材料力学常用公式
材料力学公式完全版
材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学公式大全
材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
材料力学公式大全
材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x 轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式,29.平⾯应⼒状态的三个主应⼒,,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c)⼀端固定、⼀端铰⽀µ=(d)两端固定µ=68. 压杆的长细⽐或柔度计算公式,69. 细长压杆临界应⼒的欧拉公式70. 欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。
材料力学公式大全
材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式
材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
材料力学公式大全
材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
材料力学公式
材料力学公式材料力学公式是材料学研究领域中很重要的部分,运用合适的公式能够预测、描述和解释许多材料学现象。
材料力学公式是基于物理和数学原理建立的,有助于我们了解材料的性质和行为。
在这篇文章中,我们将介绍几个常见的材料力学公式,以及它们在材料学中的应用。
1. 晶体弹性常数公式晶体弹性常数通常是材料物理学的一个关键方面,它们描述了材料变形和应力之间的关系。
一些常见的晶体弹性常数公式包括:(1)杨氏模量(E)公式:E = σ/ε其中,E是杨氏模量,σ是单轴应力,ε是单轴应变。
(2)剪切模量(G)公式:G = τ/γ其中,G是剪切模量,τ是剪切应力,γ是剪切应变。
(3)泊松比(ν)公式:ν = -εx/εy其中,εx是沿着x轴的应变,εy是沿着y轴的应变。
这些公式能够帮助我们计算材料在特定应力下的变形和应变。
例如,杨氏模量是一个很重要的性质,因为我们可以通过它来计算材料的应力应变曲线。
对于一些高坚度的材料,剪切模量比杨氏模量更适合用于描述材料的特定弹性行为。
2. 应力公式应力公式是指计算在材料内部力的作用下材料产生的应力的公式。
例如,一些常见的应力公式包括:(1)等效应力(σeq)公式:σeq = ((σ1 - σ2)² + (σ2 - σ3)² + (σ3 - σ1)²)½其中,σ1、σ2和σ3分别是应力的主应力。
(2)应力分布公式:σ = F/A其中,σ是应力,F是力,A 是受力面积。
(3)柯西应力公式:σij = cijklεkl其中,σij 是第i个面上的第j个分量的应力,εkl 是第k个面上的第l个分量的应变,cijkl是材料的柯西弹性常数。
3. 强度和韧度公式强度和韧度公式涉及到材料的机械性能,是材料学中很重要的概念。
一些常见的强度和韧度公式包括:(1)屈服强度公式:σy = Fy/A其中,σy是材料的屈服强度,Fy是达到屈服点所需要的力,A是受力面积。
材料力学公式大全pdf
材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。
以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。
5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。
6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。
7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。
8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。
9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。
10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。
以上就是材料力学公式大全pdf。
希望能对大家学习和应用材料力学有所帮助。
材料力学的基本计算公式
材料力学的基本计算公式材料力学是研究材料在力的作用下的行为和性能的学科。
在材料力学中,有一些基本的计算公式,可以用于分析材料的力学性质。
下面是一些常用的材料力学的基本计算公式。
1.弹性应变材料在受力作用下会发生变形,这种变形可以用应变来描述。
弹性应变是材料在弹性阶段的变形量与初试长度之比。
可以通过以下公式计算弹性应变:ε=δL/L其中,ε为弹性应变,δL为变形量,L为初始长度。
2.弹性模量弹性模量衡量了材料在弹性阶段的刚度,可以用于描述材料的抗拉强度。
对于线性弹性材料,弹性模量可以通过以下公式计算:E=σ/ε其中,E为弹性模量,σ为应力,ε为弹性应变。
3.科尔莫戈洛夫方程科尔莫戈洛夫方程可以用于计算材料在复合应力状态下的应变。
对于一般的受应力状态(平面应力和轴对称应力),科尔莫戈洛夫方程可以表示为:σ=S*ε其中,σ为应力,S为应力-应变刚度矩阵,ε为应变。
4.拉伸和压缩应力拉伸和压缩应力计算公式分别如下:拉伸应力:σ=F/A压缩应力:σ=-F/A其中,σ为应力,F为作用力,A为受力面积。
5.剪切应力材料在受剪力作用下会发生剪切变形。
剪切应力可以通过以下公式计算:τ=F/A其中,τ为剪切应力,F为剪切力,A为受力面积。
6.杨氏模量杨氏模量衡量了材料的刚度,可以用于描述材料的弹性性能。
对于拉伸应力-应变状态,杨氏模量可以通过以下公式计算:E=σ/ε其中,E为杨氏模量,σ为拉伸应力,ε为拉伸应变。
7.泊松比泊松比衡量了材料在受力作用下沿垂直方向的变形。
可以通过以下公式计算:ν=-εv/εl其中,ν为泊松比,εv为垂直应变,εl为拉伸应变。
8.巴拉赫公式巴拉赫公式可以用于计算材料的抗拉强度,可以表示为:σy=K*σr^n其中,σy为抗拉强度,K和n为材料的参数,σr为引伸计测得的真实应力。
这些公式是材料力学的基本计算公式,可以用于分析材料的力学性质。
在实际应用中,还会根据具体情况考虑材料的非线性和多轴受力等因素,进行更为深入的分析和计算。
材料力学基本公式
材料力学基本公式材料力学是研究物质在外力作用下的力学性能和变形规律的学科,是工程学科中的基础学科之一、在材料力学中,有许多基本公式被广泛应用于解决各种工程问题。
以下是材料力学中的一些基本公式。
1.杨氏模量公式:杨氏模量是材料刚度的度量,表示单位应变下单位应力的比例关系。
杨氏模量(E)的计算公式为:E = stress/strain其中stress为应力,strain为应变。
2.材料的胡克定律:胡克定律描述了物质在小应变条件下的弹性变形。
根据胡克定律,应力与应变之间的关系可以表示为:stress = E * strain其中E为杨氏模量。
3.线性弹性模量公式:线性弹性模量也是材料的刚度度量指标,用于描述材料在线弹性阶段的变形特性。
计算线性弹性模量(E)的公式为:E = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
4.泊松比公式:泊松比是一个描述材料在拉伸或压缩过程中沿着一维方向收缩或膨胀的程度的无量纲物理常数。
泊松比(v)的计算公式为:v = - (lateral strain) / (axial strain)其中lateral strain为横向应变,axial strain为轴向应变。
5.拉伸和压缩弹性模量公式:拉伸弹性模量(E)和压缩弹性模量(Ec)是描述材料在拉伸和压缩条件下的弹性变形能力的指标。
计算拉伸弹性模量的公式为:E = (stress2 - stress1) / (strain2 - strain1)计算压缩弹性模量的公式为:Ec = (stress2 - stress1) / (strain2 - strain1)其中stress1和strain1为初始应力和应变,stress2和strain2为最终应力和应变。
6.剪切模量公式:剪切模量用于描述材料在剪切应力作用下的抗剪切能力,是衡量材料的剪切刚度的指标。
材料力学公式总结
材料力学公式总结材料力学是研究材料在外力作用下的力学性质和行为的学科。
它的研究对象包括材料的强度、刚度、塑性变形、断裂等方面的性质。
材料力学公式是用来描述和计算材料力学性质的数学表达式。
下面是材料力学公式的总结。
1. 杨氏模量(Young's modulus):杨氏模量是衡量材料刚度的指标,表示材料在拉伸或压缩过程中的应力和应变之比。
杨氏模量的计算公式为:E=σ/ε其中,E为杨氏模量,σ为应力,ε为应变。
2. 泊松比(Poisson's ratio):泊松比是描述材料压缩应变时的纵向收缩和横向膨胀之间的比例关系。
泊松比的计算公式为:ν=-ε横向/ε纵向其中,ν为泊松比,ε横向为横向应变,ε纵向为纵向应变。
3. 斯特劳斯公式(Stress-Strain Curve):斯特劳斯公式描述了材料的应力和应变之间的关系。
在弹性阶段,应力和应变线性相关,即:σ=E*ε其中,σ为应力,E为杨氏模量,ε为应变。
4. 屈服强度(Yield Strength):屈服强度是材料在超过弹性极限后开始发生塑性变形的应力。
屈服强度一般用屈服点上的应力值表示。
5. 弹性极限(Elastic Limit):弹性极限是指材料在不发生塑性变形的最大应力值。
超过弹性极限后,材料将开始发生塑性变形。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸过程中最大的抗拉应力,表示材料抵抗破坏的能力。
7. 断裂强度(Fracture Strength):断裂强度是材料发生破裂时所承受的应力。
它是材料在强度和脆性方面的一个重要指标。
8. 斯特劳斯硬化指数(Strain Hardening Exponent):斯特劳斯硬化指数描述了材料在塑性变形时硬度增加的速率。
该指数可以通过材料力学实验和测试获得。
9. 塑性应变(Plastic Strain):塑性应变是材料在超过弹性极限后发生塑性变形的应变量。
10. 线膨胀系数(Linear Expansion Coefficient):线膨胀系数描述了材料在温度变化下长度变化的比例关系。
材料力学常用基本公式
材料力学常用基本公式材料力学是研究材料在外力作用下的变形和破坏行为的学科。
在材料力学中,有一些常用的基本公式被广泛应用于力学分析和设计中。
以下是一些常用的基本公式:1. 应力(Stress)公式:应力是材料内部单位面积上的力。
常用的应力公式包括:- 正应力(Normal Stress)公式:σ = F/A,其中σ表示应力,F 表示作用力,A表示面积。
- 切应力(Shear Stress)公式:τ = F/A,其中τ表示切应力。
2. 应变(Strain)公式:应变是材料的形变量,用来描述材料的变形程度。
常用的应变公式包括:-线性应变公式:ε=(L-L0)/L0,其中ε表示应变,L表示受力前的长度,L0表示受力后的长度。
- 非线性应变公式:ε = ln(L/L0),其中ln表示自然对数。
3. 弹性模量(Young's Modulus)公式:弹性模量是描述材料在弹性变形范围内的刚性程度的量。
常用的弹性模量公式为:E=σ/ε,其中E表示弹性模量,σ表示应力,ε表示应变。
4. 剪切模量(Shear Modulus)公式:剪切模量是描述材料在剪切应力下的变形程度的量。
常用的剪切模量公式为:G=τ/ε,其中G表示剪切模量,τ表示切应力,ε表示剪切应变。
5. 泊松比(Poisson's Ratio)公式:泊松比是描述材料在拉伸或压缩过程中横向变形和纵向变形之间的比例关系的量。
常用的泊松比公式为:ν=-ε横向/ε纵向,其中ν表示泊松比,ε横向表示横向应变,ε纵向表示纵向应变。
6. 弹性能量(Elastic Energy)公式:弹性能量是材料在弹性变形过程中所具有的能量,可通过力和变形之间的关系求得。
常用的弹性能量公式为:U=(1/2)Fε,其中U表示弹性能量,F表示作用力,ε表示应变。
7. 延伸长度(Elongation)公式:延伸长度是材料拉伸变形后的长度增加量,可通过应变和长度之间的关系求得。
材料力学常用公式
- 1 - 材料力学常用公式1、胡克定律:EA l F l N ⋅=∆或εσ⋅=E 2、杆件轴向拉、压强度条件:[]σσ≤=⋅AFN nax max 3、剪切强度条件:[]ττ≤=AF S;挤压强度条件:[]bc bc bc bc F A σσ=≤4、外力偶矩计算公式:min/||||9550||r kWm N n P M =⋅5、圆轴扭转切应力:pI T ρτρ⋅=;扭转强度条件:[]max max t T W ττ=≤6、圆轴扭转变形:p I G lT ⋅⋅=ϕ;扭转刚度条件:[]θπθ≤⋅=0max max 180p GI T7、极惯性矩:Dd,)1(32;32444=-==ααππD I D I p p 空心实心; 扭转截面系数:)1(16;16433αππ-==D W D W p p 空心实心8、梁弯曲正应力:z I yM ⋅=σ;弯曲正应力强度条件:[]σσ≤=zW M max max 9、惯性矩:1212;)1(64;6433444hb I bh I D I D I y z z z ==-==或矩形空心圆实心圆αππ 10、弯曲截面系数:66)1(32;3222433hb W bh W ;D W D W y z z z ==-==或矩形空心圆实心圆αππ11、拉压-弯曲组合变形强度条件:[]][,max max ,max max ,c zN c t z N t W M A F W M A F σσσσ≤-=≤+=12、圆轴弯扭组合变形强度条件:[][]σσσσ≤+=≤+=zr z r W T M W T M 22422375.0或13、压杆临界应力公式:欧拉公式()2222;cr cr EI EF L ππσλμ==;直线公式λσb a cr -= 14、柔度i l μλ=;惯性半径:AI i = 15、压杆的稳定条件:[]cr cr st st A Fn n F F σ==≥ 16、平面应力状态下斜截面应力的一般公式 cos 2sin 222sin 2cos 22x y x yαxy x y xy σσσσσσσαατατατα+-⎧=+-⎪⎪⎨-⎪=+⎪⎩- 2 -17、最大最小正应力:18、主平面方位计算公式:19、面内最大切应力: 20、20、三向应力状态最大切应力:21、胡克定律:21四大强度理论:max 13()2τσσ=-max min 2x y σσσσ+⎫=±⎬⎭132σσσ⎫=±⎬⎭()11231E εσμσσ=-+⎡⎤⎣⎦()22311E εσμσσ=-+⎡⎤⎣⎦()33121Eεσμσσ=-+⎡⎤⎣⎦,11[]r σσσ=≤,313[]r σσσσ=-≤,2123()[]r σσμσσσ=-+≤,4[]r σσ=≤。
材料力学公式完全版
材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
材料力学公式
材料力学公式材料力学是研究材料受到外力作用时产生的力学响应的学科。
在材料力学中,有一些基本的公式和方程描述了材料的力学性能。
1. 应力和应变:在材料受到力的作用下,会产生应力和应变。
应力指物体在单位面积上所受到的力,其公式为σ = F/A,其中σ为应力,F为受力的大小,A为受力的面积。
应变则是物体在受力作用下相对变形的程度,其公式为ε = ΔL / L0,其中ε为应变,ΔL为物体的长度变化量,L0为物体的初始长度。
应变也可以用应力和杨氏模量E的关系来表示,即ε = σ / E。
2. 弹性模量:弹性模量是度量材料抵抗形变的能力的物理量,其公式为E = σ / ε,其中E为弹性模量,σ为应力,ε为应变。
3. 餘弦的拉法則:拉法則指的是在材料受到外力作用时,单位长度的材料的应变跟外力的共线部分之间的关系。
对于一维应力状态,拉法則可以表示为ε = h / l,其中ε为应变,h为变形高度,l为原长度。
4. 荷重和变形的关系:在材料受到沉重的作用下,会发生变形。
根据胡克定律,荷重和变形之间存在线性关系,即F = k · ΔL,其中F为受力大小,k为弹性系数,ΔL为变形量。
5. 弯曲应力与弯矩的关系:在材料受到弯曲作用时,会产生弯曲应力。
根据梁的基本方程,弯曲应力与弯矩之间存在直接的关系,即σ = M / S,其中σ为弯曲应力,M为弯矩,S为截面积的形状因子。
6. 無限長結構在受到拉力作用時的應力分佈:当无限长的材料受到拉力作用时,会产生应力分布。
根据克氏和传奇方程,在横向拉伸力作用下,材料中的应力分布满足σ = E · ε,其中σ为应力,E为弹性模量,ε为应变。
以上介绍了材料力学中的一些基本公式和方程,它们是研究和描述材料力学性能的基础。
在实际应用中,这些公式和方程能够帮助工程师和科学家更好地理解和解释材料的力学行为。
材料力学公式大全
材料力学公式大全1. 应力(stress)公式:应力是单位面积上的力,常用符号表示为σ。
在一维情况下,应力公式可以表示为:σ=F/A其中,σ是应力,F是作用力,A是力作用的面积。
2. 应变(strain)公式:应变是用于描述物体形变的量,常用符号表示为ε。
在一维情况下,应变公式可以表示为:ε=ΔL/L0其中,ε是应变,ΔL是变形长度,L0是原始长度。
3. 弹性模量(elastic modulus)公式:弹性模量是衡量材料对外力作用下变形能力的指标,常用符号表示为E。
在一维情况下,弹性模量公式可以表示为:E=σ/ε其中,E是弹性模量,σ是应力,ε是应变。
4. 屈服强度(yield strength)公式:屈服强度是材料在变形过程中开始发生塑性变形的临界应力,常用符号表示为σy。
屈服强度公式可以表示为:σy=Fy/A其中,σy是屈服强度,Fy是屈服点的作用力,A是力作用的面积。
5. 拉伸强度(tensile strength)公式:拉伸强度是材料在拉伸过程中最大的抗拉应力,常用符号表示为σts。
拉伸强度公式可以表示为:σts = Fmax / A其中,σts是拉伸强度,Fmax是最大作用力,A是力作用的面积。
6. 断裂强度(fracture strength)公式:断裂强度是材料在破坏前的最大抗拉应力,常用符号表示为σf。
断裂强度公式可以表示为:σf=Ff/A其中,σf是断裂强度,Ff是破坏点的作用力,A是力作用的面积。
以上是一些常用的材料力学公式,这些公式在材料力学的研究和实际应用中有着重要的作用。
通过对这些公式的使用和理解,我们可以更好地了解材料在受力下的性能和行为,对于材料的设计和实际应用有着重要的指导意义。
材料力学常用基本公式
1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.6.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)7.8.纵向线应变和横向线应变9.10.泊松比11.胡克定律12.受多个力作用的杆件纵向变形计算公式?13.承受轴向分布力或变截面的杆件,纵向变形计算公式14.轴向拉压杆的强度计算公式15.许用应力,脆性材料,塑性材料16.延伸率17.截面收缩率18.剪切胡克定律(切变模量G,切应变g )19.拉压弹性模量E、泊松比和切变模量G之间关系式20.圆截面对圆心的极惯性矩(a)实心圆21.(b)空心圆22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)23.圆截面周边各点处最大切应力计算公式24.扭转截面系数,(a)实心圆25.(b)空心圆26.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式27.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式28.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或29.等直圆轴强度条件30.塑性材料;脆性材料31.扭转圆轴的刚度条件? 或32.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,33.平面应力状态下斜截面应力的一般公式,34.平面应力状态的三个主应力,,35.主平面方位的计算公式36.面内最大切应力37.受扭圆轴表面某点的三个主应力,,38.三向应力状态最大与最小正应力 ,39.三向应力状态最大切应力40.广义胡克定律41.42.43.四种强度理论的相当应力44.一种常见的应力状态的强度条件,45.组合图形的形心坐标计算公式,46.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式47.截面图形对轴z和轴y的惯性半径? ,48.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)49.纯弯曲梁的正应力计算公式50.横力弯曲最大正应力计算公式51.矩形、圆形、空心圆形的弯曲截面系数? ,,52.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)53.矩形截面梁最大弯曲切应力发生在中性轴处54.工字形截面梁腹板上的弯曲切应力近似公式55.轧制工字钢梁最大弯曲切应力计算公式56.圆形截面梁最大弯曲切应力发生在中性轴处57.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处58.弯曲正应力强度条件59.几种常见截面梁的弯曲切应力强度条件60.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,61.梁的挠曲线近似微分方程62.梁的转角方程63.梁的挠曲线方程?64.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式65.偏心拉伸(压缩)66.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,67.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为68.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式69.70.弯拉扭或弯压扭组合作用时强度计算公式71.剪切实用计算的强度条件72.挤压实用计算的强度条件73.等截面细长压杆在四种杆端约束情况下的临界力计算公式74.压杆的约束条件:(a)两端铰支μ=l75.(b)一端固定、一端自由μ=276.(c)一端固定、一端铰支μ=0.777.(d)两端固定μ=0.578.压杆的长细比或柔度计算公式,79.细长压杆临界应力的欧拉公式80.欧拉公式的适用范围81.压杆稳定性计算的安全系数法82.压杆稳定性计算的折减系数法83.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M zt③[]ττ≤⋅=bI S Q z *max z max max 5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z 2n2w 2n2wr34W M M②第四强度理论 []στσσ≤+=+=z2n2w 2n2w r475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dx x T GI L T GI TL πφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθ(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式) 三、应力状态与强度理论 1、 二向应力状态斜截面应力2、 二向应力状态极值正应力及所在截面方位角 3、 二向应力状态的极值剪应力注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变)(2)、表达形式之二(用应变表示应力) 6、三向应力状态的广义胡克定律 7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析(1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx yx+-=⎪⎭⎫ ⎝⎛-αεεγα2s i n 22yx αγ2c o s 2⎪⎪⎭⎫⎝⎛-xy(2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE= ②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π()44132απ-D Dd=α 2、惯性矩平移轴公式。
材料力学公式大全
材料力学公式大全材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
在工程设计和分析中,材料力学公式起着至关重要的作用。
下面为大家详细介绍一些常见的材料力学公式。
一、应力与应变1、正应力公式:轴向拉伸与压缩时,正应力$\sigma =\frac{F}{A}$,其中$F$ 是轴力,$A$ 是横截面面积。
圆轴扭转时,横截面上的切应力$\tau =\frac{T}{Ip}$,$T$ 是扭矩,$Ip$ 是极惯性矩。
2、线应变公式:轴向拉伸与压缩时,线应变$\epsilon =\frac{\Delta L}{L}$,$\Delta L$ 是长度的改变量,$L$ 是原长。
3、切应变公式:圆轴扭转时,切应变$\gamma =\frac{r\theta}{L}$,$r$ 是半径,$\theta$ 是扭转角,$L$ 是轴的长度。
二、胡克定律1、轴向拉伸与压缩时:$\sigma = E\epsilon$ ,其中$E$ 是弹性模量。
2、剪切胡克定律:$\tau = G\gamma$ ,$G$ 是剪切模量。
三、杆件的内力1、轴力$F_N$ :通过截面法求解,沿杆件轴线方向的内力。
2、扭矩$T$ :外力偶矩对杆件产生的内力。
3、剪力$F_Q$ 和弯矩$M$ :在梁的弯曲分析中,通过截面法求解。
四、梁的弯曲应力1、纯弯曲时的正应力:$\sigma =\frac{M y}{I_z}$,$y$ 是所求应力点到中性轴的距离,$I_z$ 是横截面对于中性轴的惯性矩。
2、横力弯曲时的正应力:需要考虑切应力的影响,进行修正。
五、梁的弯曲变形1、挠度$y$ 和转角$\theta$ 的计算公式:通过积分法或叠加法求解。
2、挠曲线近似微分方程:$EIz''= M(x)$。
六、组合变形1、拉(压)弯组合:分别计算拉伸(压缩)应力和弯曲应力,然后叠加。
2、弯扭组合:先计算弯曲应力和扭转切应力,然后根据强度理论进行强度校核。
试谈材料力学常用公式
试谈材料力学常用公式材料力学是研究材料在外载荷作用下的力学特性和变形规律的一门学科。
常用公式是材料力学中必不可少的工具,能够辅助工程师和研究人员计算和预测材料的性能。
下文将探讨一些常用的材料力学公式。
1. 弹性模量公式弹性模量是材料力学中最重要的参数之一,定义为材料在受到外载荷时所产生的应力与应变之比。
弹性模量公式为:E = σ/ε其中,E为弹性模量,σ为产生的应力,ε为所产生的应变。
该公式用于计算材料在弹性范围内的强度和刚性。
具体应用时,可以通过拉伸实验等方法来测定材料的弹性模量。
2. 热膨胀系数公式热膨胀系数是描述材料随温度变化而引起的长度变化的参数。
热膨胀系数公式为:α = ΔL / (L * ΔT)其中,α为热膨胀系数,ΔL为材料长度变化量,L为原始材料长度,ΔT为温度变化量。
该公式用于计算材料在不同温度下的尺寸变化规律。
3. 屈服强度公式屈服强度是材料承受压力或张力后首次发生塑性变形时所能承受的最大应力值。
屈服强度公式为:σy = F / A其中,σy为屈服强度,F为施加于材料上的力,A为材料的横截面积。
该公式用于计算材料在应力作用下的塑性变形能力。
4. 抗拉强度公式抗拉强度是材料在受到拉伸作用下能够承受的最大应力值。
抗拉强度公式为:σu = F / A其中,σu为抗拉强度,F和A的含义与屈服强度公式相同。
该公式用于计算材料在拉伸作用下的断裂能力。
5. 韧性公式韧性是材料能够吸收的能量,反映了材料的抗拉性能。
韧性公式为:U = 1/2σf εf其中,U为韧性,σf为材料的断裂应力,εf为材料的断裂应变。
该公式用于计算材料在拉伸断裂时所吸收的能量。
6. 硬度公式硬度是材料抵抗划痕、压痕、穿孔等形变的能力。
常见的硬度测试方法包括布氏硬度、洛氏硬度等。
硬度公式为:H = F / A其中,H为硬度,F为施于材料上的力,A为产生形变的表面面积。
该公式用于计算材料硬度值。
以上是常见的几种材料力学公式,它们对于材料的研究和应用具有重要的意义。
材料力学公式汇总
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件?或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径?,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.5 68.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学常用公式标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
材料力学常用公式
1.外力偶矩计算公式
(P 功率,n转速)
2.弯矩、剪力和荷载集度之间的关系式
3.轴向拉压杆横截面上正应力的计算公式
(杆件横截面轴力F N,横截面面积A,拉应力为正)
4.轴向拉压杆斜截面上的正应力与切应力计
算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)
5.
6.纵向变形和横向变形(拉伸前试样标距
l,拉伸后试样标距l1;拉伸前试样直径
d,拉伸后试样直径d1)
7.
8.纵向线应变和横向线应变
9.
10.泊松比11.胡克定律
12.受多个力作用的杆件纵向变形计算公式
13.
承受轴向分布力或变截面的杆件,纵向变
形计算公式
14.轴向拉压杆的强度计算公式
15.许用应力,脆性材料
,塑性材料
16.延伸率
17.截面收缩率
18.剪切胡克定律(切变模量G,切应变g )
19.拉压弹性模量E、泊松比和切变模量G之
间关系式
20.圆截面对圆心的极惯性矩(a)实心圆
21. (b)空心圆
22.圆轴扭转时横截面上任一点切应力计算公
式(扭矩T,所求点到圆心距离r
)
23.圆截面周边各点处最大切应力计算公式
24.扭转截面系数,(a)实心圆
25. (b)空心圆
26.薄壁圆管(壁厚δ≤ R
0 /10 ,R
为圆管
的平均半径)扭转切应力计算公式
27.圆轴扭转角与扭矩T、杆长l、扭转刚
度GH
p 的关系式
28.同一材料制成的圆轴各段内的扭矩不同或
各段的直径不同(如阶梯轴)时
或
29.
等直圆轴强度条件
30.塑性材料;脆性材料
31.扭转圆轴的刚度条件
或
32.受内压圆筒形薄壁容器横截面和纵截面上
的应力计算公式
,
33.平面应力状态下斜截面应力的一般公式
,
34.平面应力状态的三个主应力
,
,
35.主平面方位的计算公式
36.面内最大切应力
37.受扭圆轴表面某点的三个主应力,
,
38.三向应力状态最大与最小正应力
,
39.三向应力状态最大切应力
40.广义胡克定律
41.
42.
43.四种强度理论的相当应力
44.一种常见的应力状态的强度条件
,
45.组合图形的形心坐标计算公式
,
46.任意截面图形对一点的极惯性矩与以该点
为原点的任意两正交坐标轴的惯性矩之和
的关系式
47.截面图形对轴z 和轴y的惯性半径
,
48.平行移轴公式(形心轴z c与平行轴z1的
距离为a,图形面积为A )
49.纯弯曲梁的正应力计算公式
50.横力弯曲最大正应力计算公式
51.矩形、圆形、空心圆形的弯曲截面系数
,
,
52.几种常见截面的最大弯曲切应力计算公式
(为中性轴一侧的横截面对中性轴z
的静矩,b为横截面在中性轴处的宽度)53.矩形截面梁最大弯曲切应力发生在中性轴
处
54.工字形截面梁腹板上的弯曲切应力近似公
式
55.轧制工字钢梁最大弯曲切应力计算公式
56.圆形截面梁最大弯曲切应力发生在中性轴
处
57.圆环形薄壁截面梁最大弯曲切应力发生在
中性轴处
58.弯曲正应力强度条件
59.几种常见截面梁的弯曲切应力强度条件
60.弯曲梁危险点上既有正应力σ又有切应力
τ作用时的强度条件
或
,
61.梁的挠曲线近似微分方程
62.梁的转角方程
63.梁的挠曲线方程
64.轴向荷载与横向均布荷载联合作用时杆件
截面底部边缘和顶部边缘处的正应力计算公式
65.偏心拉伸(压缩)
66.弯扭组合变形时圆截面杆按第三和第四强
度理论建立的强度条件表达式
,
67.圆截面杆横截面上有两个弯矩和
同时作用时,合成弯矩为
68.圆截面杆横截面上有两个弯矩和
同时作用时强度计算公式
69.弯拉扭或弯压扭组合作用时强度计算公式
70.剪切实用计算的强度条件
71.挤压实用计算的强度条件
72.等截面细长压杆在四种杆端约束情况下的
临界力计算公式
73.压杆的约束条件:(a )两端铰支 μ=l 74. (b )一端固定、一端自
由 μ=2
75. (c )一端固定、一端铰
支 μ=
76. (d )两端固定 μ=
77.
压杆的长细比或柔度计算公式 ,
78.细长压杆临界应力的欧拉公式
79.欧拉公式的适用范围
80.压杆稳定性计算的安全系数法
81.压杆稳定性计算的折减系数法
82.关系需查表求得。