传递系数法稳定性计算及滑坡推力计算

合集下载

斜坡稳定性分析与推力计算

斜坡稳定性分析与推力计算

(T
i
j
(一)基本公式
Fs
Ei-1 Pwi Wi Ri Ni
( R
i 1 n 1 i 1 i
n 1
n 1 j i n 1 j i
j
) Rn ) Tn
(T
i
j
αi
Qi Ei
θ i-1
θi

j i
n 1
j
i i 1 i 2 n1
对岩体完整或比较完整的岩质滑坡,按下式计算:
Ei-1
Pwi Wi Ri Ni
αi
Qi Ei
θ i-1
θi
R Ntg cl
T W sin V cos Q cos
V 1 2 W hW 2
R Fs N W cos V sin U Q sin T
地质灾害防治工程分级
ቤተ መጻሕፍቲ ባይዱ
工程等级的确定,必须同时满足上三项指标中的两项
3)三峡库区三期地质灾害防治工程设计技术要求
滑坡防治工程的降雨过程,在三峡水库供、蓄期(10~ 5月)设计降雨过程为(q枯)重现期N年一遇5日暴雨,汛 期(6~9月)设计降雨过程(q全)为重现期N年一遇5日暴 雨强度重现期。
滑坡刚体极限平衡稳定 性分析与推力计算
滑坡刚体极限平衡稳定性分 析基本方法
一、折线滑动法(传递系数法) 二、圆弧滑动法 三、平面滑动法
滑坡稳定性计算方法,根据滑坡类型和可能的破 坏形式,可按下列原则确定: 1)土质滑坡和较大规模的碎裂结构岩质滑坡宜 采用圆弧滑动法计算; 2)对可能产生平面滑动的滑坡宜采用平面滑动 法进行计算;
Wi Viu Vid Fi

滑坡稳定性分析计算

滑坡稳定性分析计算

对最不利滑移横断面进行各种工况稳定性分析计算,计算过程如下:一、天然工况滑坡剩余下滑力计算计算项目:滑坡推力计算 1===================================================================== 原始条件:滑动体重度= 19.000(kN/m3)滑动体饱和重度= 25.000(kN/m3)安全系数= 1.250不考虑动水压力和浮托力不考虑承压水的浮托力不考虑坡面外的静水压力的作用不考虑地震力坡面线段数: 6, 起始点标高 4.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 13.600 0.700 02 12.250 7.000 03 2.000 0.000 04 12.000 8.000 05 24.500 0.500 06 127.000 27.000 0水面线段数: 1, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)1 0.000 0.000滑动面线段数: 5, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 12.000 0.600 10.000 14.5002 9.900 1.300 10.000 14.5003 28.000 9.000 10.000 14.5004 8.400 2.800 10.000 14.5005 117.000 29.000 10.000 14.500计算目标:按指定滑面计算推力-------------------------------------------------------------- 第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)剩余下滑力传递系数 = 1.033本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 372.160(m2) 浸水部分面积 = 0.000(m2)本块总重 = 7071.031(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 120.540(m)下滑力 = 2126.464(kN)滑床反力 R= 6863.345(kN) 滑面抗滑力 = 1774.982(kN) 粘聚力抗滑力=1205.405(kN)--------------------------本块剩余下滑力 = -853.922(kN)本块下滑力角度 = 13.921(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = 13.921(度)剩余下滑力传递系数 = 1.017本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 64.603(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1227.455(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 8.854(m)下滑力 = 485.194(kN)滑床反力 R= 1164.466(kN) 滑面抗滑力 = 301.151(kN) 粘聚力抗滑力 =88.544(kN) --------------------------本块剩余下滑力 = 95.499(kN)本块下滑力角度 = 18.435(度)第 3 块滑体上块传递推力 = 95.499(kN) 推力角度 = 18.435(度)剩余下滑力传递系数 = 0.997本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 273.373(m2) 浸水部分面积 = 0.000(m2)本块总重 = 5194.084(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 29.411(m)下滑力 = 2082.290(kN)滑床反力 R= 4945.943(kN) 滑面抗滑力 = 1279.108(kN) 粘聚力抗滑力=294.109(kN)--------------------------本块剩余下滑力 = 509.073(kN)本块下滑力角度 = 17.819(度)第 4 块滑体上块传递推力 = 509.073(kN) 推力角度 = 17.819(度)剩余下滑力传递系数 = 0.937本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 53.772(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1021.667(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 9.985(m)下滑力 = 667.080(kN)滑床反力 R= 1104.327(kN) 滑面抗滑力 = 285.598(kN) 粘聚力抗滑力 =99.850(kN) --------------------------本块剩余下滑力 = 281.631(kN)本块下滑力角度 = 7.481(度)第 5 块滑体上块传递推力 = 281.631(kN) 推力角度 = 7.481(度)剩余下滑力传递系数 = 0.976本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 48.106(m2) 浸水部分面积 = 0.000(m2)本块总重 = 914.012(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 12.015(m)下滑力 = 337.771(kN)滑床反力 R= 935.548(kN) 滑面抗滑力 = 241.949(kN) 粘聚力抗滑力 =120.150(kN) --------------------------本块剩余下滑力 = -24.328(kN) < 0本块下滑力角度 = 2.862(度)二、暴雨工况滑坡剩余下滑力计算计算项目:滑坡推力计算 1===================================================================== 原始条件:滑动体重度= 22.000(kN/m3)滑动体饱和重度= 25.000(kN/m3)安全系数= 1.150不考虑动水压力和浮托力不考虑承压水的浮托力不考虑坡面外的静水压力的作用不考虑地震力坡面线段数: 6, 起始点标高 4.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 13.600 0.700 02 12.250 7.000 03 2.000 0.000 04 12.000 8.000 05 24.500 0.500 06 127.000 27.000 0水面线段数: 1, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)1 0.000 0.000滑动面线段数: 5, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 12.000 0.600 8.500 12.0002 9.900 1.300 8.500 12.0003 28.000 9.000 8.500 12.0004 8.400 2.800 8.500 12.0005 117.000 29.000 8.500 12.000计算目标:按指定滑面计算推力-------------------------------------------------------------- 第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)剩余下滑力传递系数 = 1.022本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 372.160(m2) 浸水部分面积 = 0.000(m2)本块总重 = 8187.511(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 120.540(m)下滑力 = 2265.243(kN)滑床反力 R= 7947.032(kN) 滑面抗滑力 = 1689.194(kN) 粘聚力抗滑力=1024.594(kN)--------------------------本块剩余下滑力 = -448.544(kN)本块下滑力角度 = 13.921(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = 13.921(度)剩余下滑力传递系数 = 1.014本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 64.603(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1421.263(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 8.854(m)下滑力 = 516.859(kN)滑床反力 R= 1348.329(kN) 滑面抗滑力 = 286.596(kN) 粘聚力抗滑力 =75.262(kN) --------------------------本块剩余下滑力 = 155.001(kN)本块下滑力角度 = 18.435(度)第 3 块滑体上块传递推力 = 155.001(kN) 推力角度 = 18.435(度)剩余下滑力传递系数 = 0.998本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 273.373(m2) 浸水部分面积 = 0.000(m2)本块总重 = 6014.202(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 29.411(m)下滑力 = 2271.453(kN)滑床反力 R= 5727.359(kN) 滑面抗滑力 = 1217.388(kN) 粘聚力抗滑力=249.993(kN)--------------------------本块剩余下滑力 = 804.073(kN)本块下滑力角度 = 17.819(度)第 4 块滑体上块传递推力 = 804.073(kN) 推力角度 = 17.819(度)剩余下滑力传递系数 = 0.946本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 53.772(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1182.983(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 9.985(m)下滑力 = 968.142(kN)滑床反力 R= 1317.209(kN) 滑面抗滑力 = 279.981(kN) 粘聚力抗滑力 =84.872(kN) --------------------------本块剩余下滑力 = 603.288(kN)本块下滑力角度 = 7.481(度)第 5 块滑体上块传递推力 = 603.288(kN) 推力角度 = 7.481(度)剩余下滑力传递系数 = 0.980本块滑面粘聚力 = 8.500(kPa) 滑面摩擦角 = 12.000(度)本块总面积 = 48.106(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1058.329(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)有效的滑动面长度 = 12.015(m)下滑力 = 662.107(kN)滑床反力 R= 1105.586(kN) 滑面抗滑力 = 235.000(kN) 粘聚力抗滑力=102.127(kN)--------------------------本块剩余下滑力 = 324.980(kN) > 0本块下滑力角度 = 2.862(度)三、地震工况滑坡剩余下滑力计算计算项目:滑坡推力计算 1===================================================================== 原始条件:滑动体重度= 19.000(kN/m3)滑动体饱和重度= 25.000(kN/m3)安全系数= 1.150不考虑动水压力和浮托力不考虑承压水的浮托力不考虑坡面外的静水压力的作用考虑地震力,地震烈度为7度地震力计算综合系数 = 0.250地震力计算重要性系数 = 1.300坡面线段数: 6, 起始点标高 4.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 13.600 0.700 02 12.250 7.000 03 2.000 0.000 04 12.000 8.000 05 24.500 0.500 06 127.000 27.000 0水面线段数: 1, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)1 0.000 0.000滑动面线段数: 5, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 12.000 0.600 10.000 14.5002 9.900 1.300 10.000 14.5003 28.000 9.000 10.000 14.5004 8.400 2.800 10.000 14.5005 117.000 29.000 10.000 14.500计算目标:按指定滑面计算推力--------------------------------------------------------------第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)剩余下滑力传递系数 = 1.033本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 372.160(m2) 浸水部分面积 = 0.000(m2)本块总重 = 7071.031(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 229.809(kN)有效的滑动面长度 = 120.540(m)下滑力 = 2220.626(kN)滑床反力 R= 6863.345(kN) 滑面抗滑力 = 1774.982(kN) 粘聚力抗滑力=1205.405(kN)--------------------------本块剩余下滑力 = -759.760(kN)本块下滑力角度 = 13.921(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = 13.921(度)剩余下滑力传递系数 = 1.017本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 64.603(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1227.455(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 39.892(kN)有效的滑动面长度 = 8.854(m)下滑力 = 492.255(kN)滑床反力 R= 1164.466(kN) 滑面抗滑力 = 301.151(kN) 粘聚力抗滑力 =88.544(kN) --------------------------本块剩余下滑力 = 102.560(kN)本块下滑力角度 = 18.435(度)第 3 块滑体上块传递推力 = 102.560(kN) 推力角度 = 18.435(度)剩余下滑力传递系数 = 0.997本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 273.373(m2) 浸水部分面积 = 0.000(m2)本块总重 = 5194.084(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 168.808(kN)有效的滑动面长度 = 29.411(m)下滑力 = 2124.535(kN)滑床反力 R= 4946.019(kN) 滑面抗滑力 = 1279.127(kN) 粘聚力抗滑力=294.109(kN)--------------------------本块剩余下滑力 = 551.299(kN)本块下滑力角度 = 17.819(度)第 4 块滑体上块传递推力 = 551.299(kN) 推力角度 = 17.819(度)剩余下滑力传递系数 = 0.937本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 53.772(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1021.667(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 33.204(kN)有效的滑动面长度 = 9.985(m)下滑力 = 733.503(kN)滑床反力 R= 1111.905(kN) 滑面抗滑力 = 287.558(kN) 粘聚力抗滑力 =99.850(kN) --------------------------本块剩余下滑力 = 346.095(kN)本块下滑力角度 = 7.481(度)第 5 块滑体上块传递推力 = 346.095(kN) 推力角度 = 7.481(度)剩余下滑力传递系数 = 0.976本块滑面粘聚力 = 10.000(kPa) 滑面摩擦角 = 14.500(度)本块总面积 = 48.106(m2) 浸水部分面积 = 0.000(m2)本块总重 = 914.012(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块地震力 = 29.705(kN)有效的滑动面长度 = 12.015(m)下滑力 = 431.623(kN)滑床反力 R= 940.739(kN) 滑面抗滑力 = 243.292(kN) 粘聚力抗滑力 =120.150(kN) --------------------------本块剩余下滑力 = 68.181(kN) > 0本块下滑力角度 = 2.862(度)计算结果显示,在暴雨工况下滑移体剩余下滑力最大,为324.980 kN。

传递系数法稳定性计算及滑坡推力计算

传递系数法稳定性计算及滑坡推力计算
发生滑坡
前饱水状
态(0.8
倍水位)
A-A'
块段编号
滑面倾角° 滑面长度m 块体面积m2 水下面积m2 水上面积m2 滑体重量KN 水流倾角β° 地震影响系数
1.00
56.00
10.00
33.00
26.40
6.60
322.92
15.00
0.00
2.00
42.00
11.00
70.00
56.00
14.00
114.44
0.91
132.70 103.62 317.42
0.96
609.29 304.69 546.02
0.95
1098.47 516.41 796.03
0.85
1376.36 675.07 1160.19
0.95
1629.69 1097.28 1558.35
0.99
1605.06 1542.83 1658.75
0.91
290.74 123.10 401.81
0.96
1010.48 385.69 700.73
0.95
1686.38 662.73 1032.74
0.85
2034.00 875.81 1523.64
0.95
2339.59 1441.01 2054.62
0.99
2288.03 2034.16 2159.96
1598.70
0.78 0.50 0.47 0.49 0.67 0.96
1.04
234.47 590.46 579.14 484.86 220.40 -3.00
内聚力 t/m2
10.00 10.00 10.00 10.00 10.00 10.00 10.00

滑坡稳定性计算及滑坡推力计算学习资料

滑坡稳定性计算及滑坡推力计算学习资料

碎石土 粘性土
砂土
水下面积Sw(m2)
碎石土 粘性土
砂土
滑块自重(kN/m)
汽车荷载(kN/m)
滑面长度(m) 滑面倾角(度) 水容重(KN/m3) 滑面上水位高(m)
孔隙压力 比
Wi
Q
Li
αi
γw
hw
rU
地下水流向 (度)
βi
内聚力(KN) c
内摩擦角 (度)
φ
地震影响系数 地震力(kN/m) 法向分力(kN/m) 下滑力(KN/m)
∑Ti
抗滑力(KN/m) 累积抗滑力(KN/m) 传递系数 稳定系数
Ri
∑Ri
Ψi
Kf
1-1
18.00
0.00
0.00
8.00
0.00
0.00
5.7848
0.00
0.00
0.00
0.00
0.00
1-2
18.00
0.00
0.00
8.00
0.00
0.00
40.9873
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1-3
18.00
0.00
0.00
8.00
0.00
0.00
37.7594
0.00
0.00
0.00
0.00
0.00
1-4
18.00
0.00
0.00
8.00
0.00
0.00
33.5663
0.00
0.00
0.00
0.00

传递系数法滑坡稳定计算公式运用初探

传递系数法滑坡稳定计算公式运用初探
c s n ̄ i o )一 a p o  ̄ sn G 蜀 )tnc+ , .
数 ( i , 即 C S ( 一 , 一 i ( ̄ .) t n p j ) = O ) sn o G+ - , a (; i
R ( n Wn (1 (一
T n一 ( 2 实例 计 算
或者 聋 弱 带 ,整 体 I . 、
f : 的土 体 或 者村 及 人工 切坡 等 受河 流 冲刷 、 地 下水 活 动 、降 雨、地 震 . j, : I q 巾 J作 用 F 沿蓿 一 定 ¨软 弱面 , 。 敞地 顺 坡 向 下滑 动 的 自然 现 象 。我
第 i1 段 的剩 余 F 力 传递 第 { 一块 滑 块段 时 的传 递 系


帐 力
内 擎 潦 角






、 呈
图 2 滑 坡 稳定 性 计算 条 块划 分 图
图 1 折 线滑 动 面稳 定 性计 算模 型

稳 定性 及 剩 余推 力计 算 结果 如 下表 1 。
表 1 滑 坡稳 定性 及推 力计 算 成果 表
1 、

要 :文 中 以I l 震 灾 区某 滑 坡稳 定性 计 算 为例 ,应 用折 线 型滑 面 的滑 坡稳 定 性 计算 公 式计 算 稳 定性 系数 及 滑  ̄)地 l
坡 推 力 ,讨论 传递 系数 法 的物 理意 义 及在 滑 坡 稳定 性计 算 中 的局 限性 ,探讨 解 决 方法 。
关 键 词 :滑坡 ;传 递 系 数法 ;稳定 性评 价
1 3 7 5 8 7 1 95 … 0 8 3 2 9 4 210 0 0 1 1 21 8 4 2 8 1 7 0 4 3 8 l 6 0 1 5 1 2 95 9 7 3 9 2 3 317 0 1 1 7 42 51 6 1 7 1 89 1 】 921 3 9 2 5 4 4 0 f 1 l 6 1 )7 ( 95 6 2 0 7 5 9 3 1 】 7 1 8 4 2 ( 9 ) 1 8 4 1 7 ̄( 89 2 l l 1 68 5 8 5 98 56 6 1 ) 9 42 111 71 46 5 I 9 i 1 i 89 1 0 『 I I 5 86 6 { 4 5 9 8 2 91 8 5 79 1 】 8 5l 7 1 l 481 2 2 1 9 9 7 IJ l 47 9 9 2 95 4 8 38 42 『0 7 1 58 9 11

滑坡应用公式解读

滑坡应用公式解读

3.2.3 稳定性计算1、稳定性计算方法稳定性分析采用二维极限平衡传递系数法进行计算,坡面地形线及可能滑面均简化成折线。

计算时取滑坡体的单位宽度为1m 。

在研究区工程地质分析的基础上,采用折线法计算滑坡稳定性,在此基础上对该滑坡区进行稳定性评价。

根据传递系数法,在考虑重力、孔隙水压力(假定孔隙水压力按线性分布)的情况,计算公式如下:∑--+⨯∆--++-∆++=112121}]sin cos )[({]cos sin )[(i i i i i wi i i i i i i i i i i st iF tg a p p a W W l c a p a W W F Fψϕ (1) 式中:111tan )sin()cos(+++---=i i i i i j ϕααααψ (2)Ψi :推力传递系数;F i :第i 个条块末端的滑坡推力(kN/m );F st :抗滑稳定安全系数,依表不同荷载组合及工程等级选取; W i1:第i 个条块地下水位线以上土体天然重量(kN/m ); W i2:第i 个条块地下水位线以上土体饱和重量(kN/m ); p i :第i 个条块土体两侧静水压力的合力; p wi :第i 条块土体底部孔隙压力;φi :第i 个条块所在滑动面上的内摩擦角(°); αi :第i 个条块所在滑动面上的单位、黏聚力(kPa ); l i :第i 个条块所在滑动面的长度(m ); 孔隙水压力的计算说明如下,见图3。

图3-1 孔隙水压力计算示意图)(2122a b i h h p γγ-=∆ (3) i b a wi l h h p )(21γγ+= (4)2、计算工况茂和11组滑坡标高在238~390m 之间,均高于三峡水库正常运行后的最高水位175m (黄海高程),故该滑坡不涉水。

工况5:自重+地表荷载+20年一遇暴雨(q 全) 3、判别标准稳定性系数Fs ≥F St (滑坡稳定性安全系数)为稳定,F St ~1.05为基本稳定,1.05~1.00为欠稳定,小于1.00为不稳定。

传递系数计算滑坡推力

传递系数计算滑坡推力

E i --E i-1--W i --E i --¢i --c i --l i --φi --a i --a i-1--K s --r=20KN/m 3条编号滑坡面积s 滑面角a i 传递系数¢c φNi=Wcos аi Ti=Wsin аi li滑面长度K s 推力E i124.0060.50.7585517236.36417.77 4.96 1.15383.392245.5018.50.53865174656.271557.9731.80 1.15415.583332.5022 1.01685176165.772491.1337.00 1.151217.304330.00170.96955176311.611929.6542.80 1.151255.685159.008.50.94385173145.07470.0318.201.15673.14传递系数=cos(a i-1-a i )-sin(a i-1-a i )tan φi 安全系数,一般取1.05~1.25;实际工程中采用E i =K s W i sin аi -W i cos аi tan φi -c i l i +¢i E i-1滑坡推力计算表第i块滑体的重量=18×s(面积);第i块滑体滑面上岩体的黏聚力;第i块滑体的滑面长度;第i块滑体滑面上的内摩擦角;第i块滑体滑面的倾角;第i-1块滑体滑面的倾角;第i块滑体剩余下滑力;第i-1块滑体剩余下滑力;第i块滑体滑床反力;E i -W i sin аi -E i-1cos(a i-1-a i )+[W i cosa i +E i -sin(a i-1-a i )]tan φi +c i l i =0E i =W i sin аi -W i cos аi tan φi -c i l i +¢i E i-1由上式可得出第i块的剩余下滑力:传递系数法计算滑坡推力a 滑坡体不可压缩并做整体下滑,不考虑条块之间挤压变形;b 条块之间只传递推力不传递拉力,不出现条块之间的拉裂;c 块间作用力(即推力)已集中力表示,它的作用线平行于前一块的滑面方向,作用在分界面的d 垂直滑坡主轴取单位长度宽的岩土体做计算的基本断面,不考虑条块两侧的摩擦力传递系数法假定:。

滑坡稳定性计算及滑坡推力计算

滑坡稳定性计算及滑坡推力计算
∑Ti
抗滑力(KN/m) 累积抗滑力(KN/m) 传递系数 稳定系数
Ri
∑Ri
Ψi
Kf
1-1
18.00
0.00
0.00
8.00
0.00
0.00
5.7848
0.00
0.00
0.00
0.00
0.00
1-2
18.00
0.00
0.00
8.00
0.00
0.00
40.9873
0.00
0.00
0.00
0.00
0.00
a
Fi
Ni
Ti
累积下滑力 (KN/m)
∑Ti
抗滑力(KN/m) 累积抗滑力(KN/m) 传递系数 稳定系数
Ri
∑Ri
Ψi
Kf
1-1
18.00
0.00
0.00
8.00
0.00
0.00
5.7848
0.00
0.00
0.00
0.00
0.00
1-2
18.00
0.00
0.00
8.00
0.00
0.00
40.9873
1-3
18.00
0.00
0.00
8.00
0.00
0.00
37.7594
0.00
0.00
0.00
0.00
0.00
1-4
18.00
0.00
0.00
8.00
0.00
0.00
33.5663
0.00
0.00
0.00
0.00
0.00
1-5
18.00

斜坡稳定性分析与推力计算

斜坡稳定性分析与推力计算

传递系数: j cos( i i 1 ) sin( i i 1 ) tan i 1 j=i
第i条块滑体抗滑力(kN/m):Ri N i tan i ci li
第i条块滑体下滑力(kN/m): Ti Wi sin i P Wi cos i i Qi cos i
W Vu Vd sat F
1 U W lhW 2
滑坡推力计算
(折线滑动)
一、折线滑动的滑坡推力计算 二、防治工程设计安全系数
一、折线滑动的滑坡 推力计算
回顾:滑坡稳定性计算的公式
Ei-1
Pwi Wi Ri Ni
αi
Qi Ei
θ i-1
Ei-1
θi
第1条块
E1 KT1 -R1
a
E i-1
第i块
θ
e W i1 i-1
Di
b
i+1
f c
d W i2
Ti Ni L
αi θi
θi
Ei
i sin i
(一)基本公式
两者计算思路: (2)把土体 (包括土骨架和 孔隙中的流体— —水和气)作为 整体取隔离体: 水位线以上取天 然重量,水位线 以下取土条饱和 重量,同时考虑 三边静水压力。
αi
Qi Ei
Fs
θ i-1
R T
i
i
θi
Ri N i tan i ci li Ti Wi sin i PWi cos i i Qi cos i
N i Wi cos i PWi sin i i Qi sin i
PWi W iVid
Ei-1 Pwi Wi Ri Ni

关于广西大化县武城村滑坡推力计算及稳定性分析评价

关于广西大化县武城村滑坡推力计算及稳定性分析评价

关于广西大化县武城村滑坡推力计算及稳定性分析评价摘要:滑坡推力计算及稳定性分析评价以地质灾害治理过程中,需要我们经常测算,给我们提供定量的设计参数,合理市郊的开展更进一步的设计工作。

本文就该项工作的实例开展进行浅述。

关键词:滑坡推力及稳定性能超群分析评价1 计算模型与工况1.1 计算模型依据《滑坡防治工程勘查规范》(DZ/T0218—2006)确定,按危害对象等级划为三级。

根据勘查结果分析,勘查期间滑坡体整体处于暂时稳定状态,采用折线滑动法对滑坡主纵剖面(即1—1′、2—2′、3-3′剖面)进行计算时,滑坡体坡面地形线及可能滑面均简化成折线,分条块进行计算。

1.2 计算工况由于暴雨及地下水对滑坡体稳定性影响较大,在滑坡中部公路坡脚处有S1泉水出露,ZK7、ZK8及TC5测得下水位均接近地表,且滑坡体中部和滑坡剪出口(冲沟)处常年有地下泉水出露,即滑坡体的稳定性在天然条件下也受地下水的影响,因此拟采用如下两种工况对滑坡体稳定性进行计算。

(1)自重+地下水(工况Ⅱ);(2)自重+暴雨+地下水(工况Ⅲ)。

依据《滑坡防治工程勘查规范》(DZ/T0218-2006)确定该滑坡危害等级为三级,并参照《滑坡防治工程设计与施工技术规范》(DZ/T0219-2006)确定防治工程设计等级为Ⅲ级,选取安全系数KS如下:(1)设计。

工况Ⅱ:自重+地下水,KS≥1.10;(2)校核。

工况Ⅲ:自重+暴雨+地下水,KS≥1.05。

2 计算方法与参数选取2.1 计算方法根据野外调查和滑坡勘查成果分析表明,孟兀屯滑坡可能发生折线滑动,滑动面为全风化粉砂岩与强风化粉砂岩接触面处,稳定性计算采用传递系数法计算,传递系数法公式见《滑坡防治工程勘查规范》(DZ/T0218—2006)附录E,具体如下:滑坡稳定性计算公式:式中::第i条块的重量(kN/m);:第i条块内聚力(kPa);:第i条块内摩擦角(°);:第i条块滑面长度(m);:第i条块滑面倾角和地下水流向(°);A:地震加速度(单位:重力加速度g);:稳定系数;:第i块的剩余下滑力传递至第i+1块段时的传递系数(j=i),即:2.2 计算参数选取2.2.1 重度的确定根据室内土样检测结果,综合确定如下:滑坡体:可塑状粉质粘土天然重度取19.50 kN/m3,饱和重度取20.2 kN/m3;全风化粉砂岩(粉土)天然重度取19.60 kN/m3,饱和重度取20.4 kN/m3。

传递系数计算滑坡推力

传递系数计算滑坡推力

E i --E i-1--W i --E i --¢i --c i --l i --φi --a i --a i-1--K s --r=20KN/m 3条编号滑坡面积s 滑面角a i 传递系数¢c φNi=Wcos аi Ti=Wsin аi li滑面长度K s 推力E i124.0060.50.7585517236.36417.77 4.96 1.15383.392245.5018.50.53865174656.271557.9731.80 1.15415.583332.5022 1.01685176165.772491.1337.00 1.151217.304330.00170.96955176311.611929.6542.80 1.151255.685159.008.50.94385173145.07470.0318.201.15673.14传递系数法计算滑坡推力a 滑坡体不可压缩并做整体下滑,不考虑条块之间挤压变形;b 条块之间只传递推力不传递拉力,不出现条块之间的拉裂;c 块间作用力(即推力)已集中力表示,它的作用线平行于前一块的滑面方向,作用在分界面的d 垂直滑坡主轴取单位长度宽的岩土体做计算的基本断面,不考虑条块两侧的摩擦力传递系数法假定:第i-1块滑体滑面的倾角;第i块滑体剩余下滑力;第i-1块滑体剩余下滑力;第i块滑体滑床反力;E i -W i sin аi -E i-1cos(a i-1-a i )+[W i cosa i +E i -sin(a i-1-a i )]tan φi +c i l i =0E i =W i sin аi -W i cos аi tan φi -c i l i +¢i E i-1由上式可得出第i块的剩余下滑力:如果E n 为负值或零,说明滑坡稳定,满足设计要求。

另外,如果计算断面中有逆坡,倾角аi 为负值,则Wsinаi 也是负值,因而Wsin аi 也变成了抗滑力,在计算滑坡推力时,Wsin аi 项就不应再乘以安全系数。

基于传递系数法的滑坡边坡稳定性分析

基于传递系数法的滑坡边坡稳定性分析

基于传递系数法的滑坡边坡稳定性分析基于传递系数法的滑坡边坡稳定性分析摘要:本文以重庆新高路滑坡为研究背景,采用传递系数法,分析滑坡边坡的稳定性。

通过计算分析得出该滑坡在两种工况下的安全系数,并以此对该滑坡的稳定性进行准确的评价。

以表明传递系数法这一极限平衡分析法是一种简单实用的边坡稳定性分析方法。

关键词:稳定性分析,传递系数法,安全系数,滑坡中图分类号:P642.22 文献标识码:A 文章编号:1引言滑坡是指斜坡上的土体或者岩体,受河流冲刷、地下水活动、地震及人工切坡等因素影响,在重力作用下,沿着一定的软弱面或者软弱带,整体地或者分散地顺坡向下滑动的自然现象。

滑坡常常给工农业生产以及人民生命财产造成巨大损失、有的甚至是毁灭性的灾难。

我国西南地区多为丘陵和山区,地层风化深度大,岩体结构破碎,滑坡问题更加突出。

随着我国西部大开发的不断加深,大量公路铁路等工程的建设,这些工程活动中开挖切坡形成了很多的路堑边坡,更是加深了原有的滑坡危害。

近些年来不断发生的滑坡灾害事故,也使人们越来越重视对于边坡稳定性及变形破坏机理的研究,进而采取有效的措施加强边坡的稳定性,避免滑坡灾害的发生。

边坡稳定性问题的研究十分复杂,并受多种不同因素的影响。

因此,想要对边坡问题进行准确地预测并解决边坡失稳引起的问题,正确的分析方法是十分必要的因素。

本文结合重庆市丰都县新高路滑坡工程,拟采用传递系数法对该边坡的稳定性进行分析研究。

2工程简介新高路滑坡位于重庆市丰都县高家镇新迁城镇所在地东侧后山,长江右岸岸坡地带,地理坐标X=3322255~3322490,Y=36486585~36486970。

新高路滑坡为沿基岩面滑移的土质滑坡,滑坡地带为集镇规划用地,在前缘施以切坡进行集镇建设时,形成临空,从而引发滑坡滑移,滑坡为一中型滑坡,滑坡处所地质环境中等复杂。

老丰石公路由南向北从勘查区侧缘及后部通过,金刚路南北贯通整个滑坡,新高路从滑坡侧缘通过,祥和路从滑坡前缘外侧通过。

基于传递系数法和推力法对某滑坡稳定性分析

基于传递系数法和推力法对某滑坡稳定性分析

基于传递系数法和推力法对某滑坡稳定性分析发布时间:2022-03-22T07:18:42.411Z 来源:《城镇建设》2021年9月25期作者:李雯瑜[导读] 通过现场勘察并在分析该滑坡特征及成因等的基础上,利用传递系数法和推力法简化方程式计算滑坡的稳定性李雯瑜(中铁二十五局集团有限公司设计研究院广东广州 511458)摘要:通过现场勘察并在分析该滑坡特征及成因等的基础上,利用传递系数法和推力法简化方程式计算滑坡的稳定性。

结果表明该滑坡近期在雨季处于不稳定状态,旱季表层土体处于欠稳定状态,而地震时处于不稳定状态。

根据稳定分析及推力计算,滑坡区为整体滑移区,在确保治理工程的经济合理性和安全性的前提下,采取防治措施,防止其再次扩大范围,减少损失,确保居民安全。

关键词:滑坡;发育特征;稳定性评价;治理研究一、工程概况该滑坡地质灾害直接威胁滑坡体及下方村寨,道路、耕地、通信电力设施、居民房屋32户135余人的生命财产安全。

滑坡后缘为L1裂缝发育地段斜坡稳定基岩出露一带,地面高程约1767m~1772m一线,北东向南西展布,变形迹象主要表现在坡面上发育的拉张裂缝、错落台坎等,其北侧与南侧地带未见有变形迹象发育。

照片1:滑坡发育特征二、滑坡影响因素与变形破坏机制(一)滑坡影响因素分析滑坡成因与地形地貌、地层岩性、强降雨、人类工程活动、地震等密不可分。

该滑坡地形地貌特征明显,周界清晰,前后缘高差大,地形坡度较陡,前缘具备临空条件;勘查区斜坡浅层分布有第四系人工填土、残坡积粉质粘土与全风化砂质板岩层,结构松散,其接触面(带),在强降雨、地表水下渗,土体饱和加重等条件下,岩土体抗剪强度急剧降低,在外力及自重作用下岩土体易沿岩性差异面(带)形成滑坡危害;当地降水较丰沛,年平均降雨量为1352.1毫米,降雨量占全年降雨量的76%。

降水形成的地表水在松散的土体内渗流、浸泡并产生地下迳流,使岩土体强度急剧降低,不利于坡体的稳定;该滑坡体上居民点密集分布,人类工程活动对坡体稳定性的不利影响主要在建盖房屋时对坡体进行切坡,形成了较高陡临空面,破坏了坡体原始应力平衡,影响了坡体的稳定性。

传递系数法

传递系数法

(二)计算公式采用目前国内普遍采用的传递系数法进行计算,其公式如下:ψj=cos(αi-αi+1) - sin(αi-αi+1)tan φi+1R i =N i tan φi +c i l iT i =W i sin αi +Pw i cos(θi -αi )+ U i cos φi N i = W i cos αi + Pw i sin(θi -αi )+U i sin φi W i =V i u γ+ V i d γsat+F i Pw i =γwW i V i d i=sin|αi ||滑坡推力计算公式: P i =P i-1×φi +F st ×T i -R i式中:Fs —滑坡稳定性系数;Ψi —第i 条块的剩余下滑力传递至第i+1条块的系数; Ri —第i 计算条块滑体抗滑力(kN/m ); Ti —第i 计算条块滑体下滑力(kN/m );Ni —第i 计算条块滑体在滑动面法线上的反力(kN/m );∑∏∑∏=-=-=-=-=++111111)()(n i n ij nj i n i n ij nj i T T R R Fs ψψ1211-+-=+⋅⋅⋅⋅⋅⋅⋅⋅=∏n i n ij i i jψψψψψi i w H l Ui γ21=Wi—第i块段滑体自重力与地面荷载之和(kN/m));φi—第i块段滑带土的内摩擦角(°);c i—第i块段滑带土的粘聚力(KPa);l i—第i块段滑动面长度(m);P iw—第i计算条块单位宽度的渗透压力;V i—土体水下体积(m3/m);αi—第i计算条块地下水流线平均倾角,一般情况下取浸润线倾角与滑面倾角平均值(°);θi—滑块底面倾角(°);i—地下水渗透坡降γw—水的重度;V iu为第i计算条块单位宽度岩土体浸润线以上体积(m3/m);V id为第i计算条块单位宽度岩土体的浸润线以下体积(m3/m);γ—岩土体的天然容重(kN/m3);γsat—岩土体的饱和重(kN/m3);Fi—第i条块所受地面荷载(kN);Ui—第i条块单位宽度裂隙(缝)水压力(kN);Hi—裂隙(缝)水头高度。

论传递系数法求边坡稳定安全系数的两种解法

论传递系数法求边坡稳定安全系数的两种解法

论传递系数法求边坡稳定安全系数的两种解法第24卷第2期水利水电科技进展2004年4月张丹1,李同春1,乐成军2(1.河海大学水利水电工程学院,江苏南京210098;2.成都勘测设计研究院,四川成都610072)摘要:在简要介绍传递系数法原理的基础上,对传递系数法求解边坡稳定安全系数的两种解法———试算法和迭代法进行比较,认为迭代法有更高的计算效率,受稳定安全系数初值和调整步长的选择的影响也更小.关键词:传递系数法;边坡稳定安全系数;刚体极限平衡;滑动面中图分类号:TU457文献标识码:A文章编号:1006Ο7647(2004)02Ο0023Ο03传递系数法又称为剩余推力法或不平衡推力传递法.作为纳入建筑规范的一种方法,它在我国水利、交通和铁道部门滑坡稳定分析中得到了广泛的应用[1,2],特别是在用抗滑桩进行加固的边坡中,力.面平行,,可考虑复杂形状的滑动面,用下的滑坡推力.国内的大量计算结果表明,当滑动面是圆弧时,传递系数法和简化Bishop法计算的边坡稳定安全系数是非常接近的,而且二者所搜索到的临界滑弧位置几乎重合[3].简化Bishop法是国际公认的一种比较精确的计算方法,因此有理由认为传递系数法也是一种可依赖的工程实用方法.常规传递系数法(即试算法)求解边坡稳定安全系数是通过不断调整安全系数值,使滑动面出口点不平衡下滑力为零来实现的[4].该法求解速度与假定的安全系数初值和调整步长有很大关系,人为因素较大.而本文讨论的另一种方法———迭代法将滑动面出口点不平衡下滑力为零作为已知条件代入公式进行计算,从而大大提高了计算效率.上的法向力;Si为第i力;f;ci;l.[]1,abc,其上有①②两分.,分界面bb′上无内,但它们的安全系数的关系为K1&lt;K2.当剪切面上的摩擦系数和粘聚力降低到某一限度时,①号块首先不能稳定,②号块尚有潜力,所以①号块必然要倒向②号块,以寻求它的支持.此时假设边坡的最终安全系数为K,对第①块有:+K1=&lt;1S1(2)对第②块有:+K2=&gt;1S2(3)1传递系数法原理文献[4]定义边坡稳定安全系数为整个滑动面上抗滑力和滑动力的比值:mm图1分块示意图K=i=1∑(fNii+cili)/i=1∑Si(1)因为K1&lt;1,即+&lt;S1,将S1-KK式中:m为滑坡体内滑动面个数;Ni为第i个滑动面clfN称为这一块的不平衡下滑力,记为+KK),女,四川眉山人,硕士研究生,主要从事水工结构研究.作者简介:张丹(1979—?23?F1.这意味着剪切面ab上不能抵抗全部下滑力S1,尚差一值F1.这个F1可以由两个因素来平衡,一个是在bb′面上产生的接触压力P12,另一个是ab面上法向反力产生的变化值ΔN1,如图2所示.由于无法知道F1究竟按什么规律分解为P12及fΔN1,就简单假定完全由P12来平衡,即假定每一分界面上推力的方向平行于上一分块的底坡.图2力平衡示意图用传递系数法分条计算时,各分条的受力情况如图3所示.计算公式如下:αFi=(Wisinαi+Qicosi)-(αα)1ψ+i-1KK()其中:ψi-1=cosi-1-αi)-sin(αi-1-αi)K(5)式中:Wi为各分条重量;Qi为水平力;αi为各分条底边与水平线的夹角;Ui为底部扬压力;Fi为不平衡推力.的Fn等于0,所以在使用该法计算边坡稳定安全系数的过程中就存在着一个试算的过程.如果条分的数目很多,试算工作量就会很大.针对这个问题,在文献[4]中提出了可以先取三个不同的K值同时试算,并注意一个K值取大一些,一个取小些,最后求出相应的Fn,绘制Fn~K 曲线,并从曲线上找出Fn=0所对应的K值.但在应用时我们会发现,由于三点所确定曲线的不准确性,所以由此方法所确定的边坡稳定安全系数往往不能满足精度的要求,只能用于边坡稳定安全系数的初估.在计算机已普及应用的今天,可以方便地通过编程计算完成上述的试算过程,快速而精确地求解出满足条件的边坡稳定安全系数.编程计算中试算过程可以按如下步骤实现:①假定边坡稳定安全系数的初值为K;②用式(4)逐条计算,得出Fn;③判断Fn的大小,如果Fn于0的数(K;如果Fn,K,②;,K一个大于0的,.,在该法的求解过程中,我们要同时控制两个值,一个是Fn的值,在编程中作为控制变量,另一个是边坡稳定安全系数K的增量,而这两个量不是相互独立的.如果K的增量选得很大,而Fn的控制精度值选得过小,有可能得不出想要的结果,而且对于不同的边坡,两者的精度关系不同,所以在计算中需要不断调整这两个值,这给用该法计算带来了不便.2.2迭代解法由文献[4]知,式(4)中右边第一项表示本分条的下滑力,第二项表示本分条的抗滑力,第三项表示上一分条传下来的不平衡下滑力的影响,而左端项为本分条的不平衡下滑力,因此式(4)可改写成:(6)KFSi=FRi其中αFRi=cili+(Wicosαi-Ui-Qisini)fi(7)αFSi=(Wisinαi+Qicosi)+Fi-1ψi-1-Fi(8)图3条块受力分析2求解的两种方法2.1常规的试算法由文献[4]提供的思路,先假定一个K值,用式(4)逐条计算,一直到第n条,如果计算出的Fn等于0,则此时的K 即为边坡实际的稳定安全系数,如果Fn不等于0,则需重新假定K值,重复以上步骤,直到Fn等于0.由于边坡稳定安全系数K事先是未知的,一般不可能一次假定的K值就能使计算得出?24?对i≤n-1分条,可以由事先假定的边坡稳定安全系数值K通过式(4)算出Fi,对第n分条,可利用Fn=0的条件,此时式(7)和式(8)右端项均为已知,因此可以求得每一分条的FRi和FSi,将此时所有分条的FRi 和FSi累加并相除可得边坡稳定安全系数K3.若假定的K为真解,则有K3=K.nK3=n∑FRi(9)Sii=1∑F式中:FRi为第i条的抗滑力;FSi为第i条的滑动力;n为总的分条数,其余符号意义同前.式(9)与边坡稳定安全系数的定义式(1)是完全吻合的.根据上述思路,边坡稳定安全系数迭代求解步骤如下:①假定边坡稳定安全系数的初值为K;②用式(4)计算Fi,直到第n-1条,同时用式(7)及式(8)分别计算FRi和FSi,直到第n条;③用式(9)计算新的边坡稳定安全系数K3;④比较K和K3,如果两者差值的绝对值小于一个非常接近于零的正数(取决于所要求的精度),则K3为所要求的边坡稳定安全系数,输出;如果两者的差值的绝对值大于该数,则把K3的值赋给K重复步骤②和③.迭代次数为5次.图5算例二滑坡体剖面3算例分析算例一:如图4所示,计算的滑坡体由4个块体构成.为了简化计算,考虑滑坡体内材料为均质的,取其密度为2.65t/m3,摩擦角为30°,粘聚力为24152kPa.为了体现两种方法计算效率的差别,本文算例所要求的计算精度都比较高,在实际工程计算中可能无需要求这么高的精度,所以在算例二中对不同精度要求情况下两种方法的计算效率进行了比较:K的初值仍为110,如果要求的精度为10-3,对算例二,迭代法和试算法的计算次数分别为3次和109次,如果要求的精度为10-4,迭代法和试算法的计算次数分别为4次和1084次.,即使,,,论本文针对传递系数法求解边坡稳定安全系数时需要试算的问题,对两种不同的解法———试算法和图4算例一滑坡体条分示意图计算取边坡稳定安全系数K的精度为10-6,由两种计算方法编程计算,得到相同的边坡稳定安全系数值,为11367704,但不同的是它们得到同样的结果需要的时间和计算次数,采用试算法得出结果所需要的循环次数为385565次,而采用迭代法得出同样的结果只需要迭代8次.以上计算选用的边坡稳定安全系数的计算初值为110,如果改用115,试算法得出结果需要循环138720次,迭代法需6次;如果改用210,试算法得迭代法进行了比较分析.算例表明,迭代法与常规的试算法相比,收敛速度快,编程简单.在实际工程计算时,经常遇到滑动面未知,需要搜索滑动面的情况,这时可能要计算若干个滑动面的边坡稳定安全系数进行比较,而且为了提高计算的精度,在实际工作中往往要求条分的数量比较多,在这种情况下编程计算,迭代法的优越性会得到很大的体现.参考文献:[1]杨培忠,陈惠君.紫坪铺工程导流洞2#出口边坡稳定分析及处理[J].水利水电技术,2002,33(11):39~44.[2]富凤丽,佴磊,李广杰,等.中里滑坡反分析及强度参数出结果需要循环663008次,迭代法需7次.由此可以看出,初值的选取对试算法的计算效率影响很大,但对迭代法的影响却很小.算例二:该例所计算的剖面为213国道紫坪铺库区淹没段改建工程倒流坡库岸堆积体稳定分析项目中的一实际剖面,滑坡体剖面如图5所示.计算中考虑滑坡体内土的密度为2.1t/m3,滑动面上的土体指标为:摩擦角2315°,粘聚力18kPa.取K的初值为110,如果仍要求边坡稳定安全系数K的精度达到10-6,所得到的边坡稳定安全系数值为11108340,试算法求解得出结果所需的循环次数为113604次,迭代法求解编程计算得出结果的取值研究[J].长春科技大学学报,2000,30(2):165~169.[3]朱大勇,钱七虎,周早生,等.基于余推力法的边坡临界滑动场[J].岩石力学与工程学报,1999,18(6):667~670.[4]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.(收稿日期:2003Ο06Ο10编辑:熊水斌)?25?。

滑坡应用公式解读

滑坡应用公式解读

3.2.3 稳定性计算1、稳定性计算方法稳定性分析采用二维极限平衡传递系数法进行计算,坡面地形线及可能滑面均简化成折线。

计算时取滑坡体的单位宽度为1m 。

在研究区工程地质分析的基础上,采用折线法计算滑坡稳定性,在此基础上对该滑坡区进行稳定性评价。

根据传递系数法,在考虑重力、孔隙水压力(假定孔隙水压力按线性分布)的情况,计算公式如下:∑--+⨯∆--++-∆++=112121}]sin cos )[({]cos sin )[(i i i i i wi i i i i i i i i i i st iF tg a p p a W W l c a p a W W F Fψϕ (1) 式中:111tan )sin()cos(+++---=i i i i i j ϕααααψ (2)Ψi :推力传递系数;F i :第i 个条块末端的滑坡推力(kN/m );F st :抗滑稳定安全系数,依表不同荷载组合及工程等级选取; W i1:第i 个条块地下水位线以上土体天然重量(kN/m ); W i2:第i 个条块地下水位线以上土体饱和重量(kN/m ); p i :第i 个条块土体两侧静水压力的合力; p wi :第i 条块土体底部孔隙压力;φi :第i 个条块所在滑动面上的内摩擦角(°); αi :第i 个条块所在滑动面上的单位、黏聚力(kPa ); l i :第i 个条块所在滑动面的长度(m ); 孔隙水压力的计算说明如下,见图3。

图3-1 孔隙水压力计算示意图)(2122a b i h h p γγ-=∆ (3) i b a wi l h h p )(21γγ+= (4)2、计算工况茂和11组滑坡标高在238~390m 之间,均高于三峡水库正常运行后的最高水位175m (黄海高程),故该滑坡不涉水。

工况5:自重+地表荷载+20年一遇暴雨(q 全) 3、判别标准稳定性系数Fs ≥F St (滑坡稳定性安全系数)为稳定,F St ~1.05为基本稳定,1.05~1.00为欠稳定,小于1.00为不稳定。

传递系数法在滑坡稳定性分析中的应用

传递系数法在滑坡稳定性分析中的应用

传递系数法在滑坡稳定性分析中的应用摘要:传递系数法是一种较为常用滑坡稳定性分析方法。

其优点是借助于滑坡构造特征分析稳定性及剩余推力计算, 可以获得任意形状滑动面在复杂荷载作用下的滑坡推力,且计算简洁,本文简要地介绍传递系数法及其在某滑坡稳定性分析中的应用.关键词:滑坡稳定性分析;传递系数法1.引言滑坡治理是一项技术复杂、施工难度大的灾害防治工程,而滑坡稳定性分析又是滑坡治理的前提和基础。

目前边坡稳定性定量分析有以静力学分析为基础的极限平衡分析法。

传递系数法是极限平衡分析法中的一种,又称不平衡推力法或折线法,它适用于刚体极限平衡边坡稳定性分析。

该法计算简单,能判断边坡的稳定状态,且能为滑坡的治理提供下滑推力的计算,因此在工程中得到了广泛应用。

2.传递系数法简介2.1传递系数法属刚体极限平衡分析法, 计算方法基于如下6点假设[1]::(1) 将滑坡稳定性问题视为平面应变问题;(2)滑动力以平行于滑动面的剪应力T 和垂直于滑动面的正应力a 集中作用于滑动面上;(3) 视滑坡体为理想刚塑材料, 认为整个加荷过程中, 滑坡体不会发生任何变形, 一旦沿滑动面剪应力达到其剪切强度, 则滑坡体即开始沿滑动面产生剪切破坏;(4) 滑动面的破坏服从M oh r 一Co ul o m b 破坏准则, 即滑动面强度主要受粘聚力及摩擦力控制;(5) 条块间的作用力合力(剩余下滑力)方向与滑动面倾角一致, 剩余下滑力为负值时则传递的剩余下滑力为零。

(6) 沿整个滑动面满足静力的平衡条件, 但不满足力矩平衡条件。

2.2其计算式如下[2] :Fs在主滑剖面上取序号为i的一个条块,几何边界与受力如图1-1、图1-2所示。

其上作用有垂直荷载(Wi)和水平荷载(Qi),前者诸如重力和工程荷载等,后者为指向坡外的水平向地震力KCWi及水压力PWi等。

①基本荷载(仅考虑重力)第i条块的下滑力:第i条块的抗滑力:图1-1滑坡稳定计算力学分析图剩余下滑力:其中:稳定性系数为:图1-2滑坡稳定性计算力学分析图第n块的推力为:②组合荷载(主要考虑重力、静(动)水压力和地震力的作用)第i块的下滑力:第i块的抗滑力:稳定系数为:其第n条块的下滑推力为:式中:Ei-1:i-1条块作用在i条块的剩余推力;Ei:i条块剩余下滑力的反力;αi-1:i-1条块滑面倾角;αi:i条块滑面倾角;Ui-1、Ui+1:i条块水压力;Ui:i条块扬压力;Wi:i条块滑体重力;ci:i条块滑面内聚力;li:i条块滑面长度;φi:i条块滑面内摩擦角;PDi:作用于i条块的动水压力;βi:i条块所作用的动水压力(PDi)与滑动面之间的夹角。

滑坡稳定性传递系数计算法的改进

滑坡稳定性传递系数计算法的改进
算时 ,则考虑剩余下滑力为负值时令其为零。
原岩 土工程勘 察采 用该方法
稳定系数 f os通过试算求得。
图 1 受力结构图
Fig. 1 Loa d fr ame cha r t
当所有 1至 n - 1条块的剩余下滑力均大于等
于零时 ,利用数学归纳法可以证明:
jj =
n- 1
n- 1
∑ ∏ ( Ri jj ) + Rn
1 概述
传递系数法属刚体极限平分析法 ,计算方法基 于如下 6点假设:
( 1) 将滑坡稳定性问题视为平面应变问题 ; ( 2) 滑动力以平行于滑动面的剪应力 τ和垂直 于滑动面的正应力 δ集中作用于滑动面上 ; ( 3) 视滑坡体为理想刚塑材料 ,认为整个加荷 过程中 ,滑坡体不会发生任何变形 ,一旦沿滑动面剪 应力达到其剪切强度 ,则滑坡体即开始沿滑动面产 生剪切变形 ; ( 4) 滑动面的破坏服从 Moh r- Co ulo mb破坏 准则 ,即滑动面强度主要受粘聚力及摩擦力控制 ; ( 5) 条块间的作用力合力 (剩余下滑力 )方向与 滑动面倾角一致 ,剩余下滑力为负值时则传递的剩 余下滑力为零。 ( 6) 沿整个滑动面满足静力的平衡条件 ,但不 满足力矩平衡条件。 按稳定系数寻求方法及静力平衡条件的差异 , 可将目前广泛应用的传递系数法分为两类 (表 1)。
当 Pi 小于零时 ,令 Pi = 0,此时
Pi+ 1 = K Ti+ 1 - Ri+ 1 /K
( 7)
2. 2 方法二
超载法基本的极限平衡公式为:
1= ( W cosTtgh+ CL ) / ( f os× W sinT) ( 8)
利用式 ( 8) ,采用上一条块滑动力与抗滑力向下
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.00 11.00 9.00 7.50 10.00 12.50 7.50
33.00 70.00 73.000 76.00 108.00 96.000 10.00
26.40 56.00 58.40 60.80 86.40 76.80 8.00
6.60 14.00 14.60 15.20 21.60 19.20 2.00
146.56 502.04 552.17 524.50 346.77 -8.48 -6.36
114.44 213.80 241.33 279.62 485.12 461.07 115.92
0.78 0.43 0.44 0.53 1.40 -54.38 -18.22
0.91 0.96 0.95 0.85 0.95 0.99
发生滑坡前饱水状态(0.8倍水位)
块段编号 滑面倾角° 滑面长度m 块体面积m2
A-A' 水下面积m2 水上面积m2 滑体重量KN 水流倾角β ° 地震影响系数
1.00 2.00 3.00 4.00 5.42.00 35.00 26.00 6.00 -3.00 -5.00
14.40 44.00 49.60 52.80 75.20 65.60 8.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
141.65 593.30 744.94 879.68 1413.51 1247.95 152.08
15.00 15.00 15.00 15.00 15.00 5.00 5.00
0.78 0.50 0.47 0.49 0.67 0.96 1.04
234.47 590.46 579.14 484.86 220.40 -3.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
内聚力 t/m2
内摩擦角 °
本段下滑力 KN
本段抗滑力R KN
本段阻滑比
上一段的下滑 上一段剩余抗 本段总剩余阻 上一段的传递 力与传递系数 滑力与传递系 滑力 系数 之积 数之积 KN KN
10.00 10.00 10.00 10.00 10.00 10.00 10.00
0.91 0.96 0.95 0.85 0.95 0.99
290.74 1010.48 1686.38 2034.00 2339.59 2288.03
123.10 385.69 662.73 875.81 1441.01 2034.16
135.95 401.81 700.73 1032.74 1523.64 2054.62 2159.96
322.92 938.92 1090.62 1259.54 2019.35 1816.66 189.10
15.00 15.00 15.00 15.00 15.00 5.00 5.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
发生滑坡后饱水状态(0.8倍水位)
块段编号 滑面倾角° 滑面长度m 块体面积m2 水下面积m2 水上面积m2 滑体重量KN 水流倾角β ° 地震影响系数
321.10 1052.70 1783.07 2398.45 2473.74 2311.05 2278.44
0.42 0.38 0.39 0.43 0.62 0.89 0.95
534.51 934.42
本段总剩余下 滑推力 本段稳定系数 KN
146.56 634.75 1161.46 1622.98 1723.13 1621.21 1598.70
内聚力 t/m2
内摩擦角 °
本段下滑力 KN
本段抗滑力R KN
本段阻滑比
上一段的下滑 上一段剩余抗 本段总剩余阻 上一段的传递 力与传递系数 滑力与传递系 滑力 系数 之积 数之积 KN KN
10.00 10.00 10.00 10.00 10.00 10.00 10.00
15.00 15.00 15.00 15.00 15.00 15.00 15.00
132.70 609.29 1098.47 1376.36 1629.69 1605.06
103.62 304.69 516.41 675.07 1097.28 1542.83
114.44 317.42 546.02 796.03 1160.19 1558.35 1658.75
天然
本段总剩余下 滑推力 本段稳定系数 KN
1.00 2.00 3.00 4.00 5.00 6.00 7.00
56.00 42.00 35.00 26.00 6.00 -3.00 -5.00
10.00 11.00 9.00 7.50 10.00 12.50 7.50
18.00 55.00 62.000 66.00 94.00 82.000 10.00
15.00 15.00 15.00 15.00 15.00 15.00 15.00
321.10 761.96 772.60 712.07 439.74 -28.54 -9.59
135.95 278.71 315.04 370.01 647.82 613.61 125.80
0.42 0.37 0.41 0.52 1.47 -21.50 -13.12
相关文档
最新文档