第二章 滑坡推力计算课件

合集下载

滑坡推力计算

滑坡推力计算

某地区滑坡概况和数据收集
01
02
03
04
滑坡位置和规模
某山区公路沿线,长约100米 ,宽约80米,高约20米。
地质构造和岩性
滑坡体主要由页岩、粘土和砂 岩组成,局部夹有薄层砾石。
气象和水文条件
年降雨量较大,滑坡区域内有 溪流经过。
人类活动影响
近年来周边山区采石、修路等 工程活动频繁。
滑坡推力计算过程和结果分析
模型验证和精度提高
滑坡推力计算的模型和方法需要经过实际工程验 证,如何提高模型的精度和可靠性是另一个重要 问题。
多因素耦合分析
滑坡推力计算需要考虑多种因素耦合的影响,如 降雨、地震、人为活动等,如何建立耦合模型是 当前研究的难点之一。
THANKS FOR WATCHING
感谢您的观看
人工智能和机器学习
人工智能和机器学习技术在滑坡推力计算中开始得到应用,如利用神经
网络、支持向量机等方法建立预测模型,提高推力计算的效率和准确性。
滑坡推力计算在工程实践中的应用前景和展望
灾害防治
滑坡推力计算是灾害防治的重要手段之一, 通过精确计算滑坡的推力,可以为工程设计 和加固提供依据,提高建筑物的安全性和稳 定性。
滑坡治理措施的提出和建议
排水措施
在滑坡体上设置排水沟或排水 管,降低地下水位,减小滑坡
推力。
抗滑桩和挡土墙
在滑坡前缘设置抗滑桩和挡土 墙,提高滑坡体的稳定性。
植被恢复和土地整理
在滑坡体上种植植被,进行土 地整理,增加地表糙度,提高 抗滑能力。
监测预警系统建设
建立滑坡监测预警系统,实时 监测滑坡体的变形情况,及时
滑坡推力计算
contents
目录

《滑坡推力计算》课件

《滑坡推力计算》课件

参数取值规范
制定滑坡推力计算中各参数的取 值范围和选取标准,提高不同地 区、不同工程条件下计算结果的 对比性和可重复性。
参数优化方法
研究滑坡推力计算中参数优化的 方法,通过迭代和调整,找到最 优参数组合,提高计算精度。
滑坡预警与监测技术的研究与应用
1 2 3
预警系统建设
结合滑坡推力计算结果和实时监测数据,构建滑 坡预警系统,实现灾害风险的快速识别和预警。
坡推力。
适用范围
适用于滑带土的剪切强度和传 递能力可确定的滑坡体。
步骤
确定滑带土的剪切强度和传递 能力;建立滑坡体的传递系数 方程;求解方程,得到滑坡推 力。
注意事项
需要考虑滑带土的剪切强度和 传递能力的变化,以及滑坡体 的几何参数和边界条件的影响

数值模拟法
概述
数值模拟法基于数值计算方法,通过建立滑坡体的数值模型,模拟滑 坡体的变形和应力分布,计算滑坡推力。
通过计算滑坡的推力,可以了解滑坡的规模、运动速度、破坏力等关键参数,为预防和减轻滑坡灾害提供科学依 据。同时,滑坡推力计算也是相关工程设计和施工的重要参考,有助于提高工程的安全性和稳定性。
Байду номын сангаас 02
滑坡推力计算方法
静力平衡法
概述
适用范围
静力平衡法基于滑坡岩土体的静力平衡条 件,通过分析滑坡体的受力情况,计算滑 坡推力。
监测数据融合
将多种监测手段的数据进行融合处理,提高监测 数据的准确性和可靠性,为预警和灾害评估提供 依据。
预警信息发布
研究预警信息的快速传播和有效发布方法,确保 相关部门和公众能够及时获取预警信息,采取应 对措施。
感谢您的观看
THANKS

滑坡推力计算

滑坡推力计算
滑坡推力的计算
一 滑坡推力的计算 1.1 计算前提与基本假定 1.2 力系分析 1.3 推导过程与注意点 二 参数的选取
2.1 滑带岩土强度指标选取(C、φ值) 2.1.1 模拟滑动特点的试验 2.1.2 反算法 2.2 安全系数K的选取
三 抗滑桩设计推力计算
问题一:稳定性系数与安全系数的区别?
问题二:条分法如何条分? 问题三:如何取安全系数?
i 1 i i 1 i i

其中,Ti—第i个条块末端的滑坡推力(kN/m); K—安全系数(1.05~1.25); Wi—第i个条块滑体的重力(kN/m); αi—第i个条块所在滑面的倾角(°); αi-1—第i-1个条块所在滑面的倾角(°);
ᵠi—第i个条块所在滑面上的内摩擦角(°); ci—第i个条块所在滑面上的单位黏聚力(kPa);
滑坡主轴断面示意图
(4)以下变化处都应条分: A.滑面产状变化处;B.岩土层性质 变化处; C.地形地貌起伏处; (5)传递系数法适用于滑体平动的情况并且倾角较缓、相互间 变化不大的折线段,对于有转动趋势的滑面或滑面较陡的情况适 用性较差。(工程中没有最好的方法,只有根据不同的工程,选 取最适合的方法) (6)基本假定: 滑坡体不可压缩并作整体下滑,不考虑条块之间的挤压变形; 条块间只传递推力不传递拉力,不出现条块间的拉裂; 块间作用力(即推力)以集中力表示,它的作用线平行于前一 块的滑面方向,作用在分解面的中点; 垂直滑坡主轴取单位长度(一般为1m)宽的岩土体作计算的 基本断面,不考虑条块两侧的摩擦力。
注意:(1)所求的设计滑坡推力是一个沿着垂直剖面方向是单位 宽度的值,作用在每根桩上的设计滑坡推力应乘以桩间距。 (2)实际上滑坡推力沿着桩身是变化的,其分布图形根据滑体的 性质和厚度可以大致分为:三角形、矩形、梯形三种分布图形。 (3)如果桩前上体(岩土体)被挖掉或者会滑走,那么抗滑桩就 没有桩前滑体抗力,抗滑桩计算滑坡推力即为抗滑桩设计滑坡推 力

滑坡推力计算

滑坡推力计算

滑坡剩余下滑力计算计算项目:滑坡推力计算 2===================================================================== 原始条件:滑动体重度= 19.200(kN/m3)滑动体饱和重度= 20.500(kN/m3)安全系数= 1.150考虑动水压力和浮托力, 滑体土的孔隙度 = 0.100不考虑承压水的浮托力不考虑坡面外的静水压力的作用不考虑地震力坡面线段数: 48, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 附加力数1 2.000 5.482 02 2.000 0.041 03 2.000 0.010 04 2.000 0.008 05 2.000 0.008 06 2.000 0.008 07 2.000 1.794 08 2.000 1.752 09 2.000 1.452 010 2.000 0.965 011 2.000 0.965 012 2.000 -0.162 013 0.000 0.000 014 4.000 -0.523 015 2.000 -0.262 016 2.000 6.827 017 2.000 0.769 018 2.000 0.698 019 6.000 1.132 020 2.000 5.599 021 4.000 0.226 022 2.000 0.970 023 2.000 3.010 024 2.000 0.150 025 2.000 2.842 026 6.000 0.115 027 2.000 4.486 028 5.986 1.585 029 2.014 0.799 030 12.394 6.318 031 1.605 0.548 032 8.000 8.219 033 2.000 2.090 034 2.000 1.952 035 2.000 1.849 036 2.000 1.849 037 2.000 1.887 038 2.000 1.921 039 2.000 1.898 040 2.000 1.686 041 2.000 1.666 042 2.000 1.184 043 4.000 1.211 044 2.000 0.941 045 4.000 2.398 046 4.000 2.445 047 2.266 1.378 048 0.131 0.073 0水面线段数: 0, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m)滑动面线段数: 12, 起始点标高 0.000(m)段号投影Dx(m) 投影Dy(m) 粘聚力(kPa) 摩擦角(度)1 7.545 -3.174 10.400 26.1002 13.020 -0.887 10.400 26.1003 15.129 1.180 10.400 26.1004 10.246 5.958 10.400 26.1005 8.161 4.746 10.400 26.1006 8.035 5.994 10.400 26.1007 5.944 4.440 10.400 26.1008 16.418 13.220 10.400 26.1009 23.409 15.404 10.400 26.10010 11.185 14.586 10.400 26.10011 11.149 19.719 10.400 26.10012 0.155 1.072 10.400 26.100计算目标:按指定滑面计算推力-------------------------------------------------------------- 第 1 块滑体上块传递推力 = 0.000(kN) 推力角度 = 0.000(度)剩余下滑力传递系数 = 0.628本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 0.076(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1.463(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 1.083(m)下滑力 = 1.665(kN)滑床反力 R= 0.209(kN) 滑面抗滑力 = 0.102(kN) 粘聚力抗滑力 =11.262(kN)--------------------------本块剩余下滑力 = -9.699(kN)本块下滑力角度 = 81.787(度)第 2 块滑体上块传递推力 = 0.000(kN) 推力角度 = 81.787(度)剩余下滑力传递系数 = 0.754本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 83.177(m2) 浸水部分面积 = 0.000(m2)本块总重 = 1597.007(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 22.653(m)下滑力 = 1598.725(kN)滑床反力 R= 785.993(kN) 滑面抗滑力 = 385.054(kN) 粘聚力抗滑力 =235.588(kN) --------------------------本块剩余下滑力 = 978.083(kN)本块下滑力角度 = 60.517(度)第 3 块滑体上块传递推力 = 978.083(kN) 推力角度 = 60.517(度)剩余下滑力传递系数 = 0.922本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 210.664(m2) 浸水部分面积 = 0.000(m2)本块总重 = 4044.743(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 18.381(m)下滑力 = 4659.690(kN)滑床反力 R= 2597.398(kN) 滑面抗滑力 = 1272.452(kN) 粘聚力抗滑力 =191.159(kN) --------------------------本块剩余下滑力 = 3196.079(kN)本块下滑力角度 = 52.518(度)第 4 块滑体上块传递推力 = 3196.079(kN) 推力角度 = 52.518(度)剩余下滑力传递系数 = 0.784本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 438.305(m2) 浸水部分面积 = 0.000(m2)本块总重 = 8415.452(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 28.023(m)下滑力 = 8338.632(kN)滑床反力 R= 8079.579(kN) 滑面抗滑力 = 3958.145(kN) 粘聚力抗滑力 =291.436(kN) --------------------------本块剩余下滑力 = 4089.051(kN)本块下滑力角度 = 33.346(度)第 5 块滑体上块传递推力 = 4089.051(kN) 推力角度 = 33.346(度)剩余下滑力传递系数 = 1.042本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 297.695(m2) 浸水部分面积 = 0.000(m2)本块总重 = 5715.747(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 21.079(m)下滑力 = 8192.761(kN)滑床反力 R= 4060.210(kN) 滑面抗滑力 = 1989.076(kN) 粘聚力抗滑力 =219.219(kN) --------------------------本块剩余下滑力 = 5984.466(kN)本块下滑力角度 = 38.842(度)第 6 块滑体上块传递推力 = 5984.466(kN) 推力角度 = 38.842(度)剩余下滑力传递系数 = 0.981本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 131.015(m2) 浸水部分面积 = 0.000(m2)本块总重 = 2515.491(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 7.419(m)下滑力 = 7711.492(kN)滑床反力 R= 2233.518(kN) 滑面抗滑力 = 1094.189(kN) 粘聚力抗滑力 =77.162(kN) --------------------------本块剩余下滑力 = 6540.141(kN)本块下滑力角度 = 36.754(度)第 7 块滑体上块传递推力 = 6540.141(kN) 推力角度 = 36.754(度)剩余下滑力传递系数 = 1.000本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 182.140(m2) 浸水部分面积 = 0.000(m2)本块总重 = 3497.086(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 10.024(m)下滑力 = 8944.789(kN)滑床反力 R= 2806.790(kN) 滑面抗滑力 = 1375.032(kN) 粘聚力抗滑力 =104.253(kN) --------------------------本块剩余下滑力 = 7465.504(kN)本块下滑力角度 = 36.722(度)第 8 块滑体上块传递推力 = 7465.504(kN) 推力角度 = 36.722(度)剩余下滑力传递系数 = 0.938本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 188.472(m2) 浸水部分面积 = 0.000(m2)本块总重 = 3618.668(kN) 浸水部分重 = 0.000(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 0.000(kN)有效的滑动面长度 = 9.441(m)下滑力 = 9508.694(kN)滑床反力 R= 3979.176(kN) 滑面抗滑力 = 1949.378(kN) 粘聚力抗滑力 =98.182(kN) --------------------------本块剩余下滑力 = 7461.134(kN)本块下滑力角度 = 30.177(度)第 9 块滑体上块传递推力 = 7461.134(kN) 推力角度 = 30.177(度)剩余下滑力传递系数 = 1.000本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 226.585(m2) 浸水部分面积 = 7.135(m2)本块总重 = 4359.701(kN) 浸水部分重 = 146.263(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 55.511(kN)有效的滑动面长度 = 11.853(m)下滑力 = 9981.337(kN)滑床反力 R= 3713.376(kN) 滑面抗滑力 = 1819.164(kN) 粘聚力抗滑力 =123.267(kN) --------------------------本块剩余下滑力 = 8038.906(kN)本块下滑力角度 = 30.177(度)第 10 块滑体上块传递推力 = 8038.906(kN) 推力角度 = 30.177(度)剩余下滑力传递系数 = 0.688本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 266.604(m2) 浸水部分面积 = 52.505(m2)本块总重 = 5187.057(kN) 浸水部分重 = 1076.358(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 471.116(kN)有效的滑动面长度 = 15.175(m)下滑力 = 7706.565(kN)滑床反力 R= 8188.451(kN) 滑面抗滑力 = 4011.481(kN) 粘聚力抗滑力 =157.817(kN) --------------------------本块剩余下滑力 = 3537.267(kN)本块下滑力角度 = 4.460(度)第 11 块滑体上块传递推力 = 3537.267(kN) 推力角度 = 4.460(度)剩余下滑力传递系数 = 0.918本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 149.500(m2) 浸水部分面积 = 47.099(m2)本块总重 = 2931.623(kN) 浸水部分重 = 965.529(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 422.912(kN)有效的滑动面长度 = 13.050(m)下滑力 = 3300.581(kN)滑床反力 R= 3015.943(kN) 滑面抗滑力 = 1477.495(kN) 粘聚力抗滑力 =135.725(kN) --------------------------本块剩余下滑力 = 1687.361(kN)本块下滑力角度 = -3.895(度)第 12 块滑体上块传递推力 = 1687.361(kN) 推力角度 = -3.895(度)剩余下滑力传递系数 = 0.787本块滑面粘聚力 = 10.400(kPa) 滑面摩擦角 = 26.100(度)本块总面积 = 48.071(m2) 浸水部分面积 = 11.974(m2)本块总重 = 938.537(kN) 浸水部分重 = 245.476(kN)本块总附加力 Px= 0.000(kN) Py = 0.000(kN)本块动水压力 = 0.000(kN)本块水浮托力 = 99.338(kN)有效的滑动面长度 = 8.186(m)下滑力 = 1232.255(kN)滑床反力 R= 1312.907(kN) 滑面抗滑力 = 643.186(kN) 粘聚力抗滑力 =85.130(kN) --------------------------本块剩余下滑力 = 503.939(kN)本块下滑力角度 = -22.816(度)。

土压力与滑坡推力计算

土压力与滑坡推力计算
3) 墙背竖直光滑,墙背与土体之间无摩擦力;
4) 墙体位移导致墙后土体处于极限平衡状态。这样, 墙后处于极限平衡状态的土体实际上为平面破裂面限定的 三棱柱体。破裂棱体外仍处于弹性平衡状态。
B
σ1
Ea
σ3
45 + ϕ
2
σ3
A
主动土压力
σ1
图2.1-6 朗肯主动土压力
C
EP
A
σ1
图2.1-6 朗肯被动土压力
桩后主土压力系数:
1杂填土底 2海积淤泥 3冲积粘土
Ka1 = tg 2 (45o − ϕ1 2) = tg 2 (45o −10o 2) = 0.704 Ka2 = tg 2 (45o − ϕ2 2) = tg 2 (45o − 4o 2) = 0.870 Ka3 = tg 2 (45o − ϕ3 2) = tg 2 (45o −16o 2) = 0.568
σa
=σ3
= σ1tg 2 (45o

ϕ)
2
− 2c ⋅tg(45o

ϕ)
2
= γZtg 2 (45o − ϕ ) − 2c ⋅ tg(45o − ϕ )
2
2
= γZK a − 2c ⋅ K p
被动土压力
σ
p
= σ1
=
σ 3tg 2 (45o
+
ϕ)
2
+
2c ⋅tg(45o
+
ϕ)
2
= γZtg 2 (45o + ϕ ) + 2c ⋅tg(45o + ϕ )
2.1.2 静止土压力计算
当挡土墙不产生平动和转动,处于静止状态时, 墙后土体处于弹性平衡状态。此时,作用在墙背上任

第二章 滑坡推力计算课件

第二章 滑坡推力计算课件

不平衡推力传递法-基本假设和受力分析
山区土坡往往覆 盖在起伏变化的 基岩上,土坡失 稳多数沿这些界 面发生,形成折 线滑动面,对这 类边坡的稳定分 析可采用不平衡 推力传递法。
不平衡推力传递法-基本假设和受力分析
基本假定: 1.滑坡体不可压缩并作整体下滑,不考虑条块间挤 压变形; 2.条块之间只传递推力不传递拉力,不出现条块间 的拉裂; 3.块间作用力(即推力)以集中力表示,它的作用 线平行于前一块的滑面方向,作用在分解面的中 点; 4.垂直滑坡主轴单位长度(一般为1m)宽的岩土体 作计算的基本断面,不考虑条块两侧的摩擦力。
非圆弧滑动面土坡稳定分析
无粘性土坡滑面一般为平面,均质粘性土 坡滑面一般为圆弧面。 当边坡中存在明显的软弱夹层时,或在层 面倾斜的岩面上填筑土堤、挖方中遇到裂 隙比较发育的岩土体或有老滑坡体等滑坡 将在软弱面上发生,其破坏面将与圆柱面 相差甚远。圆弧滑动分析的瑞典条分法和 Bishop法不再适用。 Janbu和不平衡推力传递法。
不平衡推力传递法-计算步骤
使用不平衡推力法计算时,抗剪强度指标可 根据土的性质和当地经验,采用试验和滑坡 反算相结合的方法确定。 分条之间不能承受拉力,所以任何土条的 推力如果为负,则推力不再向下传递,而对 下一土条取推力为零。
第二章 土压力计算
2.7 滑坡推力计算
2.7
滑坡推力计算
边坡指具有倾斜坡面的岩土体(天然边坡、人工 边坡)。 由于边坡表面倾斜,在岩土体自重及其它外力作 用下,整个岩土体都有从高处向低处滑动的趋势。 边坡丧失其原有稳定性,一部分岩土体相对另一 部分岩土体发生滑动的现象称为滑坡(土坡、岩 坡)。
整体圆弧滑动稳定分析
条分法及其受力分析
假定滑坡体和滑面以下土体均为不变形的 刚体,滑面为连续面,滑面上各点的法向 应力采用条分法获得,分析每一土条受力, 根据滑块刚体极限平衡条件,假定整个滑 面上各点的安全系数相等,确定安全系数。

传递系数法稳定性计算及滑坡推力计算

传递系数法稳定性计算及滑坡推力计算
发生滑坡
前饱水状
态(0.8
倍水位)
A-A'
块段编号
滑面倾角° 滑面长度m 块体面积m2 水下面积m2 水上面积m2 滑体重量KN 水流倾角β° 地震影响系数
1.00
56.00
10.00
33.00
26.40
6.60
322.92
15.00
0.00
2.00
42.00
11.00
70.00
56.00
14.00
114.44
0.91
132.70 103.62 317.42
0.96
609.29 304.69 546.02
0.95
1098.47 516.41 796.03
0.85
1376.36 675.07 1160.19
0.95
1629.69 1097.28 1558.35
0.99
1605.06 1542.83 1658.75
0.91
290.74 123.10 401.81
0.96
1010.48 385.69 700.73
0.95
1686.38 662.73 1032.74
0.85
2034.00 875.81 1523.64
0.95
2339.59 1441.01 2054.62
0.99
2288.03 2034.16 2159.96
1598.70
0.78 0.50 0.47 0.49 0.67 0.96
1.04
234.47 590.46 579.14 484.86 220.40 -3.00
内聚力 t/m2
10.00 10.00 10.00 10.00 10.00 10.00 10.00

传递系数计算滑坡推力

传递系数计算滑坡推力

E i --E i-1--W i --E i --¢i --c i --l i --φi --a i --a i-1--K s --r=20KN/m 3条编号滑坡面积s 滑面角a i 传递系数¢c φNi=Wcos аi Ti=Wsin аi li滑面长度K s 推力E i124.0060.50.7585517236.36417.77 4.96 1.15383.392245.5018.50.53865174656.271557.9731.80 1.15415.583332.5022 1.01685176165.772491.1337.00 1.151217.304330.00170.96955176311.611929.6542.80 1.151255.685159.008.50.94385173145.07470.0318.201.15673.14传递系数=cos(a i-1-a i )-sin(a i-1-a i )tan φi 安全系数,一般取1.05~1.25;实际工程中采用E i =K s W i sin аi -W i cos аi tan φi -c i l i +¢i E i-1滑坡推力计算表第i块滑体的重量=18×s(面积);第i块滑体滑面上岩体的黏聚力;第i块滑体的滑面长度;第i块滑体滑面上的内摩擦角;第i块滑体滑面的倾角;第i-1块滑体滑面的倾角;第i块滑体剩余下滑力;第i-1块滑体剩余下滑力;第i块滑体滑床反力;E i -W i sin аi -E i-1cos(a i-1-a i )+[W i cosa i +E i -sin(a i-1-a i )]tan φi +c i l i =0E i =W i sin аi -W i cos аi tan φi -c i l i +¢i E i-1由上式可得出第i块的剩余下滑力:传递系数法计算滑坡推力a 滑坡体不可压缩并做整体下滑,不考虑条块之间挤压变形;b 条块之间只传递推力不传递拉力,不出现条块之间的拉裂;c 块间作用力(即推力)已集中力表示,它的作用线平行于前一块的滑面方向,作用在分界面的d 垂直滑坡主轴取单位长度宽的岩土体做计算的基本断面,不考虑条块两侧的摩擦力传递系数法假定:。

滑坡的分析与防治PPT课件

滑坡的分析与防治PPT课件
第三章滑坡的防治技术 滑坡的防治原则 滑坡的预防 滑坡治理的工程措施 滑坡推力计算
第一章 滑坡灾害概论
一、地质灾害
类生地存质环灾第境害一造是成节地危质害体和地在生质众命多灾财因害产素损与作失斜用的下坡地变灾质形现害、象破。坏如、深运层动地而壳给运人
动造成的地震、火山喷发、地裂缝、由斜坡块体运动形成的山崩 (崩塌)、滑坡、错落、倾倒、坍塌和岩体深层蠕变;由地表水 作用形成的泥石流、碎屑流、水土流失;由地下水作用引起的岩 溶塌陷、地面沉降、湿陷、涌水突泥等;由表生地质作用引起的 沙漠化、盐渍化、风化剥落、膨胀、收缩等等。这里我们主要讨 论斜坡块体运动的各种类型。 二、斜坡灾害 关于斜坡的变形和运动类型,美国人伐纳斯(Varnes)1978年 曾提出崩塌、倾倒、滑坡、侧向扩展、流动等类型,如表1-1。 我国早期也把他们统称为“塌方”、“塌方滑坡”、“塌方流 泥”,铁路和公路部门称其为:“路基病害”。后来,随着研究 的深入,逐渐把他们从变形机制和防治上加以区分。我们按照变 形的深度(规模)、运动特征和物质类别将其分为坡面变形,边 坡变形和坡体变形三类,如表1-2。
续表1-3
发生地点
1
Chungar
日期 1971年
滑坡类型
香港
1972年6月
各种灾害
日本 Kamijima 1972年
意大利南部
秘鲁 秘鲁 Semeru山
1972年~1973 各种灾害 年 1974年4月25日 泥石流
1974年 1981年
秘Hale Waihona Puke Yacitan尼泊尔西部
中国 东乡洒勒山
哥伦比亚 Armero 土耳其 Catak
云南元磨高速公路K259三箐公隧道进口滑坡
长江北岸鸡扒子砂泥岩顺层滑坡

滑坡稳定性计算及滑坡推力计算

滑坡稳定性计算及滑坡推力计算
∑Ti
抗滑力(KN/m) 累积抗滑力(KN/m) 传递系数 稳定系数
Ri
∑Ri
Ψi
Kf
1-1
18.00
0.00
0.00
8.00
0.00
0.00
5.7848
0.00
0.00
0.00
0.00
0.00
1-2
18.00
0.00
0.00
8.00
0.00
0.00
40.9873
0.00
0.00
0.00
0.00
0.00
a
Fi
Ni
Ti
累积下滑力 (KN/m)
∑Ti
抗滑力(KN/m) 累积抗滑力(KN/m) 传递系数 稳定系数
Ri
∑Ri
Ψi
Kf
1-1
18.00
0.00
0.00
8.00
0.00
0.00
5.7848
0.00
0.00
0.00
0.00
0.00
1-2
18.00
0.00
0.00
8.00
0.00
0.00
40.9873
1-3
18.00
0.00
0.00
8.00
0.00
0.00
37.7594
0.00
0.00
0.00
0.00
0.00
1-4
18.00
0.00
0.00
8.00
0.00
0.00
33.5663
0.00
0.00
0.00
0.00
0.00
1-5
18.00

[PPT]滑坡物理力学参数确定方法_ppt

[PPT]滑坡物理力学参数确定方法_ppt

只有当β1≤β≤β2时,岩体才能沿结构面破坏。
1

j
2

1 2
arcsin

(
1


3
2C jctg j )sin j 1 3

2 90 j 1
单结构面理论
1m
3

2(C j 3tg j ) (1 tg jctg )sin 2
对于处于蠕滑阶段的滑坡,一般假定稳定系数0.98 (特殊情况下如基岩滑坡考虑局部应力集中、产生渐 进破坏,可假定稳定系数等于0.9)。
在进行反演分析时一般假定cj值求φj值。同时应特 别注意以下几点:
1)应尽可能地模拟滑坡蠕滑时的边界条件,尤其是 地下水水位,如果难以做到,则可取勘探时雨季最高 地下水位;
2、参数类型 (1)变形参数
(法向刚度Kn、剪切刚度KS ) (2)强度参数(cj、 j 值)
二)滑动面变形参数确定 1、变形性质
法向变形曲线
剪切变形曲线
2、变形参数确定
法向刚度Kn等于σ n- Vj曲线上一点的切线斜率;
剪切刚度KS等于峰值前τ -u曲线上任一点的切线斜率。 单位为(Mpa/cm)
m
c
3

S
2 c
mc S c
mt c m
m2 4S 2


A
c

(
c
T )B
B
Cm

A
c

c
T




A
B(

c

T
)
B
1


m

滑坡推力和边坡稳定计算

滑坡推力和边坡稳定计算

滑坡推力和边坡稳定计算
圆弧滑动面条分法
在粘性土中滑动面的断面形状近似为一圆弧曲线,所以假设土体滑动时,是绕滑动圆弧的圆心,作整体的转动或滑移,这种滑动的形成必然是滑动圆心转动的力矩M S(滑动力矩)大于阻止它旋转的力矩M R(抗滑力矩)的结果,如图3-4。

根据图截取一个单位长度进行分析,就可得稳定安全系数的表达式如下:
抗滑力矩M R Lζf R Lζf R
K= = = =
滑动力矩M S Qd γAd
式中L 滑动圆弧的长度;
ζ f 滑动面上的平均抗剪强度
R 滑动圆心O 的圆弧滑动半径:
Q 滑动土体的重量;
d Q作用线至圆心O的垂直距离;
A 滑动面的面积
γ土体的重度.
如K > 1表示边坡稳定;K =1处于极限平衡;K <1边坡不稳定。

(1)、圆弧滑动面条分法计算步骤,见图3-5。

1)、假定任意一个圆柱面AC,其半径为R,并将滑动面上的土体分成若干垂直土条,每条宽b i=(1/10-1/20)R.
2)将每条土体的重量Q i,沿圆弧AC分解成法向力N i及切向力T i,则N i=Q i cosa i
T i=Q i sina i。

滑坡治理设计的推力计算PPT课件

滑坡治理设计的推力计算PPT课件

Pwi αi
Qi
Wi
Ei
Ri
θi
Ni
E2 kT2 R2 E11
E3 (KT3-R3) (KT2-R2)2 (KT1-R1)12
第n条块
En kTn Rn (kTn1 Rn1) n1 (kT1 R1) n1 n2 1
第18页/共38页
En kTn Rn (kTn1 Rn1) n1 (kT1 R1) n1 n2 1
Pwi
αi
Qi
Wi
Ei
Ti Wi sini PWi cosi i Qi cosi
Ri
θi
Ni
第i条块所受地震力(kN/m):
Qi c1cz khGs 公路工程抗震设计规范(JTJ004-89)
结构重 要性修 正系数
综合影 响系数
水平地 震系数
Qi czkhGs
第11页/共38页
(一)基本公式
Ei-1
θi-1
Pwi αi
Qi
Wi
Ei
岩土体的天然 容重 (kN/m3)
Ri
θi
Ni
Wi Viu Vid Fi
第i条块所受地 面荷载 (kN)
浸润线以下 体积 (m3/m)
岩土体的浮容 重 (kN/m3)
第15页/共38页
(二)受力分析
Ei-1
θi-1
Pwi αi
Qi Wi
Ri
θi
Ni
对整体 k Ri Ti
第29页/共38页
得出:滑坡推力计算的公式
Ei-1
Ei-1
θi-1
Pwi αi
Qi
Wi
Ei
Ri
θi
Ni
第i条块 Ei kTi Ri Ei1 i1

2 第二章 库伦土压力2-2

2 第二章 库伦土压力2-2
Fra bibliotekH2 2
cos( cos2
) cos(q ) sin(q ) sin(q ) cos(q
)
滑裂面是任意给定的,不同滑裂面得到
一系列土压力E,E是q的函数,E的极值
Emax,即为墙背的主动土压力Ea,所对 应的滑动面即是最危险滑动面,由
dE/dq=0,得到:
H
主动土 压力:
2、库仑土压力理论 基于滑动块体的静力平衡条件建立的,考虑了墙背与 土之间的摩擦力,可用于墙背倾斜、填土面倾斜的情 况;
库仑土压力理论采用破坏面为平面的假定,与实际情况存在 一定差距(尤其是当墙背与填土间摩擦角较大时),导致计算 被动土压力时误差较大,有时可达2-3倍;库仑土压力理论假 定填土是无黏性土,因此不能直接用于粘性土的土压力计算;
(3)库仑理论不仅适用于墙背为平面或近似平面 的挡土墙,也可用于墙背为“L”形的挡土墙(如悬臂 式和扶壁式)。其处理方法为:以墙背顶点和墙踵的 连线为假想墙背计算土压力。此时,墙背摩擦角等于 土的内摩擦角。
(4)仰斜墙背缓到一定程度后,库仑理论将出现较大的误 差,计算主动土压力偏小,被动土压力偏大,偏于不安全。 一般仰斜墙背坡度以不缓于1:0.3 ~ 1:0.35(17°~ 19°)为宜。
(5)当俯斜墙背的坡度较缓时,破裂棱体不一定沿墙背 (或假想墙背)滑出,而可能沿土体内某一破裂面滑动,即 土体中出现第二破裂面,此时应按第二破裂面法计算。
(6)库伦理论仅适用于刚性挡土墙,对于锚杆式、锚定板 式、桩板式等柔性挡土墙的土压力只能按库伦理论近似计算 (主要是位移不能达到土压力产生的条件) 。
Ea
1
2
H2
cos2
cos(
cos2 ( )

滑坡推力计算

滑坡推力计算
i i 1 i i 1 i i

为了让设计具有一定的安全贮备,一般采用加大自重下滑力, 剩余下滑力即为你将重力产生的下滑力乘以安全系数K后剪去抗 滑力:
T KW sin T W cos tan c L i i i i 1 i i i i i
cos( ) sin( ) tan
注意:(1)所求的设计滑坡推力是一个沿着垂直剖面方向是单位 宽度的值,作用在每根桩上的设计滑坡推力应乘以桩间距。 (2)实际上滑坡推力沿着桩身是变化的,其分布图形根据滑体的 性质和厚度可以大致分为:三角形、矩形、梯形三种分布图形。 (3)如果桩前上体(岩土体)被挖掉或者会滑走,那么抗滑桩就 没有桩前滑体抗力,抗滑桩计算滑坡推力即为抗滑桩设计滑坡推 力。
E W sin E cos
其中Ψi为传递系数:
F 0 , 切向力 0 在切向方向: S
W sin W cos tan c l E 综上整理得第i条块的剩余下滑力: E i i i i i i i i i i 1
cos( ) sin( ) tan
具体图形见黑板
1.3 公式推导过程与注意点
取第i条块为分离体,将 各力沿该条块底面的 法向和切向分解。 条块处于极限平衡,i条 块的抗滑力:
tan c l i i i
W cos E sin( ) 在法向方向: i i i 1 i 1 i
i i i i 1 i 1i
如何确定BD段弧?
右图为抗滑桩设计推力计算 简图,曲线a为极限平衡状态 下的剩余推力曲线,其安全系 数为Fs ;曲线b则为满足工程 要求的剩余推力曲线,其安全 系数为F′s , 且F′s > Fs 。OA段剩余下滑力逐渐增加, 为滑坡体的下滑段,AB段剩余 下滑逐渐减小,为滑坡体的抗 滑段,抗滑桩应置在AB段。

滑坡推力

滑坡推力

下图为传递系数法计算图式
取第i条块为分离体,将各力分解在该条块滑面的方向上, 可得下列方程:
Ei-Ei-1cos(α
+[Ei-1sin(α
i-1-α i)-Wisinα i i-1-α i)+
Wicosα i]tanφ i+cili=0
由上式可得出第i条块的剩余下滑力(即该部分的滑坡推 力),即:
传递系数法假定: 1.滑坡体不可压缩并作整体下滑,不考虑条块之间挤 压变形; 2.条块之间只传递推力不传递拉力,不出现条块之间 的拉裂; 3.块间作用力(即推力)以集中力表示,它的作用线平行 于前一块的滑面方向,作用在分界面的中点; 4.垂直滑坡主轴取单位长度(一般为1m)宽的岩土体作 计算的基本断面,不考虑条块两侧的摩擦力。
下图示意了不同地质条件下支挡结构上荷载的不同。(a) 地址条件好,斜坡稳定,施工扰动小,作用在支挡结构上的荷 载主要是边坡局部范围内土体作用的土压力;而(b)是整个 滑体沿着滑面滑动产生对支挡结构的推力。若实际地质情况为 图(b)所示却采用图(a)的设计计算图式,将带来严重的后 果。
作用在抗滑桩上的主要荷载为滑坡推力,只要确定 了此荷载,结构设计是很容易的。因此,滑坡推力计算 是支挡结构设计的重要内容之一。正确、合理的确定滑 坡推力的大小、方向、作用点以及对支挡结构作用的规 律,这是支挡结构设计的关键问题。
桩前抗力的计算
设置抗滑桩后,当抗滑桩受到滑坡推力的作用产生 变形时,一部分滑坡推力通过桩体传给锚固段地层,另 一部分传递给桩前滑体。而桩前滑体的抗力与滑坡的性 质和桩前滑体的大小等因素有关。试验表明,桩前滑体 的体积越大,抗剪强度越高,滑动面越平缓、粗糙,桩 前滑体抗力越大;反之,越小。 滑动面以上的桩前抗滑推力,可由极限平衡时滑坡 推力曲线、桩前被动土压力或桩前滑体的弹性抗力确定, 设计时选用其中的小值。桩前滑坡体可能滑走时,不应 计及其抗力,按悬臂桩计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ Janbu和不平衡推力传递法。
不平衡推力传递法-基本假设和受力分析
▪ 山区土坡往往覆 盖在起伏变化的 基岩上,土坡失 稳多数沿这些界 面发生,形成折 线滑动面,对这 类边坡的稳定分 析可采用不平衡 推力传递法。
不平衡推力传递法-基本假设和受力分析
基本假定: 1.滑坡体不可压缩并作整体下滑,不考虑条块间挤
安全系数Fs 1
非圆弧滑动面土坡稳定分析
▪ 无粘性土坡滑面一般为平面,均质粘性土 坡滑面一般为圆弧面。
▪ 当边坡中存在明显的软弱夹层时,或在层 面倾斜的岩面上填筑土堤、挖方中遇到裂 隙比较发育的岩土体或有老滑坡体等滑坡 将在软弱面上发生,其破坏面将与圆柱面 相差甚远。圆弧滑动分析的瑞典条分法和 Bishop法不再适用。
引起滑坡的原因
▪ 根本原因在于土体内部某个面上的剪应力达到了 它的抗剪强度,稳定平衡遭到破坏。剪应力达到 抗剪强度的起因有:
(1)剪应力增加 (2)土体本身抗剪强度减小
引起滑坡的原因
无粘性土坡稳定分析
▪ 由于无粘性土土粒之间无粘聚力粘性土坡整体圆弧滑动
▪ 粘性土由于土粒间存在粘聚力,发生 滑坡时是整块土体向下滑动,坡面上 任一单元体的稳定条件不能用来代表 整个土坡的稳定条件。
▪ 按平面问题考虑,将滑动面以上土体 看作刚体,并以它为脱离体,分析在 极限平衡条件下其上各种作用力,而 以整个滑动面上的平均抗剪强度与平 均剪应力之比来定义土坡的安全系数。
整体圆弧滑动稳定分析
条分法及其受力分析
▪ 假定滑坡体和滑面以下土体均为不变形的 刚体,滑面为连续面,滑面上各点的法向 应力采用条分法获得,分析每一土条受力, 根据滑块刚体极限平衡条件,假定整个滑 面上各点的安全系数相等,确定安全系数。
条分法及其受力分析
n 土条间法向作用力 2n-2 土条间切向作用力 n-1
▪ 式中第1项表示本土条的下滑力,第2项表示土条的 抗滑力,第3项表示上一土条传下来的不平衡下滑力 的影响, i1 称为传递系数。
不平衡推力传递法-计算步骤
▪ 不平衡推力传递法计算时,先假设安全系数 为1,然后从坡顶的一条开始逐条向下推求 Pi,直至求出最后一条的推力Pn,Pn必须为 零,否则要重新假定安全系数,重新计算。
压变形; 2.条块之间只传递推力不传递拉力,不出现条块间
的拉裂; 3.块间作用力(即推力)以集中力表示,它的作用
线平行于前一块的滑面方向,作用在分解面的中 点; 4.垂直滑坡主轴单位长度(一般为1m)宽的岩土体 作计算的基本断面,不考虑条块两侧的摩擦力。
不平衡推力传递法-计算公式推导
力平衡 莫尔库仑准则
的受加 到权 的抗 推剪 力强 为度零或ci 、者i几的乎值为,零使。最这后种一情块况土是条假所设
边坡处于极限状态。然后,假设边坡是稳定的, 根据设计规范取边坡的稳定系数=1.25,用已经
调条整 的的 剩抗 余剪 下强 滑度力Pc。i 、i 值,计算边坡的每个土
不平衡推力传递法-计算步骤
▪ 使用不平衡推力法计算时,抗剪强度指标可 根据土的性质和当地经验,采用试验和滑坡 反算相结合的方法确定。
▪ 分条之间不能承受拉力,所以任何土条的
推力如果为负,则推力不再向下传递,而对 下一土条取推力为零。
第二章 土压力计算
2.7 滑坡推力计算
2.7 滑坡推力计算
▪ 边坡指具有倾斜坡面的岩土体(天然边坡、人工 边坡)。
▪ 由于边坡表面倾斜,在岩土体自重及其它外力作 用下,整个岩土体都有从高处向低处滑动的趋势。 边坡丧失其原有稳定性,一部分岩土体相对另一 部分岩土体发生滑动的现象称为滑坡(土坡、岩 坡)。
▪ 在进行计算分析时,即假定一个FS=1,从边坡 顶部第1块土条算起求出它的不平衡下滑力P1 (求P1时,式中右端第3项为零),即为第1和第 2块土条之间的推力。再计算第2块土条在原有荷 载和P1作用下的不平衡下滑力P2,作为第2块土 条与第3块土条之间的推力。依此计算到第n块 (最后一块),如果该块土条在原有荷载及推力 Pn-1作用下,求得的推力Pn不为零,则调整滑体
相关文档
最新文档