆端约束情况下的临界力计算公式

67.压杆的约束条件:(a)两端铰支μ=l

(b)一端固定、一端自由μ=2

(c)一端固定、一端铰支μ=0.7

(d)两端固定μ=0.5

68. 压杆的长细比或柔度计算公式 ,

69. 细长压杆临界应力的欧拉公式

70. 欧拉公式的适用范围

传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n 与传递的功率P 来计算。

当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为

m).(N 9549e n

P

M =

当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为

m).(N 7024e n

P

M =

拉(压)杆横截面上的正应力

拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N

F A

σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件:

(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面;

(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;

(4)截面连续变化的直杆,杆件两侧棱边的夹角0

20α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为

全应力

cos p ασα= (3-2)

正应力 2

cos ασσα=(3-3)

切应力1

sin 22

ατα=

(3-4) 式中σ为横截面上的应力。

正负号规定:

α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论:

(1)当0

0α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0

90时,即

纵截面上,ασ=0

90=0。

(2)当0

45α=时,即与杆轴成0

45的斜截面上,ατ达到最大值,即max ()2αα

τ=

1.2 拉(压)杆的应变和胡克定律 (1)变形及应变

杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。

图3-2

轴向变形 1l l l ∆=- 轴向线应变

l

l

ε∆=

横向变形

相关文档
最新文档