四边形测试卷及答案

合集下载

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

华师大版八年级下学期数学平行四边形单元测试卷(含参考答案和评分标准)

新华师大版八年级下册数学平行四边形单元测试卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 在四边形ABCD 中,CD AB //,再添加下列一个条件,四边形ABCD 不一定是平行四边形的是 【 】 (A )CD AB = (B )BC AD = (C )BC AD // (D )C A ∠=∠2. 如图所示,在□ABCD 中,︒=∠︒=∠115,25A DBC ,则=∠BDC 【 】 (A )︒25 (B )︒30 (C )︒40 (D )︒65第 2 题图ADBC第 3 题图EBACD3. 如图所示,在△ABC 中,BC AB A ⊥︒=∠,40,点D 在AC 边上,以CB 、CD 为边作□BCDE ,则E ∠的度数为 【 】 (A )︒40 (B )︒50 (C )︒60 (D )︒704. 如图所示,EF 过□ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若□ABCD 的周长是30,3=OE ,则四边形ABFE 的周长是 【 】 (A )18 (B )21 (C )24 (D )27第 4 题图F ODBCAE第 5题图5. 如图,在□ABCD 中,AB BE ⊥交对角线AC 于点E ,若︒=∠201,则2∠的度数为 【 】 (A )︒120 (B )︒100 (C )︒110 (D )︒906. 如图所示,□ABCD 的周长周长为24,AC 、BD 相交于点O ,BD OE ⊥交AD 于点E ,则△ABE 的周长为 【 】 (A )8 (B )10 (C )12 (D )16第 6 题图EODBCA第 7 题图FECABD7. 如图所示,在□ABCD 中,E 、F 是对角线BD 上不同的两点,若添加下列条件,不能得出四边形AECF 一定是平行四边形的为 【 】 (A )DF BE = (B )CE AF // (C )DCF BAE ∠=∠ (D )CF AE =8. 如图,平行四边形OABC 的顶点A 、C 的坐标分别为()0,5,()3,2,则顶点B 的坐标为 【 】 (A )()3,7 (B )()7,3 (C )()7,4 (D )()4,7yx第 8 题图BCAO第 9 题图9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 15 题图EF CABDP10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA第 11 题图D二、填空题(每小题3分,共15分)11. 如图,在□ABCD 中,AB CE ⊥,若︒=∠65D ,则=∠BCE _________.12. 已知□ABCD 的周长为10,对角线AC 、BD 交于点O ,△AOD 的周长比△AOB 的周长多1,则AB 的长为_________.13. 如图所示,四边形AEDF 是平行四边形,△CED 和△DFB 的周长分别为5和10,则△ABC 的周长为_________.第 13 题图F DABCE第 14 题图ADEBC14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点 F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠; ③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD中,CDAB//,__________.求证:___________________________________.请补全已知和求证部分,并写出证明过程.DB CA17.(8分)已知:如图所示,在□ABCD中,点E是BC边的中点,连结DE并延长交AB边的延长线于点F.求证:BFAB .BC EA FD18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA19.(9分)如图所示,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.EDBFAC20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA21.(10分)如图所示,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ _________,=BP _________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ; (3)当=t _________时,PQ PD =;(4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP新华师大版八年级下册数学摸底试卷平行四边形单元测试卷 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. ︒25 12. 2 13. 15 14. 2515. ①②③④ 部分题目答案提示9. 如图所示,已知□AOBC 的顶点()0,0O ,()2,1-A ,点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长为半径作弧,分别交边OA 、OB 于点D 、E ;②分别以点D 、E 为圆心,大于DE 21的长为半径作弧,两弧交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为 【 】 (A )()2,5 (B )()2,53- (C )()2,25- (D )()2,15-第 9 题图解析 本题考查平行四边形的性质和尺规作图的原理,注意角平分线+平行线模型的识别.由尺规作图可知:OF 平分AOB ∠根据角平分线+平行线模型可知:AG OA = ∵()2,1-A∴()52122=+-=OA ∴5=AG ∵x AC //轴 ∴2==A G y y∵()51==--=-AG x x x G A G∴51=+G x ∴15-=G x∴点G 的坐标为()2,15-∴选择答案【 D 】.10. 如图所示,在□ABCD 中,点E 、F 在对角线BD 上,连结AE 、CE 、CF 、AF ,添加下列条件中的一个:①DE BF =;②AF AE =;③CF AE =;④CFD AEB ∠=∠;⑤BD CF BD AE ⊥⊥,.其中,能使四边形AECF 为平行四边形的有 【 】 (A )2个 (B )3个 (C )4个 (D )5个第 10 题图FEDBCA解析 本题主要考查平行四边形的性质以及判定.对于①DE BF =,连结AC ,交BD 于点O ,如图1所示.图 1∵四边形ABCD 为平行四边形 ∴OD OB OC OA ==, ∵DE BF =∴OE OD OF OB +=+ ∴OE OF =∵OF OE OC OA ==, ∴四边形AECF 是平行四边形.对于②AF AE =,不能确定四边形AECF 是平行四边形;对于③CF AE =,不能确定四边形AECF 是平行四边形;对于④CFD AEB ∠=∠,如图2所示.图 2∵CFD AEB ∠=∠ ∴21∠=∠∴CF AE //∵四边形ABCD 为平行四边形 ∴CD AB CD AB =,// ∴43∠=∠在△ABE 和△CDF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CD AB CFD AEB 43 ∴△ABE ≌△CDF (AAS ) ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形. 对于⑤BD CF BD AE ⊥⊥,,如图3所示.图 3∵BD CF BD AE ⊥⊥, ∴CF AE //(在同一平面内,垂直于同一条直线的两条直线互相平行) 易证:△ABD ≌△CDB ∴CDB ABD S S ∆∆=∴CF BD AE BD ⋅=⋅2121 ∴CF AE =∵CF AE //,CF AE = ∴四边形AECF 是平行四边形.(或易证:△ABE ≌△CDF ,∴CF AE =) 综上所述,能使四边形AECF 为平行四边形的条件有:①④⑤,共3个. ∴选择答案【 B 】.14. 如图所示,在□ABCD 中,ABC ∠和BCD ∠的平分线交AD 边于同一点E ,且3,4==CE BE ,则AB 的长是_________.第 14 题图ADEBC解析 本题主要考查平行四边形的性质,注意角平分线+平行线模型的识别. 根据角平分线+平行线模型不难确定:△ABE 和△DCE 都是等腰三角形 ∴DC DE AB AE ==, ∵四边形ABCD 为平行四边形 ∴AD BC CD AB CD AB ==,//, ∴︒=∠+∠=180,BCD ABC DE AE ∴AB AE AD BC 22=== ∵BE 平分ABC ∠,CE 平分BCD ∠ ∴22,12∠=∠∠=∠BCD ABC ∴︒=∠+∠1802212 ∴︒=∠+∠9021 ∴︒=∠90BEC在Rt △BCE 中,由勾股定理得:222CE BE BC +=∴53422=+=BC ∴2521==BC AB . 15. 如图所示,四边形ABCD 是平行四边形,点E 是CD 上一点,且EC BC =,BE CF ⊥交AB 于点F ,P 是EB 延长线上的一点,下列结论:①BE 平分CBF ∠; ②CF 平分DCB ∠;③BC BF =; ④PC PF =. 其中,正确结论的序号是__________.第 15 题图EF CABDP解析 本题主要考查平行四边形的性质.图 1对于①,∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠(如图1所示) ∵EC BC = ∴21∠=∠ ∴32∠=∠ ∴BE 平分CBF ∠; 故结论①正确; 对于②,如图1所示. ∵EC BC =,BE CF ⊥ ∴CF 平分DCB ∠(等腰三角形“三线合一”) 故结论②正确; 对于③,如图2所示.图 2由结论②可知: CF 平分DCB ∠ ∴21∠=∠∵四边形ABCD 为平行四边形 ∴CD AB //∴31∠=∠ ∴32∠=∠ ∴BC BF =. 故结论③正确;对于④,∵BC BF =,CF BE ⊥∴直线BE 垂直平分CF ∴PC PF = 故结论④正确.综上所述,正确结论的序号是①②③④. 三、解答题(共75分)16.(9分)证明命题“一组对边平行且相等的四边形是平行四边形”,要根据题意,画出图形,并写出已知、求证、证明过程.下面是某同学根据题意画出的图形,并写出了不完整的已知和求证.已知: 如图所示,在四边形ABCD 中,CD AB //,__________.求证:________________________________. 请补全已知和求证部分,并写出证明过程.CD AB =…………………………………………1分四边形ABCD 为平行四边形…………………………………………2分 证明:连结AC ∵CD AB // ∴21∠=∠在△ABC 和△CDA 中∵⎪⎩⎪⎨⎧=∠=∠=CA AC CD AB 21 ∴△ABC ≌△CDA (SAS ) ∴43∠=∠ ∴BC AD //…………………………………………6分 ∵CD AB //,BC AD // ∴四边形ABCD 为平行四边形…………………………………………9分 点评 要证明平行四边形的判定定理,必须按照平行四边形的定义进行,即证明四边形的两组对边分别平行.17.(8分)已知:如图所示,在□ABCD 中,点E 是BC 边的中点,连结DE 并延长交AB 边的延长线于点F . 求证:BF AB =.BC EAFD证明:∵点E 是BC 边的中点 ∴CE BE =∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF // ∴1∠=∠F在△BEF 和△CED 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CE BE F 321 ∴△BEF ≌△CED (AAS ) ∴CD BF =…………………………………………6分 ∵CD BF CD AB ==, ∴BF AB =…………………………………………8分 18.(9分)已知:如图所示,在□ABCD 中,点F 在AB 的延长线上,且AB BF =,连结FD ,交BC 于点E .(1)求证:△DCE ≌△FBE ; (2)若3=EC ,求AD 的长.FEDBCA(1)证明:∵四边形ABCD 是平行四边形 ∴CD AB CD AB =,//…………………………………………2分 ∴CD AF //∴1∠=∠F∵AB BF = ∴CD BF =在△DCE 和△FBE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BF CD FEB DEC F 1 ∴△DCE ≌△FBE (AAS );…………………………………………5分 (2)解:由(1)可知:△DCE ≌△FBE ∴3==BE CE ∴62==CE BC…………………………………………7分 ∵四边形ABCD 是平行四边形 ∴6==BC AD .…………………………………………9分 19.(9分)如图,点B 、E 、C 、F 在同一条直线上,DE AC DF AB ==,,FC BE =. (1)求证:△ABC ≌△DFE ;(2)连结AF 、BD ,求证:四边形ABDF 是平行四边形.证明:(1)∵FC BE = ∴CE FC CE BE +=+ ∴FE BC =…………………………………………1分EDBFAC在△ABC 和△DFE 中∵⎪⎩⎪⎨⎧===FE BC DE AC DFAB ∴△ABC ≌△DFE (SSS );…………………………………………4分(2)由(1)可知:△ABC ≌△DFE ∴21∠=∠ ∴DF AB //…………………………………………6分 ∵DF AB =∴DF AB =// ∴四边形ABDF 是平行四边形.…………………………………………9分 20.(9分)如图所示,AC 、BD 相交于点O ,BC AD CD AB //,//,E 、F 分别是OB 、OD 的中点.求证:四边形AFCE 是平行四边形.FEODBCA证明:∵BC AD CD AB //,// ∴四边形ABCD 是平行四边形…………………………………………3分 ∴OD OB OC OA ==,…………………………………………5分 ∵E 、F 分别是OB 、OD 的中点 ∴OD OF OB OE 21,21==∴OF OE =…………………………………………6分 ∵OF OE OC OA ==, ∴四边形AFCE 是平行四边形.…………………………………………9分 21.(10分)如图,已知︒=∠=∠90E B ,点B 、C 、F 、E 在一条直线上,EC BF DF AC ==,. 求证:四边形ACDF 是平行四边形.证明:∵EC BF = ∴CF EC CF BF -=- ∴EF BC =…………………………………………1分在Rt △ABC 和Rt △DEF 中∵⎩⎨⎧==EF BC DF AC∴Rt △ABC ≌Rt △DEF (HL )…………………………………………5分 ∴DFE ACB ∠=∠ ∴21∠=∠ ∴DF AC //…………………………………………7分 ∵DF AC //,DF AC = ∴四边形ACDF 是平行四边形.…………………………………………10分 22.(10分)如图所示,在□ABCD 中,E 、F 分别是AB 、CD 的中点,DE 、BF 与对角线AC 分别交于点M 、N ,连结MF 、NE . (1)求证:BF DE //;(2)判断四边形MENF 是何特殊的四边形,并说明理由.NMEFCABD(1)证明:∵四边形ABCD 是平行四边形∴CD AB CD AB =,//…………………………………………2分 ∴BE DF //∵E 、F 分别是AB 、CD 的中点 ∴AB BE CD DF 21,21==∴BE DF =∵BE DF //,BE DF = ∴四边形BEDF 是平行四边形 ∴BF DE //;…………………………………………5分(2)解:四边形MENF 是平行四边形 …………………………………………6分 理由如下:由(1)可知:BF DE // ∴,//NF ME ABF ∠=∠1 ∵CD AB //∴ABF ∠=∠2,43∠=∠ ∴21∠=∠∵E 、F 分别是AB 、CD 的中点 ∴CD CF AB AE 21,21==∴CF AE =在△AME 和△CNF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠4321CF AE ∴△AME ≌△CNF (ASA )∴NF ME =∵,//NF ME NF ME = ∴四边形MENF 是平行四边形.…………………………………………10分 23.(11分)如图所示,在四边形ABCD 中,︒=∠90,//A BC AD ,12=AB ,21=BC ,16=AD .动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长度的速度向点D 运动,当点Q 到达点D 时另一个动点也随之停止运动.设运动的时间为t 秒.(1)填空:=AQ ________,=BP ________,(用含t 的代数式表示),t 的取值范围是__________;(2)设△DPQ 的面积为S ,用含t 的式子表示S ;(3)当=t _________时,PQ PD =; (4)当t 为何值时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形?DABCQP解:(1)t ,t 2,0≤t ≤16;…………………………………………3分 (2)由题意可知:t AQ AD DQ -=-=16∴()966121621+-=⋅-=t t S ; …………………………………………5分(3)316;…………………………………………7分 提示: 当PQ PD =时,作AD PE ⊥,如图1所示.P由等腰三角形“三线合一”的性质可知:DE QE =易知:四边形ABPE 是矩形(即长方形) ∴t BP AE 2==∴t t t AQ AE QE =-=-=2 t AE AD DE 216-=-= ∵DE QE = ∴t t 216-=解之得:316=t∴当316=t 时,PQ PD =.(4)分为两种情况:图 2P QDABC①当点P 在BC 边上时,四边形PCDQ 是平行四边形,则有DQ PC = ∴t t -=-16221解之得:5=t ;(如图2所示)…………………………………………9分 ②当点P 在BC 边的延长线上时,四边形CPDQ 是平行四边形,则有DQ PC = ∴t t -=-16212解之得:337=t .(如图3所示) 图 3PQDABC综上所述,当5=t 或337=t 时,以点P 、C 、D 、Q 为顶点的四边形是平行四边形.…………………………………………11分学生整理用图。

上期《“四边形”测试卷》参考答案

上期《“四边形”测试卷》参考答案
∥ B : .c 卷 1 .2. 3 n 4 3 5 c 6 4.¨ 满足要求的条件 R _ .1 , . . .0 ¨ 很 多, 胞 =D / E  ̄LC D等. 税 答案不惟一, 如 F, A B F 只要两底之和为 1 即 0
可 . ,■ 0 1. . o & 1-4 l. 1 . 2 略 1 略 1 . ' 1.() 结 暇; 略 5 1连 C
相 9 1 l 3 边 饼)和 边 F H, 边 D E 边 平分 _.4 o , 形A E 四 形Pl 四 形 c 和四 1, . 四 + 矗 l 3 1 D 四 彤AH 釉四边 FB I 5 5 lH }, C C 2 1.l .5 2 -l 1譬 l 略 7 ‘ I略. S 4 , - 6 .1 啦 、 - . .
__ 。_。

。 : .
维普资讯
智 趣 俱 乐 部
游戏规则 : () 1 游戏 由两人玩 , 开始时如 图 2 示排 所
2 颗棋子 ; 4 () 2 双方轮流移动棋子 ; 的邻接的空位 ;

() 3 一个棋子能够移动到任何没有被 占领
() 4 一个棋子允许跳过对方邻接 的棋子而 网2
到达下一个与被跳过的子邻接的空位. 在跳 的
过程 中吃掉对方被跳过的子 , 允许连跳连吃
() 5 如果一方一时疏忽而跳错 了子 , 那么这个子就算被对方吃掉 ;
() 6 首先吃掉对方全部棋子者胜.
j j
、上期《四边 形" _ ‘ ‘ 测试卷》 参考答案 “ -
A . 卷 1 八。2 B 3 & . S e 6 2。 5 8 对角线互 . . 4 n - . 0. .

冀教版数学二年级下册第五单元《四边形的认识》 单元测试卷

冀教版数学二年级下册第五单元《四边形的认识》 单元测试卷

冀教版数学二年级下册第五单元《四边形的认识》单元测试卷一、填空题(共27 分)1.长方形和正方形都有(______)个直角,长方形的(______)边相等,平行四边形有(______)个锐角、(______)个钝角。

【答案】(1). 4(2). 对(3). 2(4). 2【解析】【详解】由题意分析得:长方形和正方形都有4个直角,长方形的对边相等,平行四边形有2个锐角、2个钝角。

2.日常生活用的物品中,(______)的表面是长方形,(______)的表面是正方形。

【答案】(1). 书(2). 魔方【解析】【分析】我们知道的长方形有:门、书、黑板、电视、钞票等表面;正方形有:魔方、豆腐、开关、方凳等表面。

【详解】由题意分析得:日常生活用的物品中,书的表面是长方形,魔方的表面是正方形。

【点睛】此题主要考查的是平面图形的认识,要熟练掌握。

3.用木条钉成一个长方形,捏住对角一拉,就会变成一个(______)。

【答案】平行四边形【解析】4.学校大门口的自动伸缩门应用了平行四边形(________)的这一特点。

【答案】容易变形【解析】【分析】平行四边形具有易变形性,生活中很多地方都运用了平行四边形的易变形性。

据此解答。

【详解】学校大门口的自动伸缩门应用了平行四边形容易变形的这一特点。

除此之外,升降机、可伸缩的衣架等都运用了此特性。

【点睛】本题主要考查平行四边形的特征,属于基础知识,要熟练掌握。

5.如图中正方形被挡住的角是________角。

【答案】直【解析】【分析】正方形是有一组邻边相等且一个角是直角的平行四边形;正方形四个角都是90°,是直角。

所以图中正方形被挡住的角一定是直角。

据此解答即可。

【详解】如图中正方形被挡住的角是直角。

【点睛】此题考查了正方形的特征,要熟练掌握。

6.用同样的小棒摆一个正方形,至少用(______)根小棒;摆一个长方形,至少用(______)根小棒。

【答案】(1). 4(2). 6【解析】【分析】正方形:由4条边围成,且4条边都相等,4个角都是直角。

八(下)单元测试卷《四边形》

八(下)单元测试卷《四边形》

八年级(下)单元测试卷《四边形》一、填空题:1、如图,在平行四边形ABCD 中,DB =DC ,∠C =700,AE ⊥BD 于E ,则∠DAE = 度。

2、如图,BD 是□ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需要增加的一个条件是 (填上你认为正确的一个即可)。

3、如图,一个平行四边形被分成面积为S 1、S 2、S 3、S 4四个小平行边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,则S 1S 4与S 2S 3的大小关系为 。

4、工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料,如图1,使AB =CD ,EF =GH ;(2)摆放成如图2的四边形,则这时窗框的形状是 形,根据的数学道理是: ; (3)将直角尺靠窗框的一个角,如图3,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时,如图4,说明窗框合格,这时窗框是 ,根据的数学道理是: 。

(1) (2) (3) (4) 5、如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是 。

二、选择题 6、下列命题中正确的是( )A 对角线互相平分的四边形是菱形。

B 对角线互相平分且相等的四边形是菱形。

C 对角线互相垂直的四边形是菱形。

D 对角线互相垂直平分的四边形是菱形。

7、如图,某花木场有一块等腰梯形ABCD 的空地,其各边的中点为E 、F 、G 、H ,测得对角线AC =10米,现想用篱笆围成四边形EFGH 场地,则需篱笆总长度是( ) A 40米 B 30米 C 20米 D 10米8、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,且AC =12,BD =9,则该梯形的面积是( )A 30B 15C 7.5D 54 9、如图,已知矩形ABCD ,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( ) A 线段EF 的长逐渐增大。

第18章 平行四边形 达标测试卷(含答案) 华师大版数学八年级下册

第18章 平行四边形 达标测试卷(含答案) 华师大版数学八年级下册

第18章平行四边形达标测试卷一、选择题(本题共10小题,每小题5分,共50分)1.在▱ABCD中,∠A∶∠B∶∠C∶∠D可以是()A.1 ∶2 ∶3 ∶4 B.1 ∶2 ∶1 ∶2C.1 ∶1 ∶2 ∶2 D.1 ∶2 ∶2 ∶12.将一副三角板在平行四边形ABCD中按如图摆放,则∠α=() A.55°B.65°C.75°D.85°(第2题) (第3题) (第4题)3.如图,在四边形ABCD中,CE平分∠BCD交AD于点E,DE=CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AB=CDC.CE=BC D.∠A=∠D4.如图,▱ABCD的周长为32,对角线AC与BD相交于点O,AC⊥AB,△BCO 的周长比△ABO的周长长4,则BO的长为()A.52B.13 C.4 D.55.如图,直线AB∥CD,P是AB上的动点,当点P从左向右运动时,△PCD的面积将()A.变大B.变小C.不变D.无法确定(第5题) (第6题) (第7题)6.如图,在▱ABCD 中,∠BDC =47°42′,依据尺规作图的痕迹,计算∠α的度数是( ) A .67°29′B .67°9′C .66°29′D .66°9′7.如图,在▱ABCD 中,将△ADC 沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若∠B =60°,AB =3,则△ADE 的周长为( ) A .12B .15C .18D .218.平移、旋转与轴对称都是图形之间的一些主要变换,为了得到▱ABCD (如图),下列说法错误的是( )A .将线段AB 沿BC 的方向平移至DC ,连结BC ,AD 可以得到▱ABCD B .将△ABC 绕边AC 的中点O 旋转180°可以得到▱ABCDC .将△AOB 绕点O 旋转180°得到△COD ,连结BC ,AD 可以得到▱ABCD D .将△ABC 沿AC 翻折可以得到▱ABCD9.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(1,0)、()6,0、()8,5,则顶点D 的坐标是( ) A .(5,5)B .(5,3)C .(2,5)D .(3,5)(第8题) (第9题) (第10题)10.如图,四边形ABCD 是平行四边形,E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC ,其中正确结论的个数为( ) A .1B .2C .3D .4二、填空题(本题共6小题,每小题5分,共30分)11.在四边形ABCD 中,(1)若AB =3,BC =4,CD =3,要使该四边形是平行四边形,则AD =________;(2)若∠A =60°,∠B =120°,则当∠D =________时,四边形ABCD 是平行四边形.12.如图,在▱ABCD 中,AC 与BD 交于点O ,AE ⊥BD 于点E ,BD =20,BE =7,AE=4,则AC的长等于________.(第12题)(第13题)13.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1处,折痕为EF,若∠BAE=55°,则∠D1AD=________.14.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE 与DF交于点H,则∠BHF=________.15.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为________.(第14题)(第15题)16.在平面直角坐标系中,有A(2,5),B(5,1),C(m,-m),D(m-3,-m+4)四个点,当四边形ABCD的周长最小时,m的值为________.三、解答题(本题共6小题,共70分)17.(8分)如图,已知▱ABCD的对角线AC,BD相交于点O,AD=12,BD=10,AC=26.(1)求△ADO的周长;(2)求证:△ADO是直角三角形.3(第17题)18.(10分)已知:如图所示,在平行四边形ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,分别交AB,CD于点E,F,连结BD,EF.求证:BD,EF互相平分.(第18题) 19.(12分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连结GE,EH,HF,FG.求证:四边形GEHF是平行四边形.(第19题)20.(12分)如图,在四边形ABCD中,∠ADB=∠CBD=90°,BE∥CD交AD于点E,且EA=EB.若AB=80,DB=4.求四边形ABCD的面积.(第20题)21.(14分)如图,在平行四边形ABCD中,AB= 2 cm,BC=12 cm,∠B=45°,5点P在边BC上,由点B向点C运动,速度为2 cm/s,点Q在边AD上,与点P同时出发,由点D向点A运动,速度为1 cm/s,连结PQ,设运动时间为t s.(1)当t为何值时,四边形ABPQ为平行四边形?(2)设四边形ABPQ的面积为y cm2,请用含有t的代数式表示y;(不必写出t的取值范围)(3)当点P运动至何处时,四边形ABPQ的面积是▱ABCD面积的34(第21题)22.(14分)在▱ABCD中,点P和点Q是直线BD上不重合的两个动点,AP∥CQ,AD=BD.(第22题)(1)如图①,求证:BP=DQ;(2)由图①易得BP+BQ=BC,请分别写出图②,图③中BP,BQ,BC三者之间的数量关系,并选择一个关系进行证明;(3)在(1)和(2)的条件下,若DQ=1,DP=3,请直接写出BC的长.7答案一、1.B 2.C 3.A 4.A 5.C 6.D7.C8.D9.D 10.D二、11.(1)4(2)120°12.1013.55°14.61°15.616.2三、17.(1)解:∵四边形ABCD是平行四边形,∴OA=OC=12AC,OB=OD=12BD.∵AC=26,BD=10,∴OA=13,OD=5.∵AD=12,∴△ADO的周长=5+12+13=30.(2)证明:由(1)知OA=13,OD=5,AD=12,∴在△AOD中,AD2+DO2=122+52=169,AO2=132=169,∴AD2+DO2=AO2,∴△AOD是直角三角形.18.证明:∵DE,BF分别是∠ADC和∠ABC的平分线,∴∠ADE=∠CDE,∠CBF=∠ABF.∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC.∴∠AED=∠CDE,∠CFB=∠ABF.∴∠AED=∠ADE,∠CFB=∠CBF.∴AE=AD,CF=CB.∴AE=CF.∴AB-AE=CD-CF,即BE=DF.∵DF∥BE,∴四边形DEBF是平行四边形.∴BD,EF互相平分.19.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠GBE=∠HDF.∵AG=CH,∴AB+AG=CD+CH,即BG=DH.又∵BE=DF,∴△GBE≌△HDF.∴GE=HF,∠GEB=∠HFD.∴∠GEF=∠HFE.∴GE∥HF.∴四边形GEHF是平行四边形.20.解:∵∠ADB=∠CBD=90°,∴DE∥CB.9 ∵BE ∥CD ,∴四边形BEDC 是平行四边形. ∴BC =DE .在Rt △ABD 中,由勾股定理得AD =AB 2-DB 2=(80)2-42=8. 设DE =x ,则EA =8-x ,∴EB =EA =8-x . 在Rt △BDE 中,由勾股定理得 DE 2+DB 2=EB 2, ∴x 2+42=(8-x )2.解得x =3.∴BC =DE =3,∴S 四边形ABCD =S △ABD +S △BDC =12AD ·DB +12DB ·BC =16+6=22.21.解:(1)由已知可得BP =2t cm ,DQ =t cm ,AD =BC =12 cm ,∴AQ =(12-t )cm.∵四边形ABPQ 为平行四边形, ∴BP =AQ ,即12-t =2t ,∴t =4, ∴当t =4时,四边形ABPQ 为平行四边形. (2)过点A 作AE ⊥BC 于点E .在Rt △ABE 中,∠AEB =90°,∠B =45°,∴AE =BE . 由勾股定理可知AB 2=AE 2+BE 2,∴AE =1 cm. ∴S 四边形ABPQ =12(BP +AQ )·AE =12(12+t )cm 2, 即y =12(12+t )=12t +6.(3)S ▱ABCD =1×12=12(cm 2).由题意得34×12=12t +6,∴t =6.∴BP =2×6=12(cm).此时BP =BC ,∴当点P 运动至点C 处时,四边形ABPQ 的面积是▱ABCD 面积的34.22.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠ADB =∠CBD . ∵AP ∥CQ ,∴∠APQ =∠CQB .∴△ADP ≌△CBQ . ∴DP =BQ .∴BQ -PQ =PD -PQ ,即BP =DQ . (2)解:图②:BQ -BP =BC ,证明: ∵AP ∥CQ ,∴∠APB =∠CQD .∵AB∥CD,∴∠ABD=∠CDB.∴∠ABP=∠CDQ. ∵AB=CD,∴△ABP≌△CDQ.∴BP=DQ.∴BC=AD=BD=BQ-DQ=BQ-BP. 图③:BP-BQ=BC,证明略.(3)解:BC=2或4.。

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)

中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

2020年中考数学一轮复习 第五章《四边形》综合测试卷含答案

第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引条对角线.12. 如果正多边形的一个外角为40°,那么它是正边形.13. 在行四边形ABCD中,∠B+∠D=220°,则∠A=.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形的ABCD的面积为.图Z5-817.如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-1019. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-1120. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12四、解答题(二)(本大题3小题,每小题8分,共24分)21. 如图Z5-13,平行四边形ABCD中,DF平分∠ADC,交BC于点F,BE平分∠ABC,交AD于点E.(1)求证:四边形BFDE是平行四边形;(2)若∠AEB=68°,求∠C的度数.图Z5-1322. 如图Z5-14,平行四边形ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.图Z5-1423. 如图Z5-15,平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:平行四边形ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-1625. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17第五章《四边形》综合测试卷(时间:90分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1. 从n边形一个顶点出发,可以作条对角线. ( D )A. nB. n-1C. n-2D. n-32. 一个多边形的每一个外角都是36°,则这个多边形是( D )A. 正方形B. 正六边形C. 正八方形D. 正十边形3. 在平行四边形ABCD中,∠A=38°,则∠C的度数为( D )A. 142°B. 148°C. 132°D. 38°4. 边长为3 cm的菱形的周长是( B )A. 15 cmB. 12 cmC. 9 cmD. 3 cm5. 如图Z5-1,在平行四边形ABCD中,下列结论一定成立的是( D )图Z5-1A. AC∠BDB. AB=ADC. ∠BAD≠∠BCDD. ∠ABC+∠BAD=180°6. 下列四边形中,对角线一定相等的是( B )A. 菱形B. 矩形C. 平行四边形D. 梯形7. 如图Z5-2,周长为28的菱形ABCD中,对角线AC,BD交于点O,H为AD边中点,OH的长等于( A )A. 3.5B. 4C. 7D. 14图Z5-28. 如图Z5-3,四边形ABCD是矩形,连接BD,∠ABD=60°,延长BC到点E使CE=BD,连接AE,则∠AEB的度数为( A )图Z5-3A. 15°B. 20°C. 30°D. 60°9. 如图Z5-4,在矩形ABCD中,AB与BC的长度比为3∠4.若该矩形的周长为28,则BD的长为( D )图Z5-4A. 5B. 6C. 8D. 1010. 如图Z5-5,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME∠BC 于点E,MF∠CD于点F,则EF的最小值为( B )图Z5-5A. 42B. 22C. 2D. 1二、填空题(本大题7小题,每小题4分,共28分)11. 五边形从某一个顶点出发可以引2条对角线.12. 如果正多边形的一个外角为40°,那么它是正九边形.13. 在平行四边形ABCD中,∠B+∠D=220°,则∠A=70°.14. 如图Z5-6,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是24.图Z5-615. 如图Z5-7,正方形ABCD中,以CD为边向正方形内作等边三角形DEC,则∠EAB =15°.图Z5-716. 如图Z5-8,在平行四边形ABCD中,对角线AC,BD交于点O,点E为BC边上一点,且CE=2BE. 若四边形ABEO的面积为3,则平行四边形ABCD的面积为9.图Z5-817. 如图Z5-9,在∠ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE∠DF 交DF的延长线于点E. 已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是2 3.图Z5-9三、解答题(一)(本大题3小题,每小题6分,共18分)18. 如图Z5-10,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC.求证:四边形ABCD是平行四边形.图Z5-10证明:∵O是AC的中点,∴OA=OC.∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,{∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD∠△COB(AAS).∴OD=OB.∴四边形ABCD是平行四边形.19. 如图Z5-11,点E,F分别是矩形ABCD的边AB,CD上的一点,且DF=BE. 求证:AF=CE.图Z5-11证明:∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC.在△ADF和△CBE中,{AD=CB,∠D=∠B,DF=BE,∴△ADF∠△CBE(SAS).∴AF=CE.20. 如图Z5-12,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求菱形ABCD的面积.图Z5-12解:如答图Z5-1,过点A作AE⊥BC于点E.∵四边形ABCD是菱形,∴AB=BC=10.∵∠ABC=60°,AE⊥BC,∴∠BAE=30°.答图Z5-1∠BE =12AB =5,AE =3BE =53.∠菱形ABCD 的面积=BC×AE =50 3.四、解答题(二)(本大题3小题,每小题8分,共24分) 21. 如图Z5-13,平行四边形ABCD 中,DF 平分∠ADC ,交BC 于点F ,BE 平分∠ABC ,交AD 于点E .(1)求证:四边形BFDE 是平行四边形; (2)若∠AEB =68°,求∠C 的度数.图Z5-13(1)证明:∵在平行四边形ABCD 中,AD ∥BC , ∴∠AEB =∠CBE.又∵BE 平分∠ABC ,∴∠ABE =∠EBC.∴∠ABE =∠AEB.∴AB =AE. 同理可得CF =CD.又AB =CD ,∴CF =AE.∴BF =DE.又∵BF ∥DE ,∴四边形EBFD 是平行四边形.(2)解:∵∠AEB =68°,AD ∥BC ,∴∠EBF =∠AEB =68°. ∵BE 平分∠ABC ,∴∠ABC =2∠EBF =136°. ∴∠C =180°-∠ABC =44°.22. 如图Z5-14,平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,DF =BE ,连接BF ,AF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE =3,DF =5,求矩形BFDE 的面积.图Z5-14(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD. ∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形. ∵DE ⊥AB ,∴∠DEB =90°.∴四边形BFDE 是矩形. (2)解:∵AB ∥CD ,∴∠BAF =∠DFA. ∵AF 平分∠BAD ,∴∠BAF =∠DAF. ∴∠DFA =∠DAF.∴AD =DF =5. ∵DE ⊥AB ,∴∠AED =90°.由勾股定理,得DE=AD2-AE2=4.∴矩形BFDE的面积=DF×DE=5×4=20.23. 如图Z5-15,在平行四边形ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,且AE=AF.(1)求证:ABCD是菱形;(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.图Z5-15(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°.又∵AE=AF,∴△AEB∠△AFD(AAS). ∴AB=AD.∴四边形ABCD是菱形.(2)解:连接AC,如答图Z5-2. ∵AE⊥BC,AF⊥DC,∠EAF=60°,∴∠ECF=120°.答图Z5-2∵四边形ABCD是菱形,∴∠ACF=60°.∴△ACD是等边三角形.在Rt△CFA中,AF=CF·tan∠ACF=23,AC=CFcos∠ACF=4=CD.∴菱形ABCD的面积=4×23=8 3.五、解答题(三)(本大题2小题,每小题10分,共20分)24. 如图Z5-16,在四边形ABCD中,AB=AD,CB=CD,E是CD上的点,BE交AC 于点F,连接DF.(1)求证:∠BAF=∠DAF,∠AFD=∠CFE;(2)若AB∥CD,试证明:四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使得∠EFD=∠BCD,并说明理由.图Z5-16(1)证明:在△ABC和△ADC中,{AB=AD,CB=CD,AC=AC,∴△ABC∠△ADC.∴∠BAC=∠DAC,即∠BAF=∠DAF.在△ABF和△ADF中{AB=AD,∠BAF=∠DAF,AF=AF,∴△ABF∠△ADF(SAS).∴∠AFB=∠AFD.∵∠CFE=∠AFB,∴∠AFD=∠CFE.∴∠BAF=∠DAF,∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD.∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)解:当BE⊥CD时,点E的位置可令∠EFD=∠BCD.理由如下.∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF.∵CF=CF,∴△BCF∠△DCF(SAS).∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°.∴∠EFD=∠BCD.25. 如图Z5-17,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF-BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.图Z5-17(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°.∴∠ADE+∠DAE=90°.又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF.在△AED和△BFA中,{∠AED=∠BFA,∠EDA=∠FAB,AD=AB,∴△AED∠△BFA(AAS).∴AE=BF.∴AF-AE=EF,即AF-BF=EF.(2)解:四边形EFGH是正方形.证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形.∵△AED∠△BFA,同理可得△AED∠∠DHC,∠∠AED∠∠BFA∠△DHC.∴DH=AE=BF,AF=DE=CH.∴DE-DH=AF-AE.∴EF=EH.∴矩形EFGH是正方形.(3)解:∵AB=2,BP=1,∴AP= 5.∵S△ABP=12×BF×AP=12×BF×5=1×2×12,∴BF=255.∵∠BAF=∠PAB,∠AFB=∠ABP=90°,∴△ABF∠△APB.∴BFAF=BPAB=12,∴AF=455,∴EF=AF-AE=455-255=255.25 52=45.∴四边形EFGH的面积为⎝⎛⎭⎫。

(必考题)初中八年级数学下册第十八章《平行四边形》经典测试卷(含答案解析)

(必考题)初中八年级数学下册第十八章《平行四边形》经典测试卷(含答案解析)

一、选择题1.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24C解析:C【分析】 根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.2.如图,在ABC 中,点D 在边BC 上,过点D 作//DE AC ,//DF AB ,分别交AB ,AC 于E ,F 两点.则下列命题是假命题的是( )A .四边形AEDF 是平行四边形B .若90BC ∠+∠=︒,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD BD =,则四边形AEDF 是矩形C解析:C【分析】根据平行四边形判定定理,矩形的判定定理,菱形的判定定理判断即可.【详解】//,//DE AC DF AB∴四边形AEDF 是平行四边形,故A 选项正确;四边形AEDF 是平行四边形,90B C ∠+∠=︒90BAC ∴∠=︒∴四边形AEDF 是矩形,故B 选项正确;//DE AC12DE BD AC BC ∴== 12DE AC ∴= 同理12DF AB =要想四边形AEDF 是菱形,只需DE DF =,则需AC AB =显然没有这个条件,故C 选项错误;AD BD =,则B DAB ∠=∠,DAC C ∠=∠,180B C BAC ∠+∠+∠=︒90BAC ∴∠=︒∴∴四边形AEDF 是矩形,故D 选项正确;故选:C .【点睛】本题考查了平行四边形的判定,矩形的判定,菱形的判定,熟练掌握平行四边形判定定理,矩形的判定定理,菱形的判定定理是解题关键.3.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,四边形ABCD 是菱形B .当AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=时,四边形ABCD 是矩形D .当AC BD =时,四边形ABCD 是正方形D解析:D【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当=时,它是菱形,故本选项不符合题意;AB BC⊥时,四边形ABCD是菱B、根据对角线互相垂直的平行四边形是菱形知:当AC BD形,故本选项不符合题意;C、根据有一个角是直角的平行四边形是矩形知:当90∠=时,四边形ABCD是ABC矩形,故本选项不符合题意;=时,它是矩形,不是正方D、根据对角线相等的平行四边形是矩形可知:当AC BD形,故本选项符合题意;综上所述,符合题意是D选项;故选:D.【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.4.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()=,则平行四边形ABCD是矩形A.若AB AD=,则平行四边形ABCD是正方形B.若AB AD⊥,则平行四边形ABCD是矩形C.若AB BC⊥,则平行四边形ABCD是正方形CD.若AC BD解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.5.下列结论中,菱形具有而矩形不一定具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对边相等且平行C 解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.6.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4 B.8 C13D.6A解析:A【分析】由菱形的性质得出OA=OC=6,OB=OD,AC⊥BD,则AC=12,由直角三角形斜边上的中线性质得出OH=12AB,再由菱形的面积求出BD=8,即可得出答案.【详解】解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=12BD,∵菱形ABCD的面积=12×AC×BD=12×12×BD=48,∴BD=8,∴OH=12BD=4;故选:A.【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12 BD.7.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,30ACD ∠=︒,若ABC 的周长比AOB 的周长大10,则AB 的长为( ).A .103B .53C .10D .20A解析:A【分析】 由矩形的性质和已知条件求出AB=3BC ,BC=10,即可得出答案.【详解】解:∵四边形ABCD 是矩形,∴AO=CO=DO=BO ,AD=BC ,∠ABC=90°,AB ∥CD ,∴∠BAC=∠ACD=30°,∴AB=3BC ,∵△ABC 的周长=AB+AC+BC=AB+AO+OC+BC ,△AOB 的周长=AB +AO +BO ,又∵ABC 的周长比△AOB 的周长长10,∴AB+AC+BC-(AB +AO +BO )=BC=10,∴AB=3BC=103;故选:A .【点睛】本题考查了矩形的性质、含30°角的直角三角形的性质等知识,熟练掌握矩形的性质,求出BC 的长是解题的关键.8.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .3C .43D .423+D解析:D【分析】 只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.9.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .5A解析:A【分析】根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1C=221A D CD -=8,∴A 1B=10-8=2,故选A .【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q 与D 重合时,A 1B 最小是解题的关键. 10.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A 3B 423C .2D 352解析:D【分析】 首先设AG =x ,由矩形纸片ABCD 中,AB =4,AD =3,可求得BD 的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x 2+22=(4-x )2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG =x ,∵四边形ABCD 是矩形,∴∠A =90°,∵AB =4,AD =3,∴BD 22AD AB +5,由折叠的性质可得:A′D =AD =3,A′G =AG =x ,∠DA′G =∠A =90°,∴∠BA′G =90°,BG =AB-AG =4-x ,A′B =BD-A′D =5-3=2,∵在Rt △A′BG 中,A′G 2+A′B 2=BG 2,∴x 2+22=(4-x )2,解得:x =32, ∴AG =32, ∴在Rt △ADG 中,DG =22352AD AG +=. 故选:D .【点睛】 此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.二、填空题11.点O 是平行四边形ABCD 的对称中心,AD AB >,E 、F 分别是AB 边上的点,且12EF AB =;G 、H 分别是BC 边上的点,且13GH BC =;若1S ,2S 分别表示EOF 和GOH 的面积,则1S ,2S 之间的等量关系是1S =__________2S .【分析】如图连接OAOBOC 设平行四边形的面积为4S 求出S1S2(用s 表示)即可解决问题【详解】解:如图连接OAOBOC 设平行四边形的面积为4S ∵点O 是平行四边形ABCD 的对称中心∴S △AOB=S △解析:32【分析】如图,连接OA ,OB ,OC .设平行四边形的面积为4S .求出S 1,S 2(用s 表示)即可解决问题.【详解】解:如图,连接OA ,OB ,OC .设平行四边形的面积为4S .∵点O 是平行四边形ABCD 的对称中心,∴S △AOB =S △BOC =14S 平行四边形ABCD =S , ∵EF=12AB ,GH=13BC , ∴S 1=12S ,S 2=13S , ∴12132123S S S S ==, ∴1232S S =; 故答案为:32. 【点睛】本题考查中心对称,平行四边形的性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.12.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13.如图,点O 是菱形ABCD 对角线的交点,DE //AC ,CE //BD ,连接OE ,设AC =12,BD =16,则OE 的长为_____.10【分析】由菱形的性质和勾股定理求出CD=20证出平行四边形OCED 为矩形得OE =CD =10即可【详解】解:∵DEACCEBD ∴四边形OCED 为平行四边形∵四边形ABCD 是菱形∴AC ⊥BDOA =O解析:10【分析】由菱形的性质和勾股定理求出CD =20,证出平行四边形OCED 为矩形,得OE =CD =10即可.【详解】解:∵DE //AC ,CE //BD ,∴四边形OCED 为平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =6,OB =OD =12BD =8, ∴∠DOC =90︒,CD 22OC OD +2268+=10,∴平行四边形OCED 为矩形,∴OE =CD =10,故答案为:10.【点睛】本题考查了菱形的性质、矩形的判定与性质以及平行四边形判定与性质等知识;熟练掌握特殊四边形的判定与性质是解题的关键.14.在Rt ABC 中,∠C =90°,点D 是AB 边的中点,若AB =8,则CD =______.4【分析】根据直角三角形斜边上的中线等于斜边的一半可以得【详解】∵D 是AB 的中点∴∴故答案为:4【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质熟记性质是解题的关键解析:4.【分析】根据直角三角形斜边上的中线等于斜边的一半可以得2AB CD =.【详解】∵90C ∠=︒,D 是AB 的中点,∴2AB CD =,∴118422CD AB ==⨯=. 故答案为:4.【点睛】 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键. 15.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF 故四边形的周长=AD+CD+EF 根据已知求解即可【详解】解:在平行四边形ABCD 中AD ∥BCAC 与BD 互相平分∴AO=OC ∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF ,故四边形EFCD 的周长=AD+CD+EF ,根据已知求解即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,AC 与BD 互相平分∴AO=OC ,∠DAC=∠ACB ,∠AOE=∠COF∴△AOE ≌△COF∴AE=CF ,OF=OE=2.5∴四边形EFCD 的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.16.如图,直角三角形ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,AF 平分CAB ∠交CD 于点E ,交BC 于点F ,//EG AB 交CB 于点G ,FH AB ⊥于H ,以下4个结论:①ACD B ∠=∠;②CEF △是等边三角形;③CD FH DE =+;④BG CE =中正确的是______(将正确结论的序号填空)①③④【分析】连接EH 得出平行四边形EHBG 推出BG=EH 求出∠CEF=∠AFC 得出CE=CF 证△CAE ≌△HAE 推出CE=EH 即可得出答案【详解】解:如图连接EH ∵∠ACB=90°∴∠3+∠4=9解析:①③④【分析】连接EH ,得出平行四边形EHBG ,推出BG=EH ,求出∠CEF=∠AFC ,得出CE=CF ,证△CAE ≌△HAE ,推出CE=EH ,即可得出答案.【详解】解:如图,连接EH ,∵∠ACB=90°,∴∠3+∠4=90°,∵CD ⊥AB ,∴∠ADC=90°,∴∠B+∠4=90°,∴∠3=∠B ,故①正确;∵∠ADC=∠ACB=90°,∴∠1+∠AFC=90°,∠2+∠AED=90°,∵AE 平分∠CAB ,∴∠1=∠2,∵∠AED=∠CEF ,∴∠CEF=∠AFC ,∴CE=CF ,∴△CEF 是等腰三角形,故②错误;∵AF 平分∠CAB ,FH ⊥AB ,FC ⊥AC ,∴FH=FC ,在Rt △CAF 和Rt △HAF 中,AF AF CF FH =⎧⎨=⎩, ∴Rt △CAF ≌Rt △HAF (HL ),∴AC=AH ,在△CAE 和△HAE 中,12AC AH AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△CAE ≌△HAE (SAS ),∴∠3=∠AHE ,CE=EH ,∵∠3=∠B ,∴∠AHE=∠B ,∴EH ∥BC ,∵CD ⊥AB ,FH ⊥AB ,∴CD ∥FH ,∴四边形CEHF 是平行四边形,∴CE=FH ,∴CD=CE+DE=FH+DE ,故③正确;∵EG ∥AB ,EH ∥BC ,∴四边形EHBG 是平行四边形,∴EH=BG ,∵CE=EH ,∴BG=CE .故④正确.所以正确的是①③④.故答案为:①③④.【点睛】本题考查了平行四边形的性质和判定,三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生综合运用定理进行推理的能力,有一定的难度.17.如图,在ABC 中,45BAC ∠=︒,4AB AC ==,点D 是AB 上一动点,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是________.2【分析】平行四边形ADCE 的对角线的交点是AC 的中点O 当OD ⊥AB 时OD 最小即DE 最小根据直角三角形勾股定理即可求解【详解】解:如图∵平行四边形ADCE 的对角线的交点是AC 的中点O 又AB=AC=4 解析:2【分析】平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD ⊥AB 时,OD 最小,即DE 最小,根据直角三角形勾股定理即可求解.【详解】解:如图∵平行四边形ADCE 的对角线的交点是AC 的中点O ,又AB=AC=4∴OC=OA=12AC=2 当OD ⊥AB 时,OD 最小,即DE 最小.∵OD ⊥BA ,∠BAC=45°,∴∠AOD=45°∴△ADO 为等腰直角三角形在Rt △ADO 由勾股定理可知OD= 22AO=2 ∴DE=2OD=22故答案为:22.【点睛】本题考查了勾股定理,平行四边形的性质,即平行四边形对角线互相平分,正确理解DE 最小值的条件是关键.18.如图,在ABC 中,已知AB =8,BC =6,AC =7,依次连接ABC 的三边中点,得到111A B C △,再依次连接111A B C △的三边中点,得到222A B C △,,按这样的规律下去,202020202020A B C △的周长为____.【分析】由再利用中位线的性质可得:再总结规律可得:从而运用规律可得答案【详解】解:探究规律:AB=8BC=6AC=7分别为的中点同理:总结规律:运用规律:当时故答案为:【点睛】本题考查的是图形周长的解析:2020212 【分析】 由21ABC C AB BC AC =++=,再利用中位线的性质可得:111121,22A B C ABC C C ==2221112121,22A B C A B C C C ==再总结规律可得:21,2n n n A B C n C =从而运用规律可得答案.【详解】解:探究规律:AB =8,BC =6,AC =7, 21ABC C AB BC AC ∴=++=,111,,A B C 分别为,,BC AC AB 的中点,111111111,,,222A B AB B C BC AC AC ∴=== 111121,22A B C ABC C C ∴== 同理:2221112112121,2222A B C A B C C C ==⨯= ······总结规律:21,2n n n A B C n C =运用规律: 当2020n =时,202020202020202021.2A B C C= 故答案为:202021.2 【点睛】本题考查的是图形周长的规律探究,三角形中位线的性质,掌握探究规律的方法与三角形中位线的性质是解题的关键.19.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____. 5【分析】根据三角形中位线定理分别求出的长度根据勾股定理计算即可得到答案【详解】FG 分别是的中点∴∵分别是BEBC 的中点∴∵∠FGH=90°∴由勾股定理得故答案为:5【点睛】本题考查的是勾股定理三角解析:5【分析】根据三角形中位线定理分别求出GF 、GH 的长度,根据勾股定理计算,即可得到答案.【详解】F ,G 分别是DE ,BE 的中点, ∴142GF BD ==, ∵G ,H 分别是BE ,BC 的中点,∴132GH CE ==, ∵∠FGH =90°, ∴由勾股定理得, 2222435FH GF GH =+=+=,故答案为:5.【点睛】本题考查的是勾股定理、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.20.如图,边长分别为4和2的两个正方形ABCD 和CEFG 并排放在一起,连结EG 并延长交BD 于点N ,交AD 于点M .则线段MN 的长是__________.【分析】根据题意易证明和是等腰直角三角形再根据勾股定理即可求出MN 【详解】∵四边形ABCD 和CEFG 为正方形∴∴和是等腰直角三角形∴∴在中故答案为:【点睛】本题考查正方形和平行线的性质等腰直角三角形2【分析】根据题意易证明MND 和MDG 是等腰直角三角形,2DM DC GC =-=.再根据勾股定理即可求出MN .【详解】∵四边形ABCD 和CEFG 为正方形,//AD BE .∴45DMG BEM MDN DGM ∠=∠=∠=∠=︒,∴MND 和MDG 是等腰直角三角形,∴422DG DM DC GC ==-=-=. ∴在Rt MND △中,222222MN MD ==⨯=. 故答案为:2.【点睛】本题考查正方形和平行线的性质,等腰直角三角形的判定和性质以及勾股定理.根据题意证明MND 是等腰直角三角形在结合勾股定理求解是解答本题的关键. 三、解答题21.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .解析:见解析【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.22.已知:如图,在正方形ABCD 中,点E 为边AB 的中点,连结DE ,点F 在DE 上CF CD =,过点F 作FG FC ⊥交AD 于点G .(1)求证:GF GD =;(2)联结AF ,求证:AF DE ⊥.解析:(1)见解析;(2)见解析【分析】(1)由CF CD =可证得CFD CDF ∠=∠,因为90ADC GFC ∠∠==,所以GFD GDF ∠=∠,再由等腰三角形的判定即可得证;(2)因为,CF CD GF GD ==,所以GC 是FD 的垂直平分线,再证DAE CDG △≌△由全等三角形对应边相等可得AE DG =,这样AG GD GF ==即可解决问题;【详解】证明:(1)四边形ABCD 是正方形,90ADC ∴∠=,FG FC ⊥,90GFC ∠∴=,CF CD =CFD CDE ∴∠=∠,GFC CFD ADC CDE ∠∠∠∠∴-=-,即GFD GDF ∠=∠,GF GD ∴=.(2)如图,连结CG .,CF CD GF GD ==∴点G 、C 在线段FD 的中垂线上,GC DE ∴⊥,90CDF DCG ∠∠∴+=,90CDF ADE ∠∠+=,DCG ADE ∠∠∴=.四边形ABCD 是正方形,,90AD DC DAE CDG ∠∠∴===,DAE CDG ∴△≌△,AE DG ∴=,点E 是边AB 的中点,∴点G 是边AD 的中点,AG GD GF ∴==,,DAF AFG GDF GFD ∠∠∠∠∴==180DAF AFG GFD GDF ∠∠∠∠+++=,22180AFG GFD ∠∠∴+=90AFD ∠∴=,即AF DE ⊥.【点睛】本题是正方形的综合题,考查了正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的判定等知识,侧重考查了学生的逻辑推理能力和对知识的应用能力.23.已知:如图,在梯形ABCD 中,AD ∥BC ,点E 、F 在边BC 上,DE ∥AB ,AF ∥CD ,且四边形AEFD 是平行四边形.(1)试判断线段AD 与BC 的长度之间有怎样的数量关系?并证明你的结论; (2)现有三个论断:①AD AB =;②=B C +∠∠90°;③=2B C ∠∠.请从上述三个论断中选择一个论断作为条件,证明四边形AEFD 是菱形.解析:(1)3BC AD =,见解析;(2)见解析【分析】(1)先证明四边形ABED 是平行四边形,得到AD BE =,同理得到AD FC =,根据四边形AEFD 是平行四边形,得到AD EF =,从而得到AD BE EF FC ===,进而得到3BC AD =;(2)选择论断②作为条件.根据DE ∥AB ,得到B DEC ∠=∠,从而证明90DEC C ∠+∠=,得到90EDC ∠=,根据EF FC =,得到DF EF =,从而证明平行四边形AEFD 是菱形.【详解】解:(1)线段AD 与BC 的长度之间的数量为:3BC AD =.证明:∵AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形.∴AD BE =.同理可证,四边形AFCD 是平行四边形.∴AD FC =.又∵四边形AEFD 是平行四边形,∴AD EF =.∴AD BE EF FC ===.∴3BC AD =.(2)选择论断②作为条件.证明:∵DE ∥AB ,∴B DEC ∠=∠.∵90B C ∠+∠=,∴90DEC C ∠+∠=.即得90EDC ∠=.又∵EF FC =,∴DF EF =.∵四边形AEFD 是平行四边形,∴平行四边形AEFD 是菱形.【点睛】本题考查平行四边形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半等知识,熟知相关定理并根据题意灵活应用是解题关键.24.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.解析:(1)见解析;(2)四边形AGCH 是菱形,见解析【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论.【详解】证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,又AOE COF ∠=∠,AOE COF ∴≌,AE CF ∴=. (2)四边形AGCH 是菱形.理由:AOE COF ≌,EAO FCO ∴∠=∠,//AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=,AC 平分HAG ∠,HAC GAC ∠∠∴=,∴GAC ACB ∠=∠,GA GC ∴=,∴平行四边形AGCH 是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.25.如图1,在四边形ABCD 中,若,A C ∠∠均为直角,则称这样的四边形为“美妙四边形”.(1)概念理解:长方形__________________美妙四边形(填“是”或“不是”); (2)性质探究:如图l ,试证明:2222CD AB AD BC -=-;(3)概念运用:如图2,在等腰直角三角形ABC 中,,90AB AC A =∠=︒,点D 为BC 的中点,点E ,点F 分别在,AB AC 上,连接,DE DF ,如果四边形AEDF 是美妙四边形,试证明:AE AF AB +=.解析:(1)是;(2)见解析;(3)见解析【分析】(1)因为长方形的四个角都是直角,所以长方形是美妙四边形;(2)连接BD ,在Rt △ABD 和Rt △CBD 中,根据勾股定理可以解决;(3)连接AD ,利用等腰直角三角形的性质证明90ADB ∠=︒,45DAF EBD ∠=∠=︒,AD BD =,于是可证ADF BDE ∠=∠,继而证明用ASA 证明BED AFD ∆≅∆,根据全等三角形的性质得BE AF =,据此可得AE AF AB +=.【详解】解:(1)∵长方形的四个角都是直角,∴长方形是美妙四边形;故答案是:是;(2)如图1,连接BD ,在Rt △ABD 中,222BD AB AD =+,在Rt △CBD 中,222BD BC CD =+,∴2222CD CB AD AB +=+,∴2222CD AB AD BC -=-;(3)如图2,连接AD ,∵四边形AEDF 是美妙四边形,90A ∠=︒,∴90EDF ∠=︒,∵,90AB AC A =∠=︒,点D 为BC 的中点,∴90ADB ∠=︒,45DAF EBD ∠=∠=︒,AD BD =,∴ADF BDE ∠=∠,在Rt △ADF 和Rt △BDE 中,DAF DBE AD BDADF BDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BED AFD ASA ∆≅∆BE AF ∴=,AE AF AE BE AB ∴+=+=【点睛】本题考查了四边形综合问题,等腰直角三角形的性质及全等三角形的判定和性质,勾股定理,作辅助线构造直角三角形或全等三角形是解题关键.26.在Rt ABC 中,90ACB ︒∠=,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连接DE .(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.解析:(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ;(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点,∴CE =12AB =AE .∵△ACD 是等边三角形,∴AD =CD .在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩,∴△ADE ≌△CDE (SSS ),∴∠ADE =∠CDE =30°.∵∠DCB =150°,∴∠EDC +∠DCB =180°.∴DE ∥CB .(2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°,∵∠DCB =150°,∴∠DCB +∠B =180°,∴DC ∥BE ,又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.27.如图,在矩形ABCD 中,M ,N 分别是AD ,BC 的中点,P ,Q 分别是BM ,DN 的中点.(1)求证:四边形BNDM 是平行四边形.(2)猜想:四边形MPNQ 是哪种特殊的平行四边形?并证明你的猜想.解析:(1)见解析;(2)菱形,理由见解析【分析】(1)因为M ,N 分别是AD ,BC 的中点,由矩形的性质可得DM=BN ,DM ∥BN ,利用平行四边形的判定定理可得结论;(2)由四边形DMBN 是平行四边形,求出BM=DN ,BM ∥DN ,求出三角形MPNQ 是平行四边形,根据直角三角形斜边上中线性质求出MQ=NQ ,根据菱形判定推出即可.【详解】解:(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∵M 、N 分别AD 、BC 的中点,∴DM=BN ,∴四边形DMBN 是平行四边形;(2)四边形MPNQ 是菱形.∵四边形DMBN 是平行四边形,∴BM=DN ,BM ∥DN ,∵P 、Q 分别BM 、DN 的中点,∴MP=NQ ,MP ∥NQ ,∴四边形MPNC 是平行四边形,连接MN ,∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∵M 、N 分别AD 、BC 的中点,∴DM=CN ,∴四边形DMNC 是矩形,∴∠DMN=∠C=90°,∵Q 是DN 中点,∴MQ=NQ ,∴四边形MPNQ 是菱形.【点睛】本题考查了平行四边形的性质和判定,菱形的判定,矩形的性质,综合运用各性质定理是解答此题的关键28.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长;(2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数.解析:(1)3;(2)见解析;(3)60︒或15︒或37.5︒【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解.【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒,∴BC=2AB=4,60B ∠=︒,∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒,∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,∵把AD 绕点A 逆时针旋转90°,得到AE ,∴AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,∵45ADB ∠=︒,∴45ADF AEN ∠=∠=︒,∴AEN ADF △≌△,∴AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,∵90EAD ∠=︒,EAN DAF ∠=∠,∴90NAF ∠=︒,∵90BAC ∠=︒,ANE AFD ∠=∠,∴,MAN BAF ANM AFB ∠=∠∠=∠,∵AN=AF ,∴AMN ABF △≌△, ∴12BF MN BC ==,即F 是BC 的中点, ∴AF=FC=DF+CD=EN+CD ,∵AN=AF ,∴AN EN CD =+; (3)解:由题意可得AD=AE ,90EAD ∠=︒,∴45EDA AED ∠=∠=︒,分三种情况:①AM=MD 时,∵AM=MD ,∴45EDA MAD ∠=∠=︒,∴90AMD ∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=60︒;②AM=AD 时,∵AM=AD ,∴45EDA AMD ∠=∠=︒,∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=15︒;③AD=MD 时,∵AD=MD ,∴AMD MAD ∠=∠,∴45EDA ∠=︒, ∴1804567.52AMD MAD ︒-︒∠=∠==︒, ∵30C ∠=︒,∴CDM AMD C ∠=∠-∠=37.5︒.∴当ADM △为等腰三角形时,CDM ∠的度数为60︒或15︒或37.5︒.【点睛】本题主要考查了几何变换综合题,需要熟练掌握旋转的性质,直角三角形的性质,直角三角形斜边上中线的性质以及全等三角形的判定与性质,等腰三角形的性质,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题.。

(完整版)平行四边形与菱形测试卷及答案

(完整版)平行四边形与菱形测试卷及答案

(完整版)平行四边形与菱形测试卷及答案第一部分:选择题(共10题,每题2分)1. 平行四边形是指具有两组对边分别平行的四边形,其特点是:A. 所有角均为直角B. 两组对边长度相等C. 具有一组相等的对边D. 任意两组对边之间的夹角相等2. 在平行四边形ABCD中,两组对边的夹角分别是60°和120°,则该平行四边形是:A. 正方形B. 长方形C. 菱形D. 长方形和菱形3. 菱形是指具有以下特点的四边形:A. 所有角均为直角B. 所有边长相等C. 两组对边长度相等D. 具有一组相等的对边4. 在菱形EFGH中,两组对边之间的夹角分别是60°和120°,则该菱形是:A. 正方形B. 长方形C. 三角形D. 长方形和三角形5. 平行四边形ABCD的对角线AC和BD相交于点O,下列说法正确的是:A. OA = OB = OC = ODB. ∠AOC = ∠BOD = 180°C. ∠AOC = ∠DOB = 90°D. AB = CD6. 菱形EFGH的对角线EG和FH相交于点O,下列说法正确的是:A. OE = OF = OG = OHB. ∠EOG = ∠FOH = 180°C. ∠EOG = ∠FOH = 90°D. EF = GH7. 平行四边形ABCD的一条对边长为6,对面的对边长为8,两个连续的角之和为130°,则该平行四边形的周长是:A. 12B. 20C. 24D. 488. 菱形EFGH的一条边长为10,两个相邻角之和为130°,则该菱形的周长是:A. 10B. 20C. 30D. 409. 平行四边形ABCD的一条对边长为6,对面的对边长为8,两个连续的角之和为130°,则该平行四边形的面积是:A. 15B. 18C. 24D. 4810. 菱形EFGH的一条边长为10,两个相邻角之和为130°,则该菱形的面积是:A. 40B. 50C. 60D. 70第二部分:填空题(共5题,每题4分)11. 若平行四边形ABCD的一组对边长度分别为8cm和12cm,对应的对角线长度分别为____和____.12. 若菱形EFGH的一条边长为10cm,对应的对角线长度分别为____和____.13. 平行四边形ABCD的一组对边长度分别为6cm和7cm,对边的夹角为120°,则该平行四边形的周长为____.14. 菱形EFGH的一条边长为8cm,菱形对角线长度之一为12cm,则该菱形的周长为____.15. 平行四边形ABCD的一组对边长度分别为5cm和7cm,对边的夹角为130°,则该平行四边形的面积为____.第三部分:综合题(共2题,每题10分)16. 平行四边形ABCD的一组对边长度分别为5cm和8cm,对边的夹角为120°.若将该平行四边形的一边长度加倍,另一边长度减半,则新平行四边形的周长为____.17. 菱形EFGH的一条边长为12cm,菱形对角线长度之一为16cm. 若将菱形的边长和对角线长度都加倍,则新菱形的面积为____.答案:1. C2. C3. B4. C5. D6. C7. C8. D9. A10. C11. 10cm, 20cm12. 10cm, 20cm13. 26cm14. 32cm15. 20cm²16. 36cm17. 96cm²。

(必考题)初中数学八年级数学下册第六单元《平行四边形》测试卷(有答案解析)

(必考题)初中数学八年级数学下册第六单元《平行四边形》测试卷(有答案解析)

一、选择题1.如果一个多边形的内角和为1260︒,那么从这个多边形的一个顶点可以作( )条对角线.A .4B .5C .6D .7 2.在平行四边形ABCD 中,AB ⊥AC ,∠B =60°,AC =23cm ,则平行四边形ABCD 的周长是( )A .10cmB .11cmC .12cmD .13cm3.如图,在ABCD 中,4CD =,60B ︒∠=,:2:1BE EC =,依据尺规作图的痕迹,则ABCD 的面积为( )A .12B .122C .123D .125 4.如图,作ABC 关于直线对称的图形A B C ''',接着A B C '''沿着平行于直线l 的方向向下平移,在这个变换过程中两个对应三角形的对应点应具有的性质是( )A .对应点连线相等B .对应点连线互相平行C .对应点连线垂直于直线lD .对应点连线被直线平分5.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( )A .625+B .613+C 34251D 34131 6.下面关于平行四边形的说法中,不正确的是( )A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形7.如图,在平面直角坐标系中,▱ABCD三个顶点坐标分别为A(-1,-2),D(1,1),C (5,2),则顶点B的坐标为()A.(-1,3)B.(4,-1)C.(3,-1)D.(3,-2)8.如图,将四边形ABCD去掉一个60°的角得到一个五边形BCDEF,则∠1与∠2的和为()A.60°B.108°C.120°D.240°9.如图,在▱ABCD中,对角线AC,BD相交于点O,点E是BC的中点,若AB=16,则OE 的长为()A.8 B.6 C.4 D.310.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12 AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD,下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB 11.如图,P为□ABCD对角线BD上一点,△ABP的面积为S1,△CBP的面积为S2,则S1和S2的关系为()A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法判断 12.如图,平行四边形ABCD 的对角线,AC BD 相交于点O ,且14,5AC BD CD +==,则ABO ∆周长是( )A .10B .14C .12D .22二、填空题13.已知,如图,//,AB DC AF 平分,BAE DF ∠平分CDE ∠,且AFD ∠比∠E 的2倍多30°,则AED =∠_____度.14.对于一个四边形的四个内角,下面四个结论中,①可以四个角都是锐角;②至少有两个角是锐角;③至少有一个角是钝角;④最多有三个角是钝角;所有正确结论的序号是______.15.如图,在平行四边形纸片ABCD 中,2cm AB =,将纸片沿对角线AC 对折至CF ,交AD 边于点E ,此时BCF △恰为等边三角形,则图中折叠重合部分的面积是________.16.如图,在△ABC 中,∠ACB =90°,AB =13 cm ,BC =12 cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =______cm .17.如图,在△ABC 中,D 、E 分别为AB 、AC 边的中点,若DE =2,则BC 边的长为____.18.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,0-,()3,0,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,则D 的坐标为_______,连接AC ,BD .在y 轴上存在一点P ,连接PA ,PB ,使AB PAB DC S S ∆=四边形.则点P 的坐标为_______.19.如图,在平行四边形ABCD 中,BC=8cm ,AB=6cm ,BE 平分∠ABC 交AD 边于点E ,则线段DE 的长度为_____.20.已知//,AD BC 要使四边形ABCD 为平行四边形,需要增加的条件是____.(填一个你认为正确的条件).三、解答题21.如图,在ABC 中,,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF 是等腰三角形;(2)若5AF BF ==,2BE =,求线段DE 的长.22.如图,点E 在ABCD 外,连接BE ,DE ,延长AC 交DE 于F ,F 为DE 的中点.(1)求证://AF BE ;(2)若2AD =,60ADC ∠=︒,90ACD ∠=︒,2AC CF =,求BE 的长.23.如图,在ABCD 中,对角线AC ,BD 相交于点O ,AB ⊥AC ,AB=3cm ,BC=5cm .点P 从A 点出发沿AD 方向匀速运动,速度为lcm/s .连接PO 并延长交BC 于点Q ,设运动时间为t (0<t<5)(1)求ABCD 面积;(2)设AOP 的面积为y (cm 2), 求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使点O 在线段AP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.24.如图1,在平面直角坐标系中,直线AB 与 x 轴、y 轴相交于A(6,0)、B(0,2)两点,动点C 在线段OA 上(不 与 )O 、A 重合 ),将线段CB 绕着点C 顺时针旋转 90° 得到CD ,当点D 恰好落在直线AB 时,过 点D 作DE ⊥x 轴于点E .(1)求证:BOC CED ∆≅∆;(2)求经过A 、B 两点的一次函数表达式,如图2,将BCD ∆沿x 轴正方向平移得B C D '''∆,当直线B′C′经过点D 时,求点D 的坐标、B C D '''∆的面积;(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,通过画图说明理由,并指出点Q 的个数.25.如图,在ABCD 中,对角线AC ,BD 交于点O ,点,E F 分别是AB ,BC 的中点,连接EF交BD于G,连接OE,OF.证明:(l)四边形COEF是平行四边形;(2)线段OB与线段EF相互平分.OA=,26.如图,平行四边形ABCD在直角坐标系中,点B、点C都在x轴上,其中4 OB=,63AD=,E是线段OD的中点.(1)直接写出点C,D的坐标;(2)平面内是否存在一点N,使以A、D、E、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先利用n边形的内角和公式算出n,再利用n边形的每一个顶点有(n-3)条对角线计算即可.【详解】根据题意,得(n-2)×180=1260,解得n=9,∴从这个多边形的一个顶点可以作对角线的条数为:n-3=9-3=6.故选C.【点睛】本题考查了n边形的内角和和经过每一个顶点可作的对角线条数,熟记多边形内角和公式,计算经过每一个顶点的对角线条数计算公式是解题的关键.2.C解析:C【分析】可设AB x =,因为AB AC ⊥,60B ∠=︒,所以30ACB ∠=︒,所以2BC x =,在t R ABC △中,利用勾股定理可求x ,则平行四边形的边AB ,BC 的长度可求,则周长可求.【详解】如图:9060906030AB ACBAC B ACB ⊥∴∠=︒∠=︒∴∠=︒-︒=︒设AB x =,则2BC x =在t R ABC △中,由勾股定理可得: 222BC AB AC -= 23AC =()(222223x x ∴-=2312x ∴= 24222,4x x x x AB BC ∴=∴=±>∴=∴==∴平行四边形ABCD 周长为: ()24212+⨯=故选:C .【点睛】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质进行推理计算是解题关键.3.C解析:C【分析】由作图痕迹可得EF 为AB 的中垂线,结合60B ∠=︒判断出△ABE 为等边三角形,从而结合边长求出ABCD 在BC 边上的高为23,再根据比例关系求得BC 的长度,最终计算面积即可.【详解】设尺规作图所得直线与AB 交于F 点,根据题意可得EF 为AB 的中垂线,∴AE=BE ,又∵60B ∠=︒,∴△ABE 为等边三角形,边长AB=CD=4,∴BF=2,BE=4,2223EF BE BF =-=, ∴ABCD 在BC 边上的高为23,又∵:2:1BE EC =,BE=4,∴EC=2,BC=2+4=6,∴ABCD S =23×6=123,故选:C .【点睛】本题考查平行四边形的性质,中垂线的识别与性质,以及等边三角形的判定与性质,准确根据作图痕迹总结出等边三角形是解题关键.4.D解析:D【分析】作点A 关于直线l 的对称点D ,交直线l 于F ,将点D 向下平移得到点A ',连接A A '交直线l 于E ,则AD 被对称轴垂直平分,利用EF 是△A A 'D 的中位线,得到AE=E A ', 同理可知:图形中对应点连线被直线平分.【详解】根据题意,作点A 关于直线l 的对称点D ,交直线l 于F ,将点D 向下平移得到点A ',连接A A '交直线l 于E ,∵A 、D 关于直线l 对称,∴AD 被对称轴垂直平分,又∵EF ∥A 'D ,∴EF 是△A A 'D 的中位线,∴AE=E A ',即A A '被对称轴平分,同理可知:图形中对应点连线被直线平分,故选:D ..【点睛】此题考查平移的性质,轴对称的性质,三角形中位线的性质,熟练掌握各性质是解题的关键.5.A解析:A【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:()()22022225AB =-+--=,()()22262125A B =-+--=,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=,由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,, ()()22022225AB ∴=-+--=, ()()22262125A B =-+--=,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++ 251525 6.=++=+故选:.A【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.6.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A 、∵对角线互相平分的四边形是平行四边形,∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形,∴选项D 不符合题意;故选:C .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键. 7.C解析:C【分析】根据平行四边形的性质,CD=AB ,CD ∥AB ,根据平移的性质即可求得顶点B 的坐标.【详解】∵四边形ABCD 是平行四边形,∴CD=AB,CD∥AB,∵▱ABCD的顶点A、D、C的坐标分别是A(-1,-2)、D(1,1)、C(5,2),D(1,1)向左平移2个单位,再向下3个单位得到A(-1,-2),则C(5,2)向左平移2个单位,再向下3个单位得到(3,-1),∴顶点B的坐标为(3,-1).故选:C.【点睛】本题考查了平行四边形的性质,平移的性质.注意数形结合思想的应用是解此题的关键.8.D解析:D【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【详解】∵四边形的内角和为(4−2)×180°=360°,∴∠B+∠C+∠D=360°−60°=300°,∵五边形的内角和为(5−2)×180°=540°,∴∠1+∠2=540°−300°=240°,故选D.【点睛】本题考查多边形的内角和知识,求得∠B+∠C+∠D的度数是解决本题的突破点.9.A解析:A【分析】直接利用平行四边形的性质结合三角形中位线定理得出EO的长.【详解】解:∵在□ABCD中,对角线AC,BD相交于点O,∴点O是AC的中点,又∵点E是BC的中点,∴EO是△ABC的中位线,∴EO=1AB=8.2故选:A.【点睛】此题主要考查了平行四边形的性质以及三角形中位线定理,正确得出EO是△ABC的中位线是解题关键.10.D解析:D【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【详解】∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题.11.B解析:B【解析】分析:根据平行四边形的性质可得点A、C到BD的距离相等,再根据等底等高的三角形的面积相等.详解:∵在□ABCD中,点A、C到BD的距离相等,设为h.∴S1= S△ABP=12BP h ,S2= S△CPB=12BP h.∴S 1=S2,故选B.点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质.12.C解析:C【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,AB=CD=5,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD=5,∵AC+BD=14,∴AO+BO=7,∴△ABO的周长是:AO+BO+ AB=7+5=12.故选:C.【点睛】本题主要考查了平行四边形的性质,正确得出AO+BO的值是解题关键.二、填空题13.60【分析】过F作FG∥AB即可得出AB∥GF∥CD再根据平行线的性质以及角平分线的定义即可得到∠AFD=∠3+∠4依据四边形内角和等于360°即可得出∠AED的度数【详解】解:如图所示过F作FG∥解析:60【分析】过F作FG∥AB,即可得出AB∥GF∥CD,再根据平行线的性质以及角平分线的定义,即可得到∠AFD=∠3+∠4,依据四边形内角和等于360°,即可得出∠AED的度数.【详解】解:如图所示,过F作FG∥AB,∵AB∥DC,∴AB∥GF∥CD,∴∠1=∠DFG,∠2=∠AFG,∴∠AFD=∠1+∠2,∵AF平分∠BAE,DF平分∠CDE,∴∠1=∠3,∠2=∠4,设∠E=α,则∠AFD=2α+30°,∴∠AFD=∠3+∠4=2α+30°,∵四边形AEDF中,∠E+∠3+∠4+∠AFD=360°,∴α+2(2α+30°)=360°,解得α=60°,故答案为:60.【点睛】本题主要考查了平行线的性质以及四边形内角和的综合应用,解决问题的关键是作辅助线构造内错角,运用四边形内角和进行计算求解.14.④【分析】四边形的内角和是根据四边形内角的性质选出正确选项【详解】解:①错误如果四个角都是锐角那么内角和就会小于;②错误可以是四个直角;③错误可以是四个直角;④正确故选:④【点睛】本题考查四边形内角解析:④【分析】四边形的内角和是360︒,根据四边形内角的性质选出正确选项.【详解】解:①错误,如果四个角都是锐角,那么内角和就会小于360︒;②错误,可以是四个直角;③错误,可以是四个直角;④正确.故选:④.【点睛】本题考查四边形内角的性质,解题的关键是掌握四边形内角的性质.15.【分析】为等边三角形点A 为BF 的中点可得求得再证明出点E 为AD 的中点得到可求出面积【详解】解:折叠至处AB=AF=2cmBC=BF=CF=4cm 为等边三角形又四边形ABCD 为平行四边形cmCD=AB2cm【分析】BCF △为等边三角形,点A 为BF 的中点,可得90BAC ∠=︒,求得12ACD S AC CD =,再证明出点E 为AD 的中点,得到12ACE ACD S S =,可求出面积. 【详解】解:ABC 折叠至ACF 处,∴AB=AF=2cm ,BC=BF=CF=4cm ,BCF △为等边三角形,AC BF ∴⊥,90BAC ∠=︒,又四边形ABCD 为平行四边形,∴//AB CD , 90ACD ∴∠=︒,AC ==,CD=AB=2cm ,12ACD S AC CD ∴==212⨯=2cm , 点A 为BF 的中点,//AE BC , ∴AE 为BCF △的中位线,1122AE BC AD ∴==, ∴点E 为AD 的中点, 12ACE ACD S S ∴==12⨯2cm 为折叠重合部分的面积,2cm .【点睛】本题考查了折叠问题以及等边三角形和平行四边形的综合问题,还涉及勾股定理,需要有一定的推理论证能力,熟练掌握等边三角形和平行四边形的性质是解题的关键. 16.4【分析】根据勾股定理求出AC 得到BD 的长根据等腰三角形的性质得到CE =DE 根据三角形中位线定理解答即可【详解】在△ABC 中∠ACB =90°∴AC ===5∴AD=AC=5∴BD=AB−AD=13−5解析:4【分析】根据勾股定理求出AC,得到BD的长,根据等腰三角形的性质得到CE=DE,根据三角形中位线定理解答即可.【详解】在△ABC中,∠ACB=90°,∴AC5,∴AD=AC=5,∴BD=AB−AD=13−5=8,∵AC=AD,AE⊥CD,∴CE=DE,∵CE=DE,CF=BF,∴EF是△CBD的中位线,∴EF=1BD=4,2故答案为:4.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【分析】根据三角形中位线定理解答即可【详解】解:∵DE分别为ABAC 边的中点∴DE是△ABC的中位线∴BC=2DE=4故答案为:4【点睛】本题考查的是三角形中位线定理掌握三角形的中位线平行于第三边且解析:【分析】根据三角形中位线定理解答即可.【详解】解:∵D、E分别为AB、AC边的中点,∴DE是△ABC的中位线,∴BC=2DE=4.故答案为:4.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.(42)(04)或(0-4)【分析】(1)根据平移规律直接得出点D的坐标;(2)设点P到AB的距离为h则S△PAB=×AB×h根据S△PAB=S四边形ABDC列方程求h的值确定P点坐标【详解】解:∵解析:(4,2)(0,4)或(0,-4)【分析】(1)根据平移规律,直接得出点D的坐标;(2)设点P到AB的距离为h,则S△PAB=12×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标.【详解】解:∵点B的坐标为(3,0),将点B分别向上平移2个单位,再向右平移1个单位得到点D,∴D(4,2);设点P到AB的距离为h,S△PAB=12×AB×h=2h,S四边形ABDC=AB×y D=8,∵S△PAB=S四边形ABDC,∴2h=8,解得h=4,∴P(0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,解题的关键是理解平移的规律.19.2cm【解析】试题解析:2cm.【解析】试题∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC=8cm,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=6cm,∴DE=AD﹣AE=8﹣6=2(cm).20.AD=BC(答案不唯一)【分析】在已知一组对边平行的基础上要判定是平行四边形则需要增加另一组对边平行或平行的这组对边相等或一组对角相等均可【详解】解:根据平行四边形的判定方法知需要增加的条件是AD=解析:AD=BC(答案不唯一)【分析】在已知一组对边平行的基础上,要判定是平行四边形,则需要增加另一组对边平行,或平行的这组对边相等,或一组对角相等均可.【详解】解:根据平行四边形的判定方法,知需要增加的条件是AD=BC 或AB ∥CD 或∠A=∠C 或∠B=∠D .故答案为:AD=BC (或AB ∥CD ).【点睛】此题考查了平行四边形的判定,为开放性试题,答案不唯一,要掌握平行四边形的判定方法.三、解答题21.(1)证明见解析;(2)321DE =.【分析】(1)根据等边对等角和直角三角形两锐角互余可得∠D=∠BFE ,再等量代换可得∠D=∠AFD ,根据等角对等边即可证明;(2)过A 作AH ⊥BC ,根据中位线定理可得EH=2,根据三线合一可得EC ,再根据勾股定理可求.【详解】解:(1)∵AB=AC ,∴∠B=∠C ,∵DE ⊥BC ,∴∠C+∠D=90°,∠B+∠BFE=90°,∴∠D=∠BFE ,又∵∠BFE=∠AFD ,∴∠D=∠AFD ,∴AD=AF ,即△ADF 为等腰三角形;(2)过A 作AH ⊥BC ,∵5AF BF ==,DE ⊥BC ,∴EF//AH ,∴EF 是△BAH 的中位线,∵BE=2,∴EH=2,∵AB=AC ,∴BC=4BE=8,EC=HC+HE=BH+EH=6,∵DA=AF=5,AC=AB=10,∴DC=AD+AC=15, ∴22156321DE =-=.【点睛】本题考查中位线定理、勾股定理、等腰三角形的性质和判定等.(1)中注意等边对等角,以及等角对等边的使用;(2)中能正确作出辅助线是解题关键.22.(1)见解析;(2)23【分析】(1)连接BD 交AC 于点O ,根据平行四边形的性质可以判定OF 为△DBE 的中位线,即可证明;(2)根据AD=2,∠ACD=90°,∠ADC=60°,可求出AC 的长,再根据中位线的性质即可求解;【详解】解:(1)连接BD 交AC 于点O ,∵四边形ABCD 是平行四边形,∴OB OD =,∵DF EF =,∴OF 为△DBE 的中位线∴//AF BE .(2)∵AD=2,∠ACD=90°,∠ADC=60°,∴3AC =∵OF 是DBE 的中位线,∴2BE OF =.∴222BE OC CF AC CF =+=+.∵2AC CF =,∴223BE AC ==【点睛】本题考查了三角形中位线的性质以及平行四边形的性质,正确掌握知识点是解题的关键; 23.(1)12cm 2;(2)35y t =(0<t <5);(3)存在,当16 5t =秒时,使点O 在线段AP的垂直平分线上【分析】(1)利用勾股定理求出AC 即可解决问题.(2)如图1中,作OH ⊥AD 于H .利用三角形的面积公式求出OH 即可解决问题. (3)由OH 是AP 的垂直平分线,推出AH=12AP=12t ,∠AHO=90°,由(2)知:AO=2,OH=56,由勾股定理得:AH 2+OH 2=AO 2,由此构建方程即可解决问题. 【详解】(1)∵AB ⊥AC ,∴∠BAC=90°,∵AB=3cm ,BC=5cm ,∴AC=2222534BC AB -=-=(cm),∴S 平行四边形ABCD =AB•AC=12(cm 2);(2)如图1中,作OH ⊥AD 于H .∵四边形ABCD 是平行四边形,∴AD=BC=5,S △AOD =14S 平行四边形ABCD =3, ∴12AD•OH=3, ∴OH=65(cm), ∴12y =AP•OH=12•t•6355t =(0<t <5); (3)存在,如图2,∵OH 是AP 的垂直平分线,∴AH=12AP=12t ,∠AHO=90°, 由(2)知:AO=12AC =2,OH=65, 由勾股定理得:2AH +2OH =2AO ,即22216t 225⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴165t =或165t =-(舍去), ∴当165t =秒时,使点O 在线段AP 的垂直平分线上. 【点睛】 本题考查了平行四边形的性质,勾股定理的应用,三角形的面积,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(1)见解析;(2)D (3,1),B C D '''∆的面积为52;(3)存在,满足条件点Q 存在三个点,如图所示见解析.【分析】(1)根据同角的余角相等得到BCO CDE ∠=∠,通过AAS 即可得到结论;(2)通过待定系数法求出直线 AB 的一次函数式,设 OC= ED =m ,从而得到点D 的坐标,进而即可求出B C D '''∆的面积;(3)分别以CD 为平行四边形的边和对角线,画出图形,即可得到结论.【详解】(1)证明:如图 1 中, 90BOC BCD CED ︒∠=∠=∠=90OCB DCE ︒∴∠+∠=,90DCE CDE ︒∠+∠=BCO CDE ∴∠=∠BC CD =BOC CED ∴∆≅∆(2)设直线 AB 的一次函数式为:y kx b =+∵直线 AB 与 x 轴, y 轴交于 A(6,0) , B(0,2)两点,∴062k bb=+⎧⎨=⎩,解得:132kb⎧=-⎪⎨⎪=⎩∴可求得直线 AB 的一次函数式为:123y x=-+BOC CED∆≅∆∵BO=CE=2,设 OC= ED =m,则 D( m+2,m ),把D(m+2,m) 代入得到123y x=-+,得m=1,∴D(3,1)∴等腰直角△BCD 腰长:5CB CD==,∵B C D'''∆与△BCD 的全等,∴B C D'''∆的面积=△BCD 的面积=52;(3)满足条件点 Q 存在三个点,如图所示【点睛】本题主要考查一次函数的图象和性质、三角形全等的判定和性质定理以及平行四边形的性质,熟练掌握全等三角形的判定和性质定理以及平行四边形的性质,以及分类讨论思想是解题的关键.25.(1)证明见解析;(2)证明见解析【分析】(1)由题意可知OE、EF是△ABC的两条中位线,然后根据中位线的性质和平行四边形的判定可以得到解答.(2)由题意及(1)的结论可知OE||BF且OE=BF,由此得四边形OEBF是平行四边形,进一步可以得到解答.【详解】证明:(l)∵四边形ABCD是平行四边形,∴AO CO=,即点O为线段AC的中点.又∵点,E F 分别是AB ,BC 的中点,∴EF AC ,OE BC ∥.∴四边形COEF 是平行四边形.(2)∵点,E F 分别是AB ,BC 的中点,点O 为线段AC 的中点, ∴1OE BC 2=,12BF BC =.∴OE BF =. 由(1)知,OE BC ∥,∴四边形OEBF 是平行四边形. ∴线段OB 与线段EF 相互平分.【点睛】本题考查三角形中位线和平行四边形的综合应用,熟练掌握三角形中位线的性质和平行四边形的性质和判定是解题关键.26.(1)C (3,0),D (6,4);(2)存在,1N (3,6),2N (9,2),3N (3-,2-)【分析】(1)根据平行四边形的性质可求得OC 的长,从而求得点C ,D 的坐标;(2)分AD 为对角线,DE 为对角线,AE 为对角线三种情况讨论,利用中点坐标公式即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴BC=AD=6,∵OB=3,∴OC=6-3=3,∴点C 的坐标为(3,0),点D 的坐标为(6,4);(2)存在,理由如下:∵E 是线段OD 的中点,∴点E 的坐标为(602+,402+),即(3,2), 设点N 的坐标为(x ,y ),当AD 为对角线时,36022x ++=,242y +=,解得:3x =,6y =,∴1N 的坐标为(3,6);当DE 为对角线时,06322x ++=,44222y ++=, 解得:9x =,2y =,∴2N 的坐标为(9,2);当AE 为对角线时,60322x ++=,40222y ++=, 解得:3x =-,2y =-,∴3N 的坐标为(3-,2-) .【点睛】本题考查了坐标与图形,平行四边形的性质.讨论平行四边形存在性问题时,按对角线进行分类讨论,画出图形再计算.。

(典型题)初中数学八年级数学下册第六单元《平行四边形》测试卷(有答案解析)

(典型题)初中数学八年级数学下册第六单元《平行四边形》测试卷(有答案解析)

一、选择题1.如图,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形,则应增加的条件是( )A .AB =CDB .∠BAD =∠DCBC .AC =BD D .∠ABC +∠BAD =180°2.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( )A .625+B .613+C .34251++D .34131++ 3.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A .4B .5C .6D .7 4.如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=ODD .AB=AD ,CB=CD 5.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°6.如图,平行四边形ABCD 的周长是56cm ,ABC ∆的周长是36m ,则AC 的长为( )A .6cmB .12cmC .4cmD .8cm7.如图所示,EF 过▱ABCD 的对角线的交点O ,交AD 于点E ,交BC 于点F ,已知AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长是( )A .10B .11C .12D .138.如图,下列哪组条件不能判定四边形ABCD 是平行四边形( )A .AB ∥CD ,AB =CDB .AB ∥CD ,AD ∥BC C .OA =OC ,OB =OD D .AB ∥CD ,AD =BC9.如图.ABCD 的周长为60,,cm AC BD 相交于点,O EO BD ⊥交AD 于点E ,则ABE ∆的周长为( )A .30cmB .60cmC .40cmD .20cm10.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④11.如图,平行四边形ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F .若AB =4,BC =5,OE =1.5,那么四边形EFCD 的周长为( )A .16B .14C .10D .1212.如图,在周长为12cm 的▱ABCD 中,AB <AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A .4cmB .5cmC .6cmD .7cm二、填空题13.如图,点C 在线段AB 上,等腰ADC 的顶角120ADC =∠︒,点M 是矩形CDEF 的对角线DF 的中点,连接MB ,若63AB =,6AC =,则MB 的最小值为为______.14.一个正多边形的内角和为720︒,则这个多边形的外角的度数为______. 15.七边形的外角和为________.16.一个多边形的每一个外角都等于30°,则这个多边形的边数是__.17.如图,在四边形ABDC 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,并且E 、F 、G 、H 四点不共线.当AC =6,BD =8时,四边形EFGH 的周长是_____.18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.如图,在ABCD 中,E 为边BC 延长线上一点,且2CE BC =,连结AE 、DE .若ADE 的面积为1,则ABE △的面积为____.20.如图,已知,,,AB DC AD BC E F ==在DB 上两点,且BF DE =,若30ADB ∠AEB =110︒,∠=︒,则BCF ∠的度数为________.三、解答题21.已知:如图,平行四边形ABCD ,DE 是ADC ∠的角平分线,交BC 于点E ,且BE CE =,80B ∠=︒;求DAE ∠的度数.22.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED ∥BC ,EF ∥AC .求证:BE=CF .23.如图,ABCD 的对角线AC BD 、相交于点,,,3,5O AB AC AB BC ⊥==,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连接PO 并延长交BC 于点Q .设点P 的运动时间为t 秒.()1求BQ 的长(用含t 的代数式表示);()2问t 取何值时,四边形ABQP 是平行四边形?24.如图,在平行四边形ABCD 中,AC 是对角线,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,连结BF ,DE .(1)求证:四边形BFDE 是平行四边形;(2)连结BD ,若3BE =,5BF =,求BD 的长.25.如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.26.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE= .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可.【详解】A错误,当四边形ABCD是等腰梯形时,也满足条件.AD BC,B正确,∵//∴180∠+∠=,BAD ABC︒∵BAD DCB∠=∠,∴180∠+∠=,DCB ABC︒AB CD,∴//∴四边形ABCD是平行四边形.C 错误,当四边形ABCD 是等腰梯形时,也满足条件.D 错误,∵180ABC BAD ︒∠+∠=,∴//AD BC ,与题目条件重复,无法判断四边形ABCD 是不是平行四边形.故选:B .【点睛】本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题关键是熟练掌握平行四边形的判定方法.2.A解析:A【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:AB ==25A B ==,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=,由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,,AB ∴==25A B ==,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++15 6.=+=故选:.A【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.3.C解析:C【分析】⨯=︒,设这个多边形是n边形,内角和是多边形的外角和是360︒,则内角和是2360720()-⋅︒,这样就得到一个关于n的方程,从而求出边数n的值.n2180【详解】解:设这个多边形是n边形,根据题意,得()-⨯︒=⨯,n21802360=.解得:n6即这个多边形为六边形.故选:C.【点睛】本题考查了多边形的内角和与外角和,熟记内角和公式和外角和定理并列出方程是解题的关键,根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决. 4.C解析:C【分析】由平行四边形的判定可求解.【详解】A、由AD∥BC,AB=CD不能判定四边形ABCD为平行四边形;B、由∠AOB=∠COD,∠AOD=∠COB不能判定四边形ABCD为平行四边形;C、由OA=OC,OB=OD能判定四边形ABCD为平行四边形;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形;故选:C.【点睛】本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.5.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=1×540°=108°,5又∵EA=ED,∴∠EAD=1×(180°﹣108°)=36°,2∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.6.D解析:D【分析】的周长=AB+BC+AC,而AB+BC为平行四边形ABCD的周长的一半,代入数值求解ABC即可.【详解】因为四边形ABCD是平行四边形,∴AB=DC,AD=BC,∵▱ABCD的周长是56cm,∴AB+BC=28cm,∵△ABC的周长是36cm,∴AB+BC+AC=36cm,∴AC=36cm−28cm=8cm.故选D.【点睛】本题考查了平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.7.C解析:C【解析】试题根据平行四边形的性质,得AO=OC,∠EAO=∠FCO,又∠AOE=∠COF,∴△AOE≌△COF,∴OF=OE=1.5,CF=AE,根据平行四边形的对边相等,得CD=AB=4,AD=BC=5,故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=12.故选C.8.D解析:D【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A、B、C均符合是平行四边形的条件,D则不能判定是平行四边形.故选D.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.9.A解析:A【分析】根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,结合OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为60cm可得AB+AD=30cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.【点睛】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形的对边相等,平行四边形的对角线互相平分.10.B解析:B【分析】利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【详解】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.④∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.综上所述,不能使四边形AECF是平行四边形的条件有1个.故选:B.【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.11.D解析:D【分析】由题意根据平行四边形的性质可知AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE 和∠COF是对顶角相等,所以△OAE≌△OCF,所以OF=OE=1.5,CF=AE,所以四边形EFCD 的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF,进而计算求出周长即可.【详解】解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.故选:D.【点睛】本题考查平行四边形的性质和全等三角形的判定与性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.12.C解析:C【分析】根据平行四边形的性质得出OB=OD,进而利用线段垂直平分线得出BE=ED,进而解答即可.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD,∵OE⊥BD,∴OE是线段BD的垂直平分线,∴BE =ED ,∵△ABE 的周长=AB +AE +BE =AB +AE +ED =AB +AD =6cm .故选:C .【点睛】此题考查平行四边形的性质,解题关键是根据平行四边形的性质得出OB =OD ,再结合线段垂直平分线的定义解答.二、填空题13.【分析】过D 作DG ⊥AC 于G 取FC 中点H 连结MHHB 由等腰的顶角可得DG 平分∠ADCAG=CG=可求∠GDC=60°∠DCG=30°在Rt △DGC 中由勾股定理DC2=DG2+GC2即4DG2=DG2解析:9-【分析】过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB 由等腰ADC 的顶角120ADC =∠︒,可得DG 平分∠ADC ,AG=CG=1AC=32,可求∠GDC=60°,∠DCG=30°,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,可求由M ,H 为中点,可得MH=12MB MH+HB ,MH 为定值,HB 最小时,MB 最短,BH ⊥CF ,可求∠HCB=60°,CH=()11BC=22,由勾股定理9=-,BH 最小-【详解】解:过D 作DG ⊥AC 于G ,取FC 中点H ,连结MH ,HB ,∵等腰ADC 的顶角120ADC =∠︒,∴DG 平分∠ADC ,AG=CG=1AC=32, ∴∠GDC=60°,∠DCG=90°-∠GDC=90°-60°=30°,∴CD=2DG ,在Rt △DGC 中,由勾股定理DC 2=DG 2+GC 2,即4DG 2=DG 2+9,∴,∵M ,H 为中点,∴MH=12根据两点之间线段最短,则有MBMH+HB ,MH 为定值, ∴HB 最小时,MB 最短,∴BH ⊥CF ,∠HCB=180°-∠DCA-∠DCF=180°-30°-90°=60°, CH=()11BC=63-6=33-322, BH=()2233333933CB CH CH -==-=-,BH 最小=3+9-33=923-,故答案为:923-.【点睛】本题考查等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系,掌握等腰三角形的性质,勾股定理,30°角直角三角形性质,三角形中位线,三角形三边关系是解题关键.14.60°【分析】首先设这个正多边形的边数为n 根据多边形的内角和公式可得180(n-2)=720继而可求得答案【详解】解:设这个正多边形的边数为n ∵一个正多边形的内角和为720°∴180(n-2)=72解析:60°【分析】首先设这个正多边形的边数为n ,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.【详解】解:设这个正多边形的边数为n ,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.15.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;16.12【分析】多边形的外角和为360°而多边形的每一个外角都等于30°由此做除法得出多边形的边数【详解】∵360°÷30°=12∴这个多边形为十二边形故答案为:12【点睛】本题考查了多边形的内角与外角解析:12【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的内角与外角.关键是明确多边形的外角和为360°.17.14【分析】根据三角形中位线定理得到FG∥EHFG=EH根据平行四边形的判定定理和周长解答即可【详解】∵FG分别为BCCD的中点∴FG=BD=4FG∥BD∵EH分别为ABDA的中点∴EH=BD=4E解析:14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=1BD=4,FG∥BD,2∵E ,H 分别为AB ,DA 的中点,∴EH =12BD =4,EH ∥BD , ∴FG ∥EH ,FG =EH ,∴四边形EFGH 为平行四边形,∴EF =GH =12AC =3, ∴四边形EFGH 的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.18.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.3【分析】首先根据平行四边形的性质可得AD=BC 又由可得BE=3BC=3AD 和的高相等即可得出的面积【详解】解:∵∴AD=BCAD ∥BC ∴和的高相等设其高为又∵∴BE=3BC=3AD 又∵∴故答案为3解析:3【分析】首先根据平行四边形的性质,可得AD=BC ,又由2CE BC ,可得BE=3BC=3AD ,ADE 和ABE △的高相等,即可得出ABE △的面积.【详解】解:∵ABCD , ∴AD=BC ,AD ∥BC , ∴ADE 和ABE △的高相等,设其高为h ,又∵2CE BC =,∴BE=3BC=3AD ,又∵1=12ADE S AD h =△,1=2ABE S BE h △ ∴11=3322ABE S BE h AD h =⨯=△ 故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.20.80【分析】先证明四边形ABCD 是平行四边形再通过条件证明最后根据全等三角形的性质及三角形外角性质即可得出答案【详解】∵∴四边形ABCD 是平行四边形∴在△AED 和△CFB 中∴∴∵∴故答案是【点睛】本解析:80【分析】先证明四边形ABCD 是平行四边形,再通过条件证明△△AED CFB ≅,最后根据全等三角形的性质及三角形外角性质即可得出答案.【详解】∵,AB DC AD BC ==,∴四边形ABCD 是平行四边形,∴ADE CBF ∠=∠,在△AED 和△CFB 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩,∴()△△AED CFB SAS ≅,∴DAE BCF ∠=∠,∵30ADB ∠AEB =110︒,∠=︒,∴1103080BCF DAE AEB ADB ∠=∠=∠-∠=︒-︒=︒,故答案是80︒.【点睛】本题主要考查了平行四边形的性质,结合外角定理计算是解题的关键. 三、解答题21.50°【分析】根据平行四边形的性质求出CD=CE ,得到AB=BE ,所以BAE BEA ∠=∠根据80B ∠=︒,//AD BC 得到DAE ∠的度数【详解】 证明:四边形ABCD 是平行四边形//AD BC ∴13∠∠∴= DE 是ADC ∠的角平分线12∠∠∴=23∴∠=∠CD CE ∴=四边形ABCD 是平行四边形AB CD ∴=BE CE =AB BE ∴=BAE BEA ∴∠=∠80B ∠=︒50AEB ∴∠=︒//AD BC50DAE AEB ∴∠=∠=︒【点睛】本题考查平行四边形的性质,由角平分线得到相等的角,再利用平行四边形的性质和等角对等边的性质求解,得出AB=BE 是解决问题的关键.22.证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF ,再证明EB=ED ,即可解决问题. 试题∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE=CF ,∵BD 平分∠ABC ,∴∠EBD=∠DBC ,∵DE ∥BC ,∴∠EDB=∠DBC ,∴∠EBD=∠EDB ,∴EB=ED ,∴EB=CF . 考点:平行四边形的判定与性质.23.(1)5-t ;(2)52【分析】(1)先证明△APO ≌△CQO ,可得出AP=CQ=t ,则BQ 即可用t 表示;(2)由题意知AP ∥BQ ,根据AP=BQ ,列出方程即可得解;【详解】解:(1)∵四边形ABCD 是平行四边形,∴OA=OC ,AD ∥BC ,∴∠PAO=∠QCO ,∵∠AOP=∠COQ ,∴△APO ≌△CQO (ASA ),∴AP=CQ=t ,∵BC=5,∴BQ=5-t ;(2)∵AP ∥BQ ,当AP=BQ 时,四边形ABQP 是平行四边形,即t=5-t , 52t =, ∴当52t =时,四边形ABQP 是平行四边形. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.24.(1)见解析 (2)213【分析】(1)根据平行四边形的性质和已知可证得//BE DF ,ABE CDF ≅,由全等三角形的性质可证得BE DF =,利用平行四边形的判定即证得出结论;(2)根据平行四边形的对角线互相平分得OE OF OB OD ==,,再根据勾股定理即可求解.【详解】解:(1)在平行四边形ABCD 中,∵//AB CD ,AB CD =,∴BAE DCF ∠=∠,∵BE AC DF AC ⊥⊥, ,∴90//BEA DFC BE DF ∠=︒=∠,,∴ABE CDF ≅,∴BE DF =,∴四边形BFDE 是平行四边形;(2)连结BD 交AC 于点O ,则OE OF OB OD ==,,∵35BE AC BE BF ⊥==,, ,∴在Rt BEF △中,4EF ==, ∴OE =2,在Rt OBE 中,OB == ∴2BD OB ==【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质、勾股定理,是典型的基础题,难度适中,熟练掌握这些知识的综合运用是解答的关键.25.(1)见解析;(2)见解析.【分析】(1)由四边形ABCD 是平行四边形,可得AD ∥BC ,又BE ∥DF ,可证四边形BFDE 是平行四边形;(2)由四边形ABCD 是平行四边形,可得AD=BC ,又ED=BF ,从而AD-ED=BC-BF ,即AE=CF.【详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,即DE ∥BF .∵BE ∥DF,∴四边形BFDE 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AD=BC ,∵四边形BFDE 是平行四边形,∴ED=BF ,∴AD-ED=BC-BF,即AE=CF.【点睛】本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.26.(1)见解析;(2)3.【分析】根据角平分线上的点到角的两边距离相等知作出∠A 的平分线即可;根据平行四边形的性质可知AB=CD=5,AD ∥BC ,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA ,再根据等腰三角形的性质和线段的和差关系即可求解.【详解】(1)如图所示:E 点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A 的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.考点:作图—复杂作图;平行四边形的性质。

平行四边形测试卷及答案

平行四边形测试卷及答案

平行四边形测试卷一一、选择题〔3′×10=30′〕1.以下性质中,平行四边形具有而非平行四边形不具有的是〔 D 〕.A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.ABCD中,∠A=55°,那么∠B、∠C的度数分别是〔 C 〕.A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.以下正确结论的个数是〔 C 〕.①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是〔B 〕.A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm5.在ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,那么AB与BC的值可能是〔 A 〕. A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在以下定理中,没有逆定理的是〔 C 〕.A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.以下说法中正确的选项是〔 A 〕.A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为〔 B 〕.A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有〔 C 〕个.A.2 B.3 C.4 D.510.如下图,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.假设AB=•14,•AC=19,那么MN的长为〔 C 〕.A.2 B.2.5 C二、填空题〔3′×10=30′〕11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.3cm 4cm12.平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,那么这条对角线长是_________cm.813.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•假设ABCD•的周长为38cm,△ABD 的周长比ABCD的周长少10cm ,那么ABCD的一组邻边长分别为______.9cm和10cm 14.在ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.假设∠F=65°,那么ABCD的各内角度数分别为_________.50°,130°,50°,130°15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•那么两条短边的距离是_____cm.1016.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.结论题设17.命题“两直线平行,同旁内角互补〞的逆命题是_________.同旁内角互补,两直线平行18.在直角三角形中,两边的长分别是4和3,那么第三边的长是________.519.直角三角形两直角边的长分别为8和10,那么斜边上的高为________,斜边被高分成两局部的长分别是__________20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•那么c•应为________,此三角形为________三角形.20.13 直角三、解答题〔6′×10=60′〕21.如右图所示,在ABCD中,BF⊥AD于F,BE⊥CD于E,假设∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.21.ABCD的周长为20cm22.如下图,在ABCD中,E、F是对角线BD上的两点,且BE=DF.求证:〔1〕AE=CF;〔2〕AE∥CF.FCDAEB23.如下图,ABCD的周长是,AB的长是DE⊥AB于E,DF⊥CB交CB•的延长线于点F,DE的长是3,求〔1〕∠C的大小;〔2〕DF的长.23.〔1〕∠C=45°〔2〕DF=224.略24.如下图,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程〔要求:•推理过程中要用到“平行四边形〞和“角平分线〞这两个条件〕.25.△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16〔n>4〕.求证:∠C=90°.26.如下图,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,•求∠C 的度数.26.∠C=90°27.三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.27.三条中位线的长为:12cm;20cm;24cm28.如下图,AB=CD,AN=ND,BM=CM,求证:∠1=∠2.28.提示:连结BD,取BD•的中点G,连结MG,NG29.如下图,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:〔1〕FE=FD;〔2〕当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?29.〔1〕略〔2〕结论仍成立.提示:过F作FG⊥MN于G 30.略30.如下图,E 是ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF =S△EFC.。

第四章 平行四边形单元测试(试卷答案)

第四章 平行四边形单元测试(试卷答案)

第四章平行四边形班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本题有10小题,每小题3分,共30分)1.七边形的外角和为()A.180°B.360°C.900°D.1260°2.已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.93.如图,□ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.224.如图,在平行四边形ABCD中,AD=4,AB=3,AE平分∠BAD交BC于点E,则线段BE,EC的长分别为()A.2与2B.3与1C.3与2D.1与35.下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.6.下列命题的逆命题错误的是()A.平行四边形的对角线互相平分B.两组对角相等的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形7.已知在△ABC中,AB≠AC,求证:∠B≠∠C.若用反证法证明这个结论,可假设()A.∠A=∠B B.AB=AC C.∠B=∠C D.∠A=∠C 8.如图,E,F分别是□ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A .6B .12C .18D .249. 如图,在△ABC 中,∠BAC =45°,AB =AC =8,P 为AB 边上一动点,以P A ,PC 为边作平行四边形P AQC ,则对角线PQ 的最小值为( ) A .6 B .8 C .2 2 D .4 210.如图,点E ,F 是□ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ;③AF =CE ;④∠AEB =∠CFD 中,选择一个条件添加,使四边形DEBF 是平行四边形,可添加的条件有( )A .①②③B .①②④C .①③④D .②③④二、填空题(本题有8小题,每小题3分,共24分)11.一个多边形的每一个外角均为30°,那么这个多边形的边数为__________.12.平行四边形的两邻边之比是2︰3,周长是30cm ,则较短的一边长为__________cm .13.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点.若EF 的长为2,则BC 的长为__________.14.请举反例说明命题“对于任意实数x ,x 2+5x +5的值总是整数”是假命题,你举的反例是x =__________(写出一个x 的值即可).15.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是__________.ABCEF16.如图,在8×8的方格纸中,每一个小正方形的边长均为1,则格点多边形的面积为__________.17.如图,在□ABCD 中,E ,F 分别是AB ,DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD =16 cm 2,S △BQC =25 cm 2,则图中阴影部分的面积为__________cm 2. 错误!未找到引用源。

四边形测试卷

四边形测试卷

D CF B A E八年级数学下册《四边形》测试卷(试卷满分100分,时间100分钟)姓名 分数一、选择题:(每小题3分,共30分)1.下列命题正确的是 ( ) (A )一组对边相等,另一组对边平行的四边形一定是平行四边形 (B )对角线相等的四边形一定是矩形(C )两条对角线互相垂直的四边形一定是菱形(D )两条对角线相等且互相垂直平分的四边形一定是正方形2.若菱形的周长为16cm ,两相邻角的度数之比是1:2,则菱形的面积是 ( ) (A ) 4 3 cm (B ) 8 3 cm (C ) 16 3 cm (D ) 20 3 cm 3.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F •是对角线AC 上的两点,当E 、F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形 ( ) (A ) OE=OF (B ) DE=BF (C ) ∠ADE=∠CBF (D ) ∠ABE=∠CDF , 4.如图,沿虚线E F 将剪开得到的四边形ABFE 是 ( ) (A ) 梯形(B ) 平行四边形 (C ) 矩形(D ) 菱形5.下列结论正确的是 ( ) (A )四边形可以分成平行四边形和梯形两类 (B )梯形可分为直角梯形和等腰梯形两类 (C )平行四边形是梯形的特殊形式 (D )直角梯形和等腰梯形都是梯形的特殊形式 6.四边形ABCD 中,若∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,那么这个四边形是 ( ) (A ) 梯形 (B ) 等腰梯形 (C ) 直角梯形 (D ) 任意四边形 7.如图,已知梯形ABCD 中,AD ∥BC ,AB=CD=AD ,AC ,BD 相交于O 点,∠BCD=60°,则下列说法正确的是 ( ) (A )梯形ABCD 是轴对称图形 (B ) BC=2AD (C )梯形ABCD 是中心对称图形 (D ) AC 平分∠DCB8.如图,平行四边形ABCD 的周长是28cm ,△ABC 的周长是22cm ,则AC 的长为 ( ) (A ) 6m (B ) 12cm (C ) 4cm (D ) 8cm9.菱形周长为20 cm ,它的一条对角线长6 cm ,则菱形的面积为 ( ) (A ) 6 (B ) 12 (C ) 18 (D ) 24 10.顺次连结矩形各边中点所得的四边形是 ( ) (A ) 等腰梯形 (B ) 正方形 (C ) 菱形 (D ) 矩形A BE CD二、填空题(每小题3分,共27分) 11.四边形的内角和等于__________; 12.内角和为1440°的多边形是 ;13.一个正多边形的每一个外角都等于72°,则这个多边形的边数是_________;14.矩形的两条对角线的一个交角为60°,两条对角线的长度的和为8cm ,则这个矩形的一条较短边为 cm ;15.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 ; 16.若正方形的一条对角线的长为2cm ,则这个正方形的面积为 ;17.等腰梯形ABCD 对角线交于O 点,∠BOC =120°,∠BDC =80°,则∠DAB =__ ; 18.如图,在梯形ABCD 中,AD ∥BC ,E 为BC 上一点,DE ∥AB ,AD 的长为1,BC 的长为2,则CE 的长为 ________; 19.梯形的中位线长为3,高为2,则该梯形的面积为 ;三、解答题20.(5分)如图,已知点M 、N 分别是 ABCD 的边AB 、DC 的中点, •求证:•∠DAN=∠BCM .21.(5分)如图,DB ∥AC ,且DB=12AC ,E 是AC 的中点,求证:BC=DE .AB C DEF G22.(5分)已知:如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA的中点分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论.23.(5分)如图,已知:在平行四边形ABCD中,B C D∠的平分线C E交边A D于E,A B C∠的平分线B G交C E于F,交A D于G.求证:AE D G=.24.(7分)如图所示,在梯形ABCD中,上底AD=1 cm,下底BC=4cm,对角线BD⊥AC,且BD=3cm,AC=4cm.求梯形ABCD的面积.25.(8分)如图,在四边形A B C D 中,点E 是线段A D 上的任意一点(E 与A D ,不重合),G F H ,,分别是B E B C C E ,,的中点. (1)证明四边形E G F H 是平行四边形; (2)在(1)的条件下,若EF BC ⊥,且12E F B C =,证明平行四边形E G F H 是正方形.26.(8分)如图,梯形ABCD 中,AD =18cmD 以1m/s 的速度移动,点Q 从C 点开始沿CB 2m/s 的速度移动,如果P 、Q 分别从A 、C 移动时间为t 秒,求:(1)t 为何时,四边形ABQP 为矩形? (2)t 为何时,四边形PQCD 为等腰梯形?BG A EFHDC。

2011年中考复习——《四边形》测试题

2011年中考复习——《四边形》测试题

2011年中考复习——《四边形》测试题【注】把所有题目写在第6页的答案卷内,否则不计分.一.选择题:(每题3分,共30分)1. 菱形具有而矩形不具有的性质是 ( )A . 对角线互相平分; B.四条边都相等; C.对角相等; D.邻角互补2.关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。

(A ) 1个(B )2个(C )3个(D )4个3.能够判定一个四边形是菱形的条件是( )。

(A ) 对角线相等且互相平分 (B )对角线互相垂直且互相平分 (C )对角线相等且互相垂直 (D )对角线互相垂直 4.矩形、菱形、正方形都具有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角线平分对角 5.三角形的重心是三角形三条( )的交点A .中线B .高C .角平分线 D.垂直平分线6.若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( ) A 、菱形 B 、对角线相互垂直的四边形C 、正方形D 、对角线相等的四边形7.下列命题中,真命题是( )A 、有两边相等的平行四边形是菱形B 、有一个角是直角的四边形是矩形C 、四个角相等的菱形是正方形D 、两条对角线互相垂直且相等的四边形是正方形 8.如右图,在梯形ABCD 中,AD ∥BC ,AB=DC ,∠C=60°,BD 平分∠ABC .如果这个梯形的周长为30,则AB 的长为( ). (A )4 (B )5 (C )6 (D )79.下列说法中,不正确的是( ). (A )有三个角是直角的四边形是矩形;(B )对角线相等的四边形是矩形(C )对角线互相垂直的矩形是正方形;(D )对角线互相垂直的平行四边形是菱形学校 班级 姓名 考号B第12题图A BCD60°30°DCBA10.如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A、36oB、9oC、27oD、18o二.填空题:(每空3分,共30分)11.(2010·福州)如图,在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为。

精品试题沪教版(上海)八年级数学第二学期第二十二章四边形单元测试试卷(含答案解析)

精品试题沪教版(上海)八年级数学第二学期第二十二章四边形单元测试试卷(含答案解析)

八年级数学第二学期第二十二章四边形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,长度恰好是方程x2+x﹣1=0的一个正根的线段为()A.线段BF B.线段DG C.线段CG D.线段GF2、如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当▱ABCD是矩形时,∠ABC=90°B.当▱ABCD是菱形时,AC⊥BDC.当▱ABCD是正方形时,AC=BD D.当▱ABCD是菱形时,AB=AC3、正八边形的外角和为()A.360︒B.720︒C.900︒D.1080︒4、将一张长方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为∠''=10°,则∠EAF的度数为()B′、D',若B ADA.40°B.45°C.50°D.55°5、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为()A.16 B.24 C.32 D.406、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE7、在平行四边形ABCD中,∠A=30°,那么∠B与∠A的度数之比为()A.4:1 B.5:1 C.6:1 D.7:18、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.249、下列说法不正确...的是()A.三角形的外角大于每一个与之不相邻的内角B.四边形的内角和与外角和相等C.等边三角形是轴对称图形,对称轴只有一条D.全等三角形的周长相等,面积也相等10、n边形的每个外角都为15°,则边数n为()A.20 B.22 C.24 D.26第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知□ABCD的周长是20cm,且AB:BC=3:2,则AB=_______cm.2、如图,在平行四边形ABCD中,AB=4,BC=6,以点B为圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于1PQ的长为半径作弧,两弧在∠ABC内交于点M,2连接BM并延长交AD于点E,则DE的长为________.3、一个多边形,每个外角都是60︒,则这个多边形是________边形.4、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.5、在四边形ABCD中,若AB//CD,BC_____AD,则四边形ABCD为平行四边形.三、解答题(5小题,每小题10分,共计50分)1、如图,在正方形ABCD中,点,E F分别在边AB、BC上,AF与DE相交于点G,且∠=∠.BAF ADE(1)如图1,求证:AF DE⊥;(2)如图2,AG与DG是方程22-=的两个根,四边形BFGE的面积为x kx(10方形ABCD的面积.(3)在第(2)题的条件下,如图3,延长BC 至点N ,使得CN =3,连接GN 交CD 于点M ,直接写出线段2GN 的值.2、如图,在平行四边形ABCD 中,8cm AB =,16cm BC =.30B ∠=︒.点P 在BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点D 向点A 运动,速度为每秒1cm .当点P 运动到点C 时,点P ,Q 同时停止运动.连接PQ ,设运动时间为t 秒.(1)当t 为何值时,四边形ABPO 为平行四边形?(2)设四边形ABPQ 的面积为y ,求y 与t 之间的函数关系式.(3)当t 为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?求出此时PQD ∠的度数.(4)连接AP ,是否存在某一时刻t ,使ABP △为等腰三角形?若存在,请求出此刻t 的值;若不存在,请说明理由.3、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形.如图1,四边形ABCD 中,AB =CD ,AB ⊥CD ,四边形ABCD 即为等垂四边形,其中相等的边AB 、CD 称为腰,另两边AD 、BC 称为底.(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:①等垂四边形两个钝角的和为°;②若等垂四边形的两底平行,则它的最小内角为°.(2)拓展研究:①小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系,小坤的想法是把其中一腰绕一个中点旋转180°,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数.②如图1,等垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是.(3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?4、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE5、如图,在ABCD中,AD>AB,∠ABC的平分线交AD于点F,EF∥AB交BC于点E.(1)求证:四边形ABEF 是菱形;(2)若AB =5,AE =6,ABCD 的面积为36,求DF 的长.-参考答案-一、单选题1、B【分析】首先根据方程x 2+x -1=0,再判断这个数值和题目中的哪条线段接近.线段BF =0.5排除,其余三条线段可以通过设未知数找到等量关系.利用正方形的面积等于图中各个三角形的面积和,列等量关系.设DG =m ,则GC =1-m ,从而可以用m 表示等式.【详解】解:设DG =m ,则GC =1-m .由题意可知:△ADG ≌△AHG ,F 是BC 的中点,∴DG =GH =m ,FC =0.5.∵S 正方形=S △ABF +S △ADG +S △CGF +S AGF ,∴1×1=12×1×12+12×1×m +12×12×(1-m )+12×m ,∴m .∵x2+x-1=0的解为:x∴取正值为x.∴这条线段是线段DG.故选:B.【点睛】此题考查的是一元二次方程的解法,运用勾股定理和面积法找到线段的关系是解题的关键.2、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,AC⊥BD,正确,故B不符合题意;当▱ABCD是正方形时,AC=BD,正确,故C不符合题意;当▱ABCD是菱形时,AB=BC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.3、A【分析】根据多边形的外角和都是360︒即可得解.【详解】解:∵多边形的外角和都是360︒,∴正八边形的外角和为360︒,故选:A.【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是360︒是解题的关键.4、A【分析】可以设∠EAD′=α,∠FAB′=β,根据折叠可得∠DAF=∠D′AF,∠BAE=∠B′AE,用α,β表示∠DAF=10°+β,∠BAE=10°+α,根据四边形ABCD是矩形,利用∠DAB=90°,列方程10°+β+β+10°+10°+α+α=90°,求出α+β=30°即可求解.【详解】解:设∠EAD′=α,∠FAB′=β,根据折叠性质可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=10°,∴∠DAF=10°+β,∠BAE=10°+α,∵四边形ABCD是矩形∴∠DAB=90°,∴10°+β+β+10°+10°+α+α=90°,∴α+β=30°,∴∠EAF=∠B′AD′+∠D′AE+∠FAB′,=10°+α+β,=10°+30°,=40°.则∠EAF的度数为40°.故选:A.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.5、C【分析】BC,根据平行线的性由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=12质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.【详解】∵D,E分别是AB,AC的中点,∴AE=CE,AD=BD,DE为△ABC的中位线,BC,∴DE//BC,DE=12∵∠ABC=90°,∴∠ADE=∠ABC=90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△MBD ≌△EDA ,∴MD =AE ,DE =MB ,∵DE //MB ,∴四边形DMBE 是平行四边形,∴MD =BE ,∵AC =18,BC =14,∴四边形DMBE 的周长=2DE +2MD =BC +AC =18+14=32.故选:C .【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.6、B【分析】先证明四边形BCED 为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,且AD =BC ,又∵AD =DE ,∴DE ∥BC ,且DE =BC ,∴四边形BCED 为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE为矩形,故本选项不符合题意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE为矩形,故本选项不符合题意.故选:B.【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.7、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.8、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12CD,∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选:B.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.9、C【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可.【详解】∵三角形的外角大于每一个与之不相邻的内角,正确,∴A不符合题意;∵四边形的内角和与外角和都是360°,∴四边形的内角和与外角和相等,正确,∴B不符合题意;∵等边三角形是轴对称图形,对称轴有三条,∴等边三角形是轴对称图形,对称轴只有一条,错误,∴C符合题意;∵全等三角形的周长相等,面积也相等,正确,∴D不符合题意;故选C.【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键.10、C【分析】根据多边形的外角和等于360度得到15°•n=360°,然后解方程即可.【详解】解:∵n边形的每个外角都为15°,∴15°•n=360°,∴n=24.故选C.【点睛】本题考查了多边形外角和,熟练掌握多边形外角和为360度是解题的关键.二、填空题1、6【分析】由平行四边形ABCD的周长为20cm,根据平行四边形的性质,即可求得AB+BC=10cm,又由AB:BC=3:2,即可求得答案.【详解】解:∵平行四边形ABCD的周长为20cm,∴AB=CD,AD=BC,AB+BC+CD+AD=20cm,∴AB+BC=10cm,∵AB:BC=3:2,∴3=106cm32AB⨯=+.故答案为:6.【点睛】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.2、2【分析】先根据题意得到BE为∠ABC的平分线,再根据平行四边形的定义和性质得到AD∥BC,AD=BC=6,进而得到AB=AE=4,即可求出DE=2.【详解】解:由尺规作图得,BE为∠ABC的平分线,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=4,∴DE=AD-AE=2.故答案为:2【点睛】本题考查了尺规作图-作已知角的角平分线,平行四边形的性质,等腰三角形的性质等知识,熟知作已知角的角平分线做法和平行四边形、等腰三角形性质并灵活应用是解题关键.3、六6【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是60°,∴n=360°÷60°=6,故答案为:六.【点睛】本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键.4、144°度【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4,∴四个外角的度数分别为:360°×136 1234=︒+++;360°×272 1234=︒+++;360°×3108 1234=︒+++;360°×4144 1234=︒+++;∴它最大的内角度数为:18036144︒-︒=︒.故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.5、∥【分析】根据平行四边形的判定:两组对边分别平行的四边形是平行四边形即可解决问题.【详解】解:根据两组对边分别平行的四边形是平行四边形可知:∵AB //CD ,BC //AD ,∴四边形ABCD 为平行四边形.故答案为://.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.三、解答题1、(1)见解析;(2)16;(3)55-【分析】(1)由正方形ABCD 得90DAE ABF ∠=∠=︒,由BAF ADE ∠=∠得90ADE AED BAF AED ∠+∠=∠+∠=︒,从而得出90AGE ∠=︒即可得证;(2)由ASA 证明ABF DAE ≅,从而得出AGD BFGE S S =,设AG a =,DG b =,则12ab =,即ab =k ,即可得出2222()2ABCD S AD a b a b ab ==+=+-正方形;(3)过点G 作PQ ⊥AD 于点P ,交BC 于Q ,则GQ ⊥BC ,由(2)可知,4=AD ,2AG =,DG =由等面积法求出PG ,由勾股定理求出AP ,故可得QG 、QN ,由勾股定理即可求出答案.【详解】(1)∵四边形ABCD 是正方形,∴90DAE ABF ∠=∠=︒,∵BAF ADE ∠=∠,∴90ADE AED BAF AED ∠+∠=∠+∠=︒,∴90AGE ∠=︒,∴AF DE ⊥;(2)∵四边形ABCD 是正方形,∴AB AD =,在ABF 与DAE △中,90BAF ADE AB DA ABF DAE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ()ABF DAE ASA ≅,∴AGD BFGE S S ==设AG a =,DG b =,则12ab =ab = ∵AG 与DG是方程22(10x kx -=的两个根,∴2ab ==,2=解得:2k =±,(10a b k +==+>, ∴0k >,∴2k =,∴一元二次方程为22(10x x -+,22222()24(1216ABCD S AD a b a b ab ==+=+-=-⨯=正方形;(3)如图,过点G 作PQ ⊥AD 于点P ,交BC 于Q ,则GQ ⊥BC ,由(2)可知,4=AD ,2AG =,DG =AG DG PG AD ⋅===1AP ==,则4QG =1BQ =,3QC =,∴6QN =,22222(4655GN GQ QN =+=+=-【点睛】本题考查正方形的性质,全等三角形的判定与性质,一元二次方程根与系数的关系以及勾股定理,掌握知识点间的相互应用是解题的关键.2、(1)163;(2)y =S 四边形ABPQ =2t +32(0<t ≤8);(3)t =8,75PQD ∠=;(4)当t =4或或ABP △为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ =BP 建立方程求解即可;(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形ABCD中,8cmAB=,16cmBC=,由运动知,AQ=16−t,BP=2t,∵四边形ABPQ为平行四边形,∴AQ=BP,∴16−t=2t∴t=163,即:t=163s时,四边形ABPQ是平行四边形;(2)过点A作AE⊥BC于E,如图,在Rt△ABE中,∠B=30°,AB=8,∴AE=4,由运动知,BP=2t,DQ=t,∵四边形ABCD是平行四边形,∴AD=BC=16,∴AQ=16−t,∴y=S四边形ABPQ=12(BP+AQ)•AE=12(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,∵BC=16,∴S四边形ABCD=16×4=64,由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),∵四边形ABPQ的面积是四边形ABCD的面积的四分之三∴2t+32=34×64,∴t=8;如图,当t=8时,点P和点C重合,DQ=8,∵CD=AB=8,∴DP=DQ,∴∠DQC=∠DPQ,∴∠D=∠B=30°,∴∠DQP=75°;(4)①当AB=BP时,BP=8,即2t=8,t=4;②当AP=BP时,如图,∵∠B=30°,过P作PM垂直于AB,垂足为点M,∴BM=4,22242BPBP⎛⎫+=⎪⎝⎭,解得:BP,∴2t,∴t③当AB=A P时,同(2)的方法得,BP=∴2t=∴t=所以,当t=4或ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.3、(1)①270;②45;(2)①MN AB =,AB 与MN 所在直线相交所成的锐角度数为45°,理由见解析;②3BC ≤+(3)650米【分析】(1)①延长CD 与BA 延长线交于点P ,则∠P =90°,可以得到∠B +∠C =90°,再由∠B +∠C +∠BAD +∠ADC =360°,即可得到∠BAD +∠ADC =270°;②延长CD 交BA 延长线于P ,过点D 作DE ∥AB 交BC 于E ,则∠DEC =∠B ,由等垂四边形的两底平行,即AD ∥BC ,可证四边形ABED 是平行四边形,得到DE =AB ,再由AB =CD ,AB ⊥CD 得到DE =CD ,DE ⊥CD ,则∠DEC =∠C =45°,即四边形ABCD 的最小内角为45°;(2)①延长CD 交BA 延长线与P ,交NM 延长线与Q ,NM 延长线与BA 延长线交于点F ,将腰AB 绕中点M 旋转180°得到DE ,连接CE ,BE ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM ,则CD =AB =DE ,AB ∥DE ,即可推出∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,由勾股定理得到CE ==,∠DEC =∠DCE =45°,再证MN 是△BCE 的中位线,得到12MN CE AB ==,MN ∥CE ,则∠NQC =∠DCE =45°,由此即可推出直线AB 与直线MN 所在直线相交所成的锐角度数为45°;②延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°,则1322PM AD ==,12PN BC =,即2BC PN =,由(2)①可知MN AB ==即可推出23BC PN =≤+PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC ==3BC ≤+(3)仿照(2)②进行求解即可.(1)解:①如图所示,延长CD 与BA 延长线交于点P ,∵四边形ABCD 为等垂四边形,即AB =CD ,AB ⊥CD ,∴∠P =90°,∴∠B +∠C =90°,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠BAD+∠ADC=270°,故答案为:270;②如图所示,延长CD交BA延长线于P,过点D作DE∥AB交BC于E,∴∠DEC=∠B,∵等垂四边形的两底平行,即AD∥BC,∴四边形ABED是平行四边形,∴DE=AB,又∵AB=CD,AB⊥CD∴DE=CD,DE⊥CD,∴∠DEC=∠C=45°,∴四边形ABCD的最小内角为45°,故答案为:45;(2)解:①MN AB,AB与MN所在直线相交所成的锐角度数为45°,理由如下:延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180°得到DE,连接CE,BE,∵四边形ABCD 是等垂四边形,∴AB =CD ,AB ⊥CD ,∴∠BPC =90°,∵M 是AD 的中点,∴MA =MD ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM ,∴CD =AB =DE ,AB ∥DE ,∴∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,∴CE =,∠DEC =∠DCE =45°,又∵M 、N 分别是BE ,BC 的中点,∴MN 是△BCE 的中位线,∴12MN CE AB ==,MN ∥CE , ∴∠NQC =∠DCE =45°,∵∠BPC =90°,∴∠QPF =90°,∴∠QFP =45°,∴直线AB 与直线MN 所在直线相交所成的锐角度数为45°;②如图所示,延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°, ∴1322PM AD ==,12PN BC =,即2BC PN =,由(2)①可知MN AB ==∵32PN MN PM ≤+=+∴23BC PN =≤+又∵∠PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC∴3BC ≤≤+故答案为:3BC ≤≤+(3)解:如图所示,取AB ,CD 的中点M ,N ,连接MN ,作点C 关于M 的对称点E ,连接CE ,AE ,DE ,设直线l 1与直线l 2交于点P ,由(2)可知,AE ∥BC ,AE =BC =240米,∵l 1⊥l 2,∴∠APB =∠PAE =90°,∴∠DAE =90°,∴400DE =米,∵M 、N 分别是CE ,CD 的中点,∴MN 是△CED 的中位线, ∴12002MN ED ==米,MN ∥DE , ∵M 为AB 的中点,∠APB =90°, ∴11252PM AB ==米, 同理可得12PN CD =,即2CD PN =∴325PN PM MN ≤+=米,∴2650CD PN =≤米,∴隔离带最长为650米.【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解.4、见解析【分析】利用矩形性质以及等边对等角,证明EAB EDC ∠=∠,最后利用边角边即可证明ABE DCE ∆∆≌.【详解】 解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠,在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.5、(1)见解析;(2)2.5.【分析】(1)根据平行四边形的性质和角平分线的性质说明∠ABF =∠AFB 、可得AB =AF ,同理可得AB =AF ,再由AF ∥BE 可得四边形ABEF 是菱形;(2)过A 作AH ⊥BE 垂足为E ,根据菱形的性质可得AO =EO 、BO =FO ,AF =EF =AB =5,AE ⊥BF ,利用勾股定理可得AO 的长,进而可得AE 长,利用菱形的面积公式计算出AH 的长,然后根据ABCD 的面积公式求出AD ,最后根据线段的和差即可解答.【详解】(1)证明:四边形ABCD 是平行四边形,∴AD //BC ,即AF //BE∴∠FBE =∠AFB ,∵∠ABC 的平分线交AD 于点F ,∴∠ABF =∠EBF ,∴∠ABF=∠AFB,∴AB=AF,又∵AB//EF,AF//BE∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形;(2)如图:过A作AH⊥BE垂足为H,∵四边形ABCD是菱形,∴AO=EO,BO=FO,AF=AB=5,AE⊥BF,∵AE=6,∴AO=3,∴BO4==∴BF=8,∴S菱形ABEF=12AE·BF=12×8×6=24,∴BE·AH=24,∴AH=245;∵S平行四边形ABCD=BC·AH=36,∴BC=15 2∵平行四边形ABCD∴AD=BC=15 2∴FD=AD-AF=152-5=2.5..【点睛】本题主要考查了菱形的判定与性质、平行四边形的性质以及面积的问题,灵活利用菱形的判定与性质、平行四边形的性质成为解答本题的关键.。

四边形测试卷及答案

四边形测试卷及答案

四边形测试卷一.选择题(共11小题)1.如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.2cm B.3cm C.4cm D.3cm2.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()A.1个B.2个C.3个D.4个3.如图,在周长为20cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为()A.4cm B.6cm C.8cm D.10cm4.下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形5.正方形具有而菱形不具有的性质是()A.四条边都相等B.对角线相等C.对角线平分一组对角D.对角线垂直且互相平分6.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个7.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是()A.bc﹣ab+ac+c2B.ab﹣bc﹣ac+c2C.a2+ab+bc﹣ac D.b2﹣bc+a2﹣ab8.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C.D.29.点A、B、C、D在同一平面内,若从①AB∥CD②AB=CD③BC∥AD④BC=AD这四个条件中选两个,不能推导出四边形ABCD是平行四边形的选项是()A.①②B.①④C.②④D.①③10.要从一张长40cm,宽20cm的矩形纸片中剪出长为18cm,宽为12cm的矩形纸片则最多能剪出()A.1张B.2张C.3张D.4张11.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形,菱形).其中,能用完全重合的含有30°角的两块三角板拼成的图形是()A.②③B.②③④C.①③④⑤D.①②③④⑤二.填空题(共7小题)12.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是_________cm.13.在四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,四边形ABCD 应具备的条件是_________.14.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为_________.15.如图,延长正方形ABCD边BC延长至E,使CE=AC,则∠AFC=_________.16.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为_________cm(结果不取近似值).17.在矩形ABCD中,M是BC的中点,MA⊥MD,若矩形的周长为48cm,则矩形ABCD的面积为______cm2.18.如图,梯形ABCD中,AD∥BC,且AD:BC=3:5,梯形ABCD的面积是8cm2,点M、N分别是AD和BC上一点,E、F分别是BM、CM的中点,则四边形MENF的面积是_________cm2.三.解答题(共9小题)19.如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).20.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.21.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE 交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.22.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?23.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.24.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.25.如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)当点E坐标为(3,0)时,试证明CE=EP;(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由;(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.26.已知:如图,E为▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.27.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=_________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=_________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.答案与评分标准一.选择题(共11小题)1.(2010•菏泽)如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.2cm B.3cm C.4cm D.3cm考点:菱形的性质;勾股定理;三角形中位线定理。

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)

浙教版2022-2023学年八下数学第四章 平行四边形 培优测试卷(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的.1.以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).A .B .C .D .【答案】C【解析】A 、此图形不是中心对称图形,故本选项不符合题意; B 、此图形不是中心对称图形,故此选项不符合题意; C 、此图形是中心对称图形,故此选项符合题意;D 、此图形不是中心对称图形,故此选项不符合题意. 故答案为:C .2.已知平行四边形ABCD 中,∠A +∠C =240°,则∠B 的度数是( ) A .100° B .60° C .80° D .160° 【答案】B【解析】∵四边形ABCD 为平行四边形, ∴∠A=∠C ,∠A+∠B =180°. 又∵∠A+∠C=240°, ∴∠A=∠C=120°, ∠B=180°-∠A=60°. 故答案为:B3.多边形边数从n 增加到n +1,则其内角和( ) A .增加180° B .增加360° C .不变 D .减少180° 【答案】A【解析】n 边形的内角和是(n -2)•180°,边数增加1,则新的多边形的内角和是(n+1-2)•180°. 则(n+1-2)•180°-(n -2)•180°=180°. 故它的内角和增加180°. 故答案为:A .4.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AB∠AC .若AC =6,BD =10,则AB 的长是( )A .3B .4C .5D .6 【答案】B【解析】∵四边形ABCD 是平行四边形,BD =10,AC =6, ∴AO =OC =12AC =3,BO =DO =12BD =5,又∵AB∠AC , ∴∠BAC =90°,∴AB =√BO 2−AO 2=√52−32=4, 故答案为:B . 5.用反证法证明,“在∠ABC 中,∠A 、∠B 对边是a 、b ,若∠A <∠B ,则a <b .”第一步应假设( ) A .a >b B .a =b C .a≤b D .a≥b【答案】D【解析】根据反证法步骤,第一步应假设a <b 不成立,即a≥b . 故答案为:D.6.如图,点E 、F 分别是∠ABCD 边AD 、BC 的中点,G 、H 是对角线BD 上的两点,且BG=DH .则下列结论中错误的是( )A .GF =EHB .四边形EGFH 是平行四边形C .EG =FHD .EH ⊥BD【答案】D【解析】连接EF 交BD 于点O ,在平行四边形ABCD 中,AD=BC ,∠EDH=∠FBG , ∵E 、F 分别是AD 、BC 边的中点,∴DE=BF=12BC ,∠EDO=∠FBO ,∠DOE=∠BOF ,∴∠EDO∠∠FBO , ∴EO=FO ,DO=BO , ∵BG=DH , ∴OH=OG ,∴四边形EGFH 是平行四边形, ∴GF=EH ,EG=HF ,故答案为:A 、B 、C 不符合题意; ∵∠EHG 不一定等于90°,∴EH∠BD 错误,D 符合题意; 故答案为:D .7.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD=BC ,∠CBD=30°,∠ADB=100°,则∠PFE 的度数是( )A .15°B .25°C .30°D .35°【答案】D【解析】∵点P 是BD 的中点,点E 是AB 的中点, ∴PE 是∠ABD 的中位线, ∴PE=12AD ,PE∠AD ,∴∠EPD=180°-∠ADB=80°, 同理可得,PF=12BC ,PE∠BC ,∴∠FPD=∠CBD=30°, ∵AD=BC , ∴PE=PF ,∴∠PFE=12×(180°-110°)=35°,故答案为:D .8.如图, ▱EFGH 的四个顶点分别在 ▱ABCD 的四条边上, QF ∥AD ,分别交EH 、CD 于点P 、Q 过点P 作 MN ∥AB ,分别交AD 、BC 于点M 、N ,若要求 ▱EFGH 的面积,只需知道下列哪个四边形的面积( )A .四边形AFPMB .四边形MPQDC .四边形FBNPD .四边形PNCQ【答案】C【解析】如图,连接PG ,FN ,∵∠EFGH ,∴S △FPG =12S ▱EFGH ,∵FQ ∥BC ,∴S △FPN =S △FPG , 又∵MN∠AB ,∴四边形FBNP 为平行四边形,∴S △FPN =S △FPG =12S ▱FBNP∴S ▱FBNP =S ▱EFGH ,∴要求∠EFGH 的面积,只需要知道四边形FBNP 的面积. 故答案为:C.9.如图,已知□OABC 的顶点A ,C 分别在直线 x =1 和 x =4 上,O 是坐标原点,则对角线OB 长的最小值为( )A .3B .4C .5D .6 【答案】C【解析】过点B 作BD⊥直线x=4,交直线x=4于点D ,过点B 作BE⊥x 轴,交x 轴于点E ,直线x=1与OC 交于点M ,与x 轴交于点F ,直线x=4与AB 交于点N ,如图:∵四边形OABC是平行四边形,∴⊥OAB=⊥BCO,OC⊥AB,OA=BC.∵直线x=1与直线x=4均垂直于x轴,∴AM⊥CN,∴四边形ANCM是平行四边形,∴⊥MAN=⊥NCM,∴⊥OAF=⊥BCD.∵⊥OFA=⊥BDC=90°,∴⊥FOA=⊥DBC.在⊥OAF和⊥BCD中,⊥FOA=⊥DBC,OA=BC,⊥OAF=⊥BCD,∴⊥OAF⊥⊥BCD,∴BD=OF=1,∴OE=4+1=5,∴OB=√OE2+BE2.由于OE的长不变,所以当BE最小时,OB取得最小值,最小值为OB=OE=5.故答案为:C.10.如图,∠ ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①∠ADO=30°;②S ∠ ABCD=AB·AC;③OB=AB;④S四边形OECD=32S∠AOD,其中成立的个数为()A.1个B.2个C.3个D.4个【答案】B【解析】∵四边形ABCD为平行四边形,∠ADC=60°,∴OA=OC,OB=OD,∠ABC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=60°,∴△ABE是等边三角形,∴AB=AE=BE,∠AEB=60°,∵AB=12BC,∴BE=12BC,∴CE=BE=AE,∴∠ACE=∠CAE=30°,∴∠OAB=90°,∠OAD=30°,∴在Rt△AOB中,OB>OA,OB>AB,则结论③不成立;∴OD >OA ,∴∠ADO ≠∠OAD ,即∠ADO ≠30°,结论①不成立; ∵∠OAB =90°,即AB ⊥AC ,∴S ▱ABCD =AB ⋅AC ,则结论②成立; 设平行四边形ABCD 的面积为8a(a >0), 则S △AOD =S △COD =S △BOC =14S ▱ABCD =2a ,∵BE =CE ,∴S △BOE =S △COE =12S △BOC =a ,∴S 四边形OECD =S △COE +S △COD =3a =32S △AOD ,结论④成立;综上,成立的个数为2个, 故答案为:B .二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.一个多边形的内角和与外角和的和为2160∠,则这个多边形的边数为 . 【答案】12【解析】设这个多边形的边数是n , (n -2)•180°+360°=2160°, 解得n=12. 故答案为:12.12.在平面直角坐标系中,已知A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),若一次函数y=mx -6m 的图象将四边形ABCD 的面积分成1:3两部分,则m 的值为 .【答案】−35或−6【解析】∵直线y=mx -6m 经过定点B (6,0),A 、B 、C 、D 四点的坐标依次为(0,0)、(6,0)、(8,6)、(2,6),∴CD∠AB ,CD=8-2=6= AB , ∴四边形ABCD 是平行四边形,∴S∠ADC= S∠ADC=12S 平行四边形ABCD ,又∵直线y=mx -6m 把平行四边形ABCD 的面积分成1:3的两部分.∴直线y=mx -6m 经过AD 的中点M (1,3)或经过CD 的中点N (5,6), ∴m -6m=3或5m -6m=6,∴m=-35或-6,故答案为:-35或-6.13.如图,△ABC 是边长为1的等边三角形,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,ED ,EF 分别交AC ,AB 于点D ,F ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,E 1D 1,E 1F 1分别交EF ,BF 于点D 1,F 1,得到四边形E 1D 1FF 1,它的面积记作S 2……照此规律作下去,则S n = .【答案】√322n+1【解析】∵∠ABC 是边长为1的等边三角形,∴∠ABC 的高为:√12−(12)2=√32,∴S △ABC =12×1×√32=√34,∵DE 、EF 分别是∠ABC 的中位线,∴AF =12AC =12,∴S 1=12S △ABC =√38,同理可得S 2=√38×14;…,∴S n =√38×(14)n−1=√322n+1;故答案为:√322n+1.14.如图, ΔABC 和 ΔDEC 关于点C 成中心对称,若 AC =1 , AB =2 , ∠BAC =90° ,则 AE 的长是 .【答案】2√2【解析】∵∠DEC 与∠ABC 关于点C 成中心对称, ∴DC=AC=1,DE=AB=2,∴在Rt∠EDA 中,AE 的长是:AE =√AD 2+DE 2=√(DC +AC)2+DE 2=√(1+1)2+22=2√2 . 故答案为: 2√2 . 15.已知:如图,线段AB =6cm ,点P 是线段AB 上的动点,分别以AP 、BP 为边在AB 作等边△APC 、等边△BPD ,连接CD ,点M 是CD 的中点,当点P 从点A 运动到点B 时,点M 经过的路径的长是 cm .【答案】3【解析】如图,分别延长AC,BD交于H,过点M作GN∠AB分别交AH于G,BH于N,∵∠APC、∠BPD都是等边三角形,∴∠A=∠B=∠DPB=∠CPA=60°,∴AH∠PD,BH∠CP,∴四边形CPDH是平行四边形,∴CD与HP互相平分,∴M是PH的中点,故在P运动过程中,M始终在HP的中点,所以M的运动轨迹即为∠HAB的中位线,即线段GN,∴GN=12AB=3cm,故答案为:3.16.如图,把含45∘,30∘角的两块直角三角板放置在同一平面内,若AB//CD,AB=CD=√6则以A,B,C,D为顶点的四边形的面积是.【答案】3+2√3【解析】延长CO,交AB于点E,由题意可知:∠BAO=45°,∠CDO=30°∵AB//CD,AB=CD=√6∴四边形ABCD为平行四边形∵OC∠CD∴CE∠AB∴S∠AOB+S∠COD= 12AB·OE+12CD·OC= 12AB·(OE+OC)= 12AB·CE= 12S平行四边形ABCD∴S平行四边形ABCD=2(S∠AOB+S∠COD)在Rt∠AOB中,AO2+BO2=AB2=6,AO=BO解得:AO=BO= √3在Rt∠COD中,∠CDO=30°,OC2+CD2=OD2∴OD=2OC,OC2+6=(2OC)2解得:OC= √2,∴S∠AOB= 12AO·BO= 32,S∠COD=12CD·OC= √3∴S平行四边形ABCD=2(S∠AOB+S∠COD)=2×(32+√3)= 3+2√3故答案为:3+2√3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.如图,在▱ABCD中,点E、F在对角线AC上,且AE=CF,连接BF、DE.求证:BF=DE,BF∥DE.【答案】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠DAC=∠BCA.又∵AE=CF,∴△DAE≌△BCF(SAS),∴BF=DE,∠DEA=∠BFC.∴∠DEC=∠BFA.∴BF∥DE.18.如图,在∠ABCD中,点E在边AD上,连接EB并延长至F,使BF=BE;连接EC并延长至G,使CG=CE,连接FG,点H为FG的中点,连接DH,AF.(1)若∠BAE=70°,∠DCE=20°,求∠DEC的度数;(2)求证:四边形AFHD为平行四边形.【答案】(1)解:∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∠BC,∵∠DCE=20°,AB∠CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)解:∵四边形ABCD是平行四边形,∴AD=BC,AD∠BC,∵BF=BE,CG=CE,∴BC是∠EFG的中位线,∴BC∠FG ,BC =12FG ,∵H 为FG 的中点, ∴FH =12FG ,∴BC∠FH ,BC =FH , ∴AD∠FH ,AD =FH ,∴四边形AFHD 是平行四边形.19.如图,∠ABC 中,点D ,E 分别是边AB ,AC 的中点,过点C 作CF∠AB 交DE 的延长线于点F ,连接BE .(1)求证:四边形BCFD 是平行四边形.(2)当AB =BC 时,若BD =2,BE =3,求AC 的长. 【答案】(1)证明:∵点 D ,E 分别是边 AB ,AC 的中点, ∴DE∠BC . ∵ CF∠AB ,∴四边形 BCFD 是平行四边形;(2)解:∵AB =BC ,E 为 AC 的中点, ∴BE∠AC .∵AB =2DB =4, BE =3, ∴AE =√42−32=√7 ∴AC =2AE =2√720.如图,在 5×5 的方格纸中,每个小正方形的边长均为1,A ,B 两点均在小正方形的顶点上,请按下列要求,在图1,图2,图3中各画一个四边形(所画四边形的顶点均在小正方形的项点上)(1)在图1中画四边形 ABCD ,使其为中心对称图形,但不是轴对称图形; (2)在图2中画以A ,B ,M ,N 为顶点的平行四边形,且面积为5;(3)在图3中画以A ,B ,E ,F 为顶点的平行四边形,且其中一条对角线长等于3. 【答案】(1)解:如图1中,四边形ABCD 即为所求作.(2)解:如图2中,四边形ABMN即为所求作. (3)解:如图3中,四边形ABEF即为所求作. 21.如图,在▱ABCD中,E,F是对角线AC上的两点,且AE=CF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥BF,AB=8,BF=6,AC=16.求线段EF长.【答案】(1)证明:连接BD交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∵OB=OD,∴四边形BEDF是平行四边形.(2)解:在Rt△ABF中,AF=√AB2+BF2=√82+62=10,∵AC=16,∴CF=AC−AF=16−10=6,∵AE=CF,∴AE=6,∴EF=AF−AE=10−6=4.22.如图,已知:在∠ABCD中,AE∠BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF,EG,AG,∠1=∠2.(1)求证:G 为CD 的中点.(2)若CF =2.5,AE =4,求BE 的长.【答案】(1)证明:∵点F 为CE 的中点,∴CF=12CE , 在∠ECG 与∠DCF 中,∵∠2=∠1, ∠C =∠C , CE =CD ,∴∠ECG∠∠DCF (AAS ),∴CG=CF= 12CE. 又CE=CD , ∴CG=12CD , 即G 为CD 的中点; (2)解:∵CE=CD ,点F 为CE 的中点,CF=2.5,∴DC=CE=2CF=5,∵四边形ABCD 是平行四边形,∴AB=CD=5,∵AE∠BC ,∴∠AEB=90°,在Rt∠ABE 中,由勾股定理得:BE=√52−42=3.23.如图,平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB =AE ,延长AB 与DE 的延长线交于点F .下列结论中:求证:(1)∠ABE 是等边三角形;(2)∠ABC ∠∠EAD ;(3)S △ABE =S △CEF .【答案】(1)证明:∵ABCD 是平行四边形∴AD∠BC ,AD=BC ,∴∠EAD=∠AEB ,又∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∴∠BAE=∠BEA ,∴AB=BE ,∵AB=AE ,∴∠ABE 是等边三角形;(2)证明:∵∠ABE 是等边三角形∴∠ABE=∠EAD=60∠,∵AB=AE ,BC=AD ,∴∠ABC∠∠EAD(SAS)(3)证明:∵∠FCD 与∠ABC 等底(AB=CD)等高(AB 与CD 间的距离相等),∴S∠FCD=S∠ABC ,又∵∠AEC与∠DEC同底等高,∴S∠AEC=S∠DEC,∴S∠ABE=S∠CEF24.我们规定:有一组邻边相等,且这组邻边的夹角为60°的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD中,∠A+∠C=270°,∠D=30°,AB=CB,求证:四边形ABCD是“准筝形”;(2)如图2,在“准筝形”ABCD中,AB=AD,∠BAD=∠BCD=60°,BC=4,CD=3,求AC的长;(3)如图3,在∠ABC中,∠A=45°,∠ABC=120°,AB=3-√3,设D是∠ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积.【答案】(1)证明:在四边形ABCD中,∠A+∠B+∠C+∠D=360°,∵∠A+∠C=270°,∠D=30°,∴∠B=360°-(∠A+∠C+∠D)=360°-(270°+30°)=60°,∵AB=BC,∴四边形ABCD是“准筝形”;(2)解:以CD为边作等边∠CDE,连接BE,过点E作EF∠BC于F,如图2所示:则DE=DC=CE=3,∠CDE=∠DCE=60°,∵AB=AD,∠BAD=∠BCD=60°,∴∠ABD是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADB+∠BDC=∠CDE+∠BDC,即∠ADC=∠BDE,在∠ADC和∠BDE中,{AD=BD∠ADC=∠BDEDC=DE,∴∠ADC∠∠BDE(SAS),∴AC=BE,∵∠BCD=∠DCE=60°,∴∠ECF=180°-60°-60°=60°,∵∠EFC =90°,∴∠CEF =30°,∴CF =12CE =32 , 由勾股定理得:EF =√CE 2−CF 2=√32−(32)2=3√32 , BF =BC +CF =4+32=112, 在Rt∠BEF 中,由勾股定理得:BE =√BF 2+EF 2=√(112)2+(3√32)2=√37 , ∴AC =√37 ;(3)解:四边形ABCD 的面积为3√32或9+3√32 或 92+3√3. 【解析】(3)过点C 作CH∠AB ,交AB 延长线于H ,如图3所示:设BH =x ,∵∠ABC =120°,CH 是∠ABC 的高线,∴∠BCH =30°,∴HC =√3x ,BC =2BH =2x ,又∵∠A =45°,∴∠HAC 是等腰直角三角形,∴HA =HC ,∵AB =3-√3 ,∴√3x =3-√3+x ,解得:x =√3,∴HC =√3x =3,BC =2√3 ,∴AC = √2 HC =3 √2 ,当AB =AD =3- √3 ,∠BAD =60°时,连接BD ,过点C 作CG∠BD ,交BD 延长线于点G ,过点A 作AK∠BD ,如图4所示:则BD =3-√3 ,∠ABD =60°,BK =12AB =12(3-√3 ), ∵∠ABC =120°,∴∠CBG =60°=∠CBH ,在∠CBG 和∠CBH 中, {∠CGB =∠CHB =90°∠CBG =∠CBH BC =BC,∴∠CBG∠∠CBH (AAS ),∴GC =HC =3,在Rt∠ABK 中,由勾股定理得:AK =√AB 2−BK 2 =√(3−√3)2−[12(3−√3)]2 = 3√3−32, ∴S ∠ABD = 12 BD•AK = 12×(3-√3 )×3√3−32 =6√3−92, S ∠CBD = 12 BD•CG = 12×(3-√3 )×3=9−3√32, ∴S 四边形ABCD = 6√3−92 + 9−3√32 = 3√32; ②当BC =CD =2√3 ,∠BCD =60°时,连接BD ,作CG∠BD 于点G ,AK∠BD 于K ,如图5所示:则BD =2√3 ,CG =√32 BC =√32×2√3 =3,AK =3√3−32 , ∴S ∠BCD =12 BD•CG =12×2√3×3=3√3, S ∠ABD =12BD•AK =12×2√3×3√3−32=9−3√32, ∴S 四边形ABCD =3√3+9−3√32=9+3√32 ; ③当AD =CD =AC =3√2,∠ADC =60°时,作DM∠AC 于M ,如图6所示:则DM =√32AD =√32×3√2 =3√62 , ∴S ∠ABC =12AB•CH =12×(3-√3)×3=9−3√32, S ∠ADC = 12 AC•DM =12×3√2×3√62=9√32, ∴S 四边形ABCD =9−3√32+ 9√32=92+3√3. 综上所述,四边形ABCD 的面积为3√32或9+3√32 或 92+3√3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四边形测试卷一.选择题(共11小题)1.如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.2cm B.3cm C.4cm D.3cm2.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()A.1个B.2个C.3个D.4个3.如图,在周长为20cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm4.下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形5.正方形具有而菱形不具有的性质是()A.四条边都相等B.对角线相等C.对角线平分一组对角D.对角线垂直且互相平分6.如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个7.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是()A.bc﹣ab+ac+c2B.ab﹣bc﹣ac+c2C.a2+ab+bc﹣ac D.b2﹣bc+a2﹣ab8.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1 B.C.D.29.点A、B、C、D在同一平面内,若从①AB∥CD②AB=CD③BC∥AD④BC=AD这四个条件中选两个,不能推导出四边形ABCD是平行四边形的选项是()A.①②B.①④C.②④D.①③10.要从一张长40cm,宽20cm的矩形纸片中剪出长为18cm,宽为12cm的矩形纸片则最多能剪出()A.1张B.2张C.3张D.4张11.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形,菱形).其中,能用完全重合的含有30°角的两块三角板拼成的图形是()A.②③B.②③④C.①③④⑤D.①②③④⑤二.填空题(共7小题)12.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是_________cm.13.在四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,四边形ABCD应具备的条件是_________.14.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为_________.15.如图,延长正方形ABCD边BC延长至E,使CE=AC,则∠AFC=_________.16.如图,在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为_________cm(结果不取近似值).17.在矩形ABCD中,M是BC的中点,MA⊥MD,若矩形的周长为48cm,则矩形ABCD的面积为______cm2.18.如图,梯形ABCD中,AD∥BC,且AD:BC=3:5,梯形ABCD的面积是8cm2,点M、N分别是AD和BC上一点,E、F分别是BM、CM的中点,则四边形MENF的面积是_________cm2.三.解答题(共9小题)19.如图,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).20.将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.21.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.22.如图,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF;(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?23.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.24.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点.(1)求证:△PDQ是等腰直角三角形;(2)当点P运动到什么位置时,四边形APDQ是正方形,并说明理由.25.如图,边长为5的正方形OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AG交于点P.(1)当点E坐标为(3,0)时,试证明CE=EP;(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)(t>0),结论CE=EP是否成立,请说明理由;(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.26.已知:如图,E为▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.27.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=_________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=_________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.答案与评分标准一.选择题(共11小题)1.(2010•菏泽)如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为()A.2cm B.3cm C.4cm D.3cm考点:菱形的性质;勾股定理;三角形中位线定理。

分析:首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等腰三角形三线合一的定理又可推出△AEF是等边三角形.根据勾股定理可求出AE的长继而求出周长.解答:解:首先根据菱形的四条边都相等以及对角相等的性质,证明△ABE≌△ADF,得AE=AF,∠BAE=∠DAF.连接AC,得出等边三角形ABC和等边三角形ACD.根据等腰三角形的三线合一,得AE,AF分别是顶角的角平分线,也是底边上的高,从而得∠EAF=60°,则△AEF是等边三角形.根据勾股定理,求得AE=cm,进一步求得其周长是3cm.故选B.点评:此题考查的知识点:菱形的性质、等边三角形的判定和三角形中位线定理.2.以不在一条直线上的三点A、B、C为顶点的平行四边形共有()A.1个B.2个C.3个D.4个考点:平行四边形的判定。

分析:只要将三角形的三边作为平行四边形的对角线作图,就可得出结论.解答:解:如图以点A,B,C为顶点能做三个平行四边形:▱ABCD,▱ABFC,▱AEBC.故选C.点评:此题主要考查学生对平行四边形的判定的掌握情况,灵活性比较强.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.3.(2007•日照)如图,在周长为20cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm考点:线段垂直平分线的性质;平行四边形的性质。

分析:根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.解答:解:根据平行四边形的性质得:OB=OD,又EO⊥BD根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE故△ABE的周长=AB+AE+DE=AB+AD=×20=10.故选D.点评:运用了平行四边形的对角线互相平分,线段垂直平分线上的点到线段两个端点的距离相等,平行四边形的对边相等.4.(2008•深圳)下列命题中错误的是()A.平行四边形的对边相等B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形考点:矩形的判定;平行四边形的性质;平行四边形的判定;矩形的性质。

分析:根据平行四边形和矩形的性质和判定进行判定.解答:解:根据平行四边形和矩形的性质和判定可知:选项A、B、C均正确.D中说法应为:对角线相等且互相平分的四边形是矩形.故选D.点评:本题利用了平行四边形和矩形的性质和判定方法求解.5.正方形具有而菱形不具有的性质是()A.四条边都相等B.对角线相等C.对角线平分一组对角D.对角线垂直且互相平分考点:正方形的性质;菱形的性质。

分析:根据正方形的性质以及菱形的性质即可判断.解答:解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的对角线不一定相等,而正方形的对角线一定相等.故选B.点评:本题主要考查了正方形与菱形的性质,正确对图形的性质的理解记忆是解题的关键.6.(2006•大兴安岭)如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个考点:正方形的性质。

分析:根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE和△BAF的面积相等,得到;④S△AOB=S四边形DEOF;可以证出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.解答:解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴①AE=BF,S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∴④S△AOB=S四边形DEOF∵∠ABF+∠AFB=∠DAE+∠DEA=90°∴∠AFB+∠EAF=90°∴②AE⊥BF一定成立.错误的结论是:③AO=OE.故选A.点评:本题考查了全等三角形的判定和正方形的判定和性质.7.(2001•河北)如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形.依照图中标注的数据,计算图中空白部分的面积,其面积是()A.bc﹣ab+ac+c2B.ab﹣bc﹣ac+c2C.a2+ab+bc﹣ac D.b2﹣bc+a2﹣ab考点:整式的混合运算;矩形的性质。

相关文档
最新文档