古典概型,几何概型深刻复习知识点和综合知识题
高考数学 17.2 古典概型与几何概型
17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。
2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。
【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ( )A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。
[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15 B .524C .1081D .512 2. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1 D .P 8=0 3. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12 B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 . 7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?9.设A 为圆周上一定点,在圆周上等可能的任取一点P 与A 连结,第3题图倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。
第九章 第二节 古典概型、几何概型
9
必备知识·自主梳理
题型突破·重点探究
课时作业·巩固提升
一轮 ·数学(文)
易混淆几何概型与古典概型,两者共同点是试验中每个结果的发生是 等可能的,不同之处是几何概型的试验结果的个数是无限的,古典概 型中试验结果的个数是有限的.
A.14
B.13
1
2
C.2
D.3
13
必备知识·自主梳理
题型突破·重点探究
课时作业·巩固提升
一轮 ·数学(文)
[解析] 令 t=2x,函数有零点就等价于方程 t2-2at+1=0 有正根,进而 Δ≥0
可得t1+t2>0⇒a≥1,又 a∈[-2,2],所以函数有零点的实数 a 应满足 t1t2>0
a∈[1,2],故 P=14.
大于 2 的区域.易知该阴影部分的面积为 4-π.因此满足
条件的概率是4-4 π=1-π4. 答案:1-π4
12
必备知识·自主梳理
题型突破·重点探究
课时作业·巩固提升
一轮 ·数学(文)
题型一 几何概型 多维探究
考法(一) 与长度、角度有关的几何概型 [例1] (1)从区间[-2,2]中随机选取一个实数a,则函数f(x)=4x-a·2x+1 +1有零点的概率是( A )
14
必备知识·自主梳理
题型突破·重点探究
课时作业·巩固提升
一轮 ·数学(文)
(2)如图,扇形 AOB 的圆心角为 120°,点 P 在弦 AB 上,且 AP=13AB,延 长 OP 交弧 AB 于点 C,现向扇形 AOB 内投一点,则该点落在扇形 AOC 内的概率为____________.
高考一轮总复习-082.古典概型与几何概型(基础)-知识讲解
高考总复习:古典概型与几何概型【考点梳理】知识点一、古典概型1. 定义具有如下两个特点的概率模型称为古典概型:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。
2. 古典概型的基本特征(1)有限性:即在一次试验中,可能出现的结果,只有有限个,也就是说,只有有限个不同的基本事件。
(2)等可能性:每个基本事件发生的可能性是均等的。
3.古典概型的概率计算公式由于古典概型中基本事件发生是等可能的,如果一次试验中共有n 种等可能的结果,那么每一个基本事件的概率都是1n。
如果某个事件A 包含m 个基本事件,由于基本事件是互斥的,则事件A 发生的概率为其所含m 个基本事件的概率之和,即n m A P =)(。
所以古典概型计算事件A 的概率计算公式为:试验的基本事件总数包含的基本事件数事件A A P =)( 4.求古典概型的概率的一般步骤:(1)算出基本事件的总个数n ;(2)计算事件A 包含的基本事件的个数m ;(3)应用公式()m P A n=求值。
5.古典概型中求基本事件数的方法:(1)穷举法;(2)树形图;(3)排列组合法。
利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏。
知识点二、几何概型1. 定义:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关。
满足以上条件的试验称为几何概型。
2.几何概型的两个特点:(1)无限性,即在一次试验中基本事件的个数是无限的;(2)等可能性,即每一个基本事件发生的可能性是均等的。
3.几何概型的概率计算公式:随机事件A 的概率可以用“事件A 包含的基本事件所占的图形面积(体积、长度)”与“试验的基本事件所占总面积(体积、长度)”之比来表示。
所以几何概型计算事件A 的概率计算公式为:Ω=μμA A P )( 其中μΩ表示试验的全部结果构成的区域Ω的几何度量,A μ表示构成事件A 的区域的几何度量。
高中数学必修3-古典概型、几何概型复习总结
古典概型、几何概型 必修32.从含有3件正品和1件次品的4件产品中任取两件,则取出的两件中恰有一件次品的概率是A .14B .13C .12D .1 3.将一颗骰子连续抛掷两次,至少出现一次6点向上的概率是 A.181 B.3611 C.3625 D.361 4.要将一根长为60cm 的木棒截成两段,有一段小于15cm 的概率是 A. 41 B. 21 C. 31 D. 32 5.在半径为2的圆中随机地撒一把豆子,则豆子落在圆内接正三角形ABC ∆中的概率等于A .2πB .2πC .4πD .4π7.口袋中装有编号为1,2,3,4,5的5个大小相同的球,其中1到3号为红球,4号和5号为白球,现从中任意摸出2个球.(1)求摸出的两球同色的概率;(2)求摸出的两球不同色,且至少有一个球的编号为奇数的概率.8.某校高一年级要从3名男生a 、b 、c 和2名女生d 、e 中任选3名代表参加学校的演讲比赛. 求:(1)男生a 被选中的概率;(2)求男生a 和女生d 至少一人被选中的概率.12.等腰Rt ABC ∆中,在斜边AB 上任取一点M ,则AM 的长小于AC 的长的概率为 .13.在腰长为2的等腰直角三角形内任取一点,则该点到此三角形的直角顶点的距离不大于1的概率是 .16.袋中有大小相同的红、绿两种颜色的球各1个,每次从中任取一球,记下颜色,有放回地抽取3次,求:(1)“3次抽的都是红球”的概率;(2)“3次恰有两次抽的是绿球”的概率;(3)“3次抽的球颜色不全相同”的概率.17.某校学生李明放学回家有2路和11路两路公共汽车可供选择,其中2路车每5分钟一班,11路车每10分钟一班,问李明等车时间不超过3分钟的概率是多少?1.C2.C3.B4.B5.C6. ()()()1P A P B P C ++=7.解:基本事件共10个:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}(1)记“摸出的两球同色”为事件A ,事件A 包含的基本事件有4个:{1,2},{1,3},{2,3},{4,5},P(A)=42105= (2)记“摸出的两球不同色,且至少有一个球的编号为奇数” 为事件B ,事件B 包含的基本事件有5个: {1,4},{1,5},{2,5},{3,4},{3,5},P(B)=51102= 8.解:基本事件共(a,b,c),(a,b,d),(a,b,e),(a,c,d),(a,c,e),(a,d,e) ,(b,c,d),(b,c,e),(b,d,e),(c,d,e)共10种.(1)男生a 被选中的选法是:(a,b,c),(a,b,d),(a,b,e),(a,c,d),(a,c,e),(a,d,e)共6种 男生a 被选中的概率为63105= (2)男生a 和女生d 至少一人被选中的选法是:(a,b,c),(a,b,d),(a,b,e),(a,c,d),(a,c,e),(a,d,e), (b,c,d), (b,d,e),(c,d,e)共9种男生a 和女生d 至少一人被选中的概率为9109.D 10.A 11.B 12.13. 8π 14. 52325300138=⨯⨯ 15.解:A B 这一事件包括4种结果,即出现1,2,3和5,42()63P A B == 16.17.解:设2路车到达时间为x 和11路到达时间为y .(x , y )可以看做平面中的点,试验的全部结果所构成的区域为{(,)|05010}x y x y Ω=≤≤≤≤且,这是一个长方形区域,面积为51050S Ω=⨯= A 表示李明等车时间不超过3分钟,所构成的区域为{(,)|03,03}A x y x y =≤≤≤≤或,即图中的阴影部分,面积为3103236A S =⨯+⨯=,这是一个几何概型,所以36()0.7250A S P A S Ω===。
高考数学一轮复习---古典概型与几何概型知识点与题型复习
古典概型与几何概型知识点与题型复习一、基础知识1.古典概型(1)古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性. (2)古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A ;②分别计算基本事件的总数n 和所求的事件A 所包含的基本事件个数m ; ③利用古典概型的概率公式P (A )=mn ,求出事件A 的概率.(3)频率的计算公式与古典概型的概率计算公式的异同(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (3)计算公式:P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).几何概型应用中的关注点(1)关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. (2)确定基本事件时一定要选准度量,注意基本事件的等可能性.二、考点解析考点一 古典概型例、(1)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118(2)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518跟踪训练1.已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( ) A.310 B.35 C.25 D.152.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.793.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A.12B.14C.16D.18 考点二 几何概型类型(一) 与长度有关的几何概型例1、在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215 B.715 C.35 D.1115 类型(二) 与面积有关的几何概型例2、(1)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A.14B.13C.23D.34(2)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3C.2π2D.2π3类型(三) 与体积有关的几何概型例3、已知在四棱锥P ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O ABCD 的体积不小于23的概率为________.类型(四) 与角度有关的几何概型例4、如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.跟踪训练1.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A.34B.23C.13D.122.在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为________. 3.向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.课后作业1.2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( ) A.363π10 mm 2 B.363π5 mm 2 C.726π5 mm 2 D.363π20mm 2 2.甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )A.15B.13C.14D.163.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( ) A.110 B.15 C.310 D.254.如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A.π8B.π16C.1-π8D.1-π165.已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )A.12 B.2-22 C.3-33 D.2-326.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.7.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“好数”的概率是________.8.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.9.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.提高训练1.甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )A.18B.14C.38D.582.如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A.17B.27C.37D.473.已知等腰直角△ABC 中,∠C =90°,在∠CAB 内作射线AM ,则使∠CAM <30°的概率为________.4.已知P 是△ABC 所在平面内一点,且PB ―→+PC ―→+2P A ―→=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.12D.235.点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e},A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1eB.1e 2 C.e -1e D.e 2-1e26.如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( ) A.p 1=p 2 B.p 1=p 3 C.p 2=p 3 D.p 1=p 2+p 37.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( ) A.14 B.38 C.12 D.588.在区间[0,1]上随机取两个数a ,b ,则函数f (x )=x 2+ax +14b 有零点的概率是________.。
高考数学热点问题专题练习——古典概型知识归纳及例题讲解
古典概型一、基础知识:1、基本事件:一次试验中可能出现的每一个不可再分的结果称为一个基本事件。
例如:在扔骰子的试验中,向上的点数1点,2点,……,6点分别构成一个基本事件2、基本事件空间:一次试验,将所有基本事件组成一个集合,称这个集合为该试验的基本事件空间,用Ω表示。
3、基本事件特点:设一次试验中的基本事件为12,,,n A A A(1)基本事件两两互斥(2)此项试验所产生的事件必由基本事件构成,例如在扔骰子的试验中,设i A 为“出现i 点”,事件A 为“点数大于3”,则事件456A A A A =(3)所有基本事件的并事件为必然事件 由加法公式可得:()()()()()1212n n P P A A A P A P A P A Ω==+++因为()1P Ω=,所以()()()121n P A P A P A +++=4、等可能事件:如果一项试验由n 个基本事件组成,而且每个基本事件出现的可能性都是相等的,那么每一个基本事件互为等可能事件。
5、等可能事件的概率:如果一项试验由n 个基本事件组成,且基本事件为等可证明:设基本事件为12,,,n A A A ,可知()()()12n P A P A P A ===()()()121n P A P A P A +++= 6、古典概型的适用条件:(1)试验的所有可能出现的基本事件只有有限多个 (2)每个基本事件出现的可能性相等当满足这两个条件时,事件A 发生的概率就可以用事件A 所包含的基本事件个7、运用古典概型解题的步骤:① 确定基本事件,一般要选择试验中不可再分的结果作为基本事件,一般来说,试验中的具体结果可作为基本事件,例如扔骰子,就以每个具体点数作为基本事件;在排队时就以每种排队情况作为基本事件等,以保证基本事件为等可能事件 ② ()(),n A n Ω可通过计数原理(排列,组合)进行计算③ 要保证A 中所含的基本事件,均在Ω之中,即A 事件应在Ω所包含的基本事件中选择符合条件的 二、典型例题:例1:从16-这6个自然数中随机取三个数,则其中一个数是另外两个数的和的概率为________思路:事件Ω为“6个自然数中取三个”,所以()3620n C Ω==,事件A 为“一个数是另外两个数的和”,不妨设a b c =+,则可根据a 的取值进行分类讨论,列举出可能的情况:{}{}{}{}{}{}3,2,1,4,3,1,5,4,1,5,3,2,6,5,1,6,4,2,所以()6n A =。
几何概型、古典概型常考经典好题(史上最全面含答案)
几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。
高考数学一轮复习专题训练—古典概型与几何概型
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
古典概型知识点总结
例 2 盒中有 6 只灯泡,其中 2 只次品, 4 只正品,有放回地从中任取 2 次,每次只取 1 只,试求下列事件的概率: (1)取到的 2 只都是次品; (2)取到的 2 只中正品、次品各 1 只;(3)取到的 2 只中至少有 1 只正品.
2
同取法.
;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;金沙澳门官网下载app https:// 金沙澳门官网下载app; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;vnsr威尼斯城官网 https:// vnsr威尼斯城官网; ;澳门威斯尼 https:// 澳门威斯尼; ;威尼斯网站网址 https:// 威尼斯网站网址; ;威尼斯人 https:// 威尼斯人; ;vnsr威尼斯人官网 https:// vnsr威尼斯人官网; ;澳门威斯尼app https:// 澳门威斯尼app; ;澳门威斯尼 https:// 澳门威斯尼;
古典概型与几何概型
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
17.2 古典概型与几何概型
17、概率17.2 古典概型与几何概型【知识网络】1. 理解古典概型,掌握古典概型的概率计算公式;会用枚举法计算一些随机事件所含的基本事件数及事件发生的概率。
2. 了解随机数的概念和意义,了解用模拟方法估计概率的思想;了解几何概型的基本概念、特点和意义;了解测度的简单含义;理解几何概型的概率计算公式,并能运用其解决一些简单的几何概型的概率计算问题。
【典型例题】[例1](1)如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .13(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则1log 2 Y X 的概率为 ()A .61B .365 C .121 D .21 (3)在长为18cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36cm 2与81cm 2之间的概率为()A .56B .12C .13D .16(4)向面积为S 的△ABC 内任投一点P ,则随机事件“△PBC 的面积小于3S”的概率为 .(5)任意投掷两枚骰子,出现点数相同的概率为 .[例2]考虑一元二次方程x 2+mx+n=0,其中m ,n 的取值分别等于将一枚骰子连掷两次先后出现的点数,试求方程有实根的概率。
[例3]甲、乙两人约定于6时到7时之间在某地会面,并约定先到者应等候另一个人一刻钟,过时即可离去.求两人能会面的概率.[例4]抛掷骰子,是大家非常熟悉的日常游戏了.某公司决定以此玩抛掷(两颗)骰子的游戏,来搞一个大型的促销活动——“轻轻松松抛骰子,欢欢乐乐拿礼券”.方案1:总点数是几就送礼券几十元.方案2:总点数为中间数7时的礼券最多,为120元;以此为基准,总点数每减少或增加1,礼券减少20元.方案3 总点数为2和12时的礼券最多,都为120元;点数从2到7递增或从12到7递减时,礼券都依次减少20元.如果你是该公司老总,你准备怎样去选择促销方案?请你对以上三种方案给出裁决.【课内练习】1. 某班共有6个数学研究性学习小组,本学期初有其它班的3名同学准备加入到这6个小组中去,则这3名同学恰好有2人安排在同一个小组的概率是 ()A .15B .524C .1081D .5122. 盒中有1个红球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球,设第1个人摸出的1个球是红球的概率为P 1,第8个人摸出红球的概率是P 8,则()A .P 8=18P 1B .P 8=45P 1 C .P 8=P 1D .P 8=03. 如图,A 、B 、C 、D 、E 、F 是圆O 的六个等分点,则转盘指针不落在阴影部分的概率为( )A .12B .13C .23D .144. 两根相距3m 的木杆上系一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m 的概率为()A .12B .13C .14D .235. 一次有奖销售中,购满100元商品得1张奖卷,多购多得.每1000张卷为一个开奖单位,设特等奖1个,一等奖5个,二等奖100个.则任摸一张奖卷中奖的概率为 .6. 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随意填写两个答案,则两个答案都选错的概率为 .7. 在圆心角为150°的扇形AOB 中,过圆心O 作射线交AB 于P ,则同时满足:∠AOP ≥45°且∠BOP ≥75°的概率为 .8. 某招呼站,每天均有3辆开往首都北京的分为上、中、下等级的客车.某天小曹准备在该招呼站乘车前往北京办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他将采取如下决策:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.(1)共有多少个基本事件?(2)小曹能乘上上等车的概率为多少?第3题图C9.设A为圆周上一定点,在圆周上等可能的任取一点P与A连结,倍的概率.10.正面体ABCD的体积为V,P是正四面体ABCD的内部的点.①设“V P-ABC≥14V”的事件为X,求概率P(X);②设“V P-ABC≥14V且V P-BCD≥14V”的事件为Y,求概率P(Y).17、概率17.2 古典概型与几何概型A 组1. 取一个正方形及其它的外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为 ( )A .2π B .2ππ- C D .4π2. 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为 ( )A .12B .13C .14D .163. 已知椭圆22221x y a b+=(a >b >0)及内部面积为S=πab ,A 1,A 2是长轴的两个顶点,B 1,B 2是短轴的两个顶点,点P 是椭圆及内部的点,下列命题正确的个数是 ( ) ①△PA 1A 2为钝角三角形的概率为1; ②△PB 1B 2为直角三角形的概率为0;③△PB 1B 2为钝角三角形的概率为ba ;④△PA 1A 2为钝角三角形的概率为ba ;⑤△PB 1B 2为锐角三角形的概率为a ba-。
古典概型与几何概型知识点总结
古典概型与几何概型知识点总结古典概型和几何概型是概率论中最基础的概率模型,它们分别适用于简单事件和几何事件的计算。
以下是古典概型和几何概型的知识点总结:一、古典概型:1.古典概型是指事件的样本空间具有有限个数的元素,样本点的概率相等。
2.样本空间是指实验中所有可能的结果的集合,例如掷一枚骰子的样本空间为{1,2,3,4,5,6}。
3.事件是样本空间的子集,例如“掷一枚骰子,出现的点数为偶数”的事件为{2,4,6}。
4.古典概型的概率计算公式为:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A包含的样本点个数,n(S)为样本空间的样本点个数。
5.古典概型的概率计算要求样本点的概率相等,且样本点的个数有限。
二、几何概型:1.几何概型是指事件的样本空间是一个几何图形,而不是有限个元素。
2.在几何概型中,事件的概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
3.几何概型的概率计算需要使用几何图形的面积或体积的计算方法,例如计算矩形的面积为长乘以宽,计算圆的面积为π乘以半径的平方。
4.几何概型可以应用于连续变量的概率计算,例如计算一些范围内的事件发生的概率。
5.几何概型的概率计算要求事件与样本空间之间存在其中一种几何关系,例如事件发生的可能性与事件所占的几何图形的面积或体积成正比。
综上所述,古典概型适用于简单事件且样本空间的样本点个数有限的情况,其概率计算公式为P(A)=n(A)/n(S);几何概型适用于事件的样本空间是一个几何图形的情况,概率等于事件所占的几何图形的面积或体积与样本空间所占的几何图形的面积或体积的比值。
掌握古典概型和几何概型的知识点,能够帮助我们更好地理解和计算事件的概率,为概率论的进一步学习奠定基础。
古典概型与几何概型知识点总结
古典概型与几何概型知识点总结古典概型和几何概型是概率论中的两种常见概型,它们分别基于不同的概率空间的划分方式。
下面将对古典概型和几何概型的知识点进行总结。
古典概型(Classical Probability Model)是指概率实验基本样本点是有限个的概率模型。
在古典概型中,样本空间中的每一个样本点发生的机会相同,且样本空间中所有的样本点构成一个有限集合。
在古典概型中,我们通常会利用排列组合的方法来计算事件的概率。
以下是古典概型的一些重要知识点:1.样本空间和事件:样本空间是指一个概率实验中所有可能结果的集合,用Ω表示。
事件是样本空间的一个子集,表示我们感兴趣的结果。
2.事件的概率:在古典概型中,事件A的概率P(A)等于A中的样本点数目除以样本空间中的样本点总数。
即P(A)=,A,/,Ω。
3.加法法则:如果A和B是两个互不相容的事件(即A∩B=Ø),那么两个事件的并事件A∪B的概率等于事件A和事件B的概率之和。
即P(A∪B)=P(A)+P(B)。
4.乘法法则:如果A和B是两个独立事件,即事件A的发生与事件B的发生无关,那么两个事件的交事件A∩B的概率等于事件A的概率乘以事件B的概率。
即P(A∩B)=P(A)*P(B)。
几何概型(Geometric Probability Model)是指概率实验的样本空间是由几何构造组成的。
在几何概型中,样本空间通常是一个几何形状,概率的计算涉及到几何图形的面积或长度。
以下是几何概型的一些重要知识点:1.区间概率:对于一些连续型随机变量,概率可以通过计算指定区间的长度、面积或体积来求解。
这种类型的概率常常与几何图形的几何属性相关。
例如,对于均匀分布的连续随机变量,一个给定区间[a,b]内事件发生的概率等于区间长度除以总长。
2. 概率密度函数:对于连续型随机变量,其概率密度函数(Probability Density Function,PDF)描述了随机变量的可能取值的相对可能性。
高中数学高考总复习---古典概型与几何概型知识讲解及考点梳理
1.如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为
2.将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被 取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域 中的点,这样的概率模型就可以用几何概型来求解。
位数字也即确定.故共有 6×1=6 种不同的结果,即概率为
.
(2)两个玩具的数字之和共有 2,3,4,5,6,7,8,9,10,11,12 共 11 种不同结果.
从中可以看出,出现 12 的只有一种情况,概率为 .出现数字之和为 6 的共有(1,5),(2,
4),(3,3),(4,2),(5,1)五种情况,所以其概率为 . 【总结升华】使用枚举法要注意排列的方法,做到不漏不重.
(3)应用公式
求值。
5.古典概型中求基本事件数的方法: (1)穷举法; (2)树形图; (3)排列组合法。利用排列组合知识中的分类计数原理和分步计数原理,必须做到不 重复不遗漏。 知识点二、几何概型 1. 定义: 事件 A 理解为区域Ω的某一子区域 A,A 的概率只与子区域 A 的几何度量(长度、面积 或体积)成正比,而与 A 的位置和形状无关。满足以上条件的试验称为几何概型。 2.几何概型的两个特点: (1)无限性,即在一次试验中基本事件的个数是无限的; (2)等可能性,即每一个基本事件发生的可能性是均等的。 3.几何概型的概率计算公式: 随机事件 A 的概率可以用“事件 A 包含的基本事件所占的图形面积(体积、长度)”与 “试验的基本事件所占总面积(体积、长度)”之比来表示。
举一反三: 【变式】某校要从艺术节活动中所产生的 4 名书法比赛一等奖的同学和 2 名绘画比赛一等 奖的同学中选出 2 名志愿者,参加广州亚运会的服务工作。求:(1)选出的 2 名志愿者都 是获得书法比赛一等奖的同学的概率;(2)选出的 2 名志愿者中 1 名是获得书法比赛一等 奖,另 1 名是获得绘画比赛一等奖的同学的概率. 【解析】把 4 名获书法比赛一等奖的同学编号为 1,2,3,4 . 2 名获绘画比赛一等奖的同 学编号为 5,6.
随机事件的概率与古典概型、几何概型
随机事件的概率与古典概型、几何概型一.知识整合:1.随机事件的概念在一定的条件下所出现的某种结果叫做事件。
(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。
2.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率n m总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。
由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。
3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A );4.事件间的运算(1)并事件(和事件)若某事件的发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。
注:当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥);且有P (A +A )=P (A )+P (A )=1。
(2)交事件(积事件)若某事件的发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。
5.古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P (A )=总的基本事件个数包含的基本事件个数A ; 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1。
如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m 。
古典概型和几何概型(一轮复习数学)
(2)先后掷两枚相同的骰 子,则向上的点数之和 为5的概率为
1 A. 18 1 B. 9 1 C. 6 1 D. 12
(3)某种饮料每箱装 6听,其中2听不合格,质检人员从 中随机抽取 2听,检测出都是合格产 品的概率为
1 A. 5 2 B. 5 3 C. 5 4 D. 5
类型二:古典概型的求 法
类型三:几何概型的求 法(与面积有关问题) 例1. 一只受伤的丹顶鹤在如 图所示(直角梯形)的 草原上空飞过,
其中AD 2,DC 2,BC 1,它可能随机落在草原 上 任何一处(点)。若落 在扇形区域ADE以外丹顶鹤能生 还,该丹顶鹤生还的概 率是 10 10
例2. 如图,圆C内切于扇形AOB,AOB
1 A. 5 2 B. 5 3 C. 5 4 D. 5
例4.如图所示,边长为 2的正方形中有一封闭曲 线围成的阴影 区域。在正方形中随机 撒一粒豆子,它落在阴 影区域内的概率 2 为 ,则阴影区域的面积为 3
4 A. 3
8 B. 3
2 C. 3
D.无法计算
类型二:几何概型的求 法(与长度、角度有关 问题) 例1. 如图所示,在直角坐标 系内,射线 OT落在30角的终边上,
3 C. 10 2 D. 5
(2)袋中有五张卡片,其 中红色卡片三张,标号 分别为 1,2 3;蓝色卡片两张,标号 分别为 1,2. .从以上五张卡片中任取 2两张,求这两张卡片不 同且标号
之和小于4的概率. .向袋中再放入一张标号 为0的绿色卡片,从这六张 卡片中
任取两张,求这两张卡 片颜色不同且标号之和 小于4的概率.
类型一:古典概型基本 概念 例1( . 1 )判断正误:
“在适宜条件下种下一 粒种子观察它是否发芽 ”属于古典概型, 其基本事件是“发芽与 不发芽”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点一:变量间的相关系数 1.两变量之间的关系(1)相关关系——非确定性关系 (2)函数关系——确定性关系 2.回归直线方程:∧∧∧+=a x b y⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∧∧====∧∑∑∑∑x b y a x n x yx n y x x x y y x x b ni i ni i i n i i n i i i ,)())((1221121 例题分析例1:某种产品的广告费x (单位:百万元)与销售额y (单位:百万元)之间有一组对应数据如下表所示,变量y 和x 具有线性相关关系:x (百万元)2 4 5 6 8 y (百万元) 30 4065070(1)画出销售额与广告费之间的散点图;(2)求出回归直线方程。
针对练习1、对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图左;对变量u ,v 有观测数据(1u ,1v )(i=1,2,…,10),得散点图右. 由这两个散点图可以判断( )(A )变量x 与y 正相关,u 与v 正相关 (B )变量x 与y 正相关,u 与v 负相关 (C )变量x 与y 负相关,u 与v 正相关 (D )变量x 与y 负相关,u 与v 负相关 2.在下列各图中,每个图的两个变量具有相关关系的图是( )(1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3)3. 下表是某小卖部一周卖出热茶的杯数与当天气温的对比表: 气温/℃ 18 13 10 4 -1 杯数2434395163若热茶杯数y 与气温x 近似地满足线性关系,则其关系式最接近的是( )A. 6y x =+B. 42y x =+C. 260y x =-+D. 378y x =-+知识点二:概率 一、随机事件概率:事件:随机事件:可能发生也可能不发生的事件。
确定性事件: 必然事件(概率为1)和不可能事件(概率为0)(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nmA P ≈说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一② 不可能事件和确定事件可以看成随机事件的极端情况③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果⑤ 概率是频率的稳定值,频率是概率的近似值二、概率的基本性质: 基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用 ③如果事件()()()B P A P B A P B A +=+:,则有互斥和(概率加法公式)互斥事件:不能同时发生的两个事件称为互斥事件对立事件:两个互斥事件中必有一个发生,则称两个事件为对立事件,事件A 的对立事件记为:A 互斥事件和对立事件的区别:① 若, B , , B , 中最多有一个发生则为互斥事件A A 可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集② 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 ③ 对立事件一定是互斥事件④ 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集⑤ 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于1 ⑥ 若事件B A ,是互斥事件,则有()()()B P A P B A P +=+⑦一般地,如果 n A A A ,...,,21 两两互斥,则有()()()()n n A P A P A P A A A P +++=+++......2121 ⑧()()A P A P -=1三、概率的概型:古典概型:① 所有基本事件有限个;②每个基本事件发生的可能性都相等满足这两个条件的概率模型成为古典概型。
如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ③古典概型的解题步骤; 1、求出总的基本事件数;2、求出事件A 所包含的基本事件数,然后利用公式P (A )= 总的基本事件个数包含的基本事件数A几何概型:1、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:P (A )= 积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的面积成正比,而与其形状无关。
例题分析例2:从含有两件正品a,b 和一件次品c 的3件产品中每次任取一件,连续取两次,求取出的两件产品中恰有一件是次品的概率 . (1)每次取出不放回; (2)每次取出后放回.解:(1) 每次取出不放回的所有结果有(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),其中左边的字母表示第一次取出的产品,右边的字母表示第二次取出的产品,共有6个基本事件,其中恰有臆见次品的事件有4个,所以每次取出不放回,取出的两件产品中恰有一件是次品的概率为3264 (2)每次取出后放回的所有结果:(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c) 共有9个基本事件, 其中恰有臆见次品的事件有4个,所以每次取出后放回,取出的两件产品中恰有一件是次品的概率为94针对练习1、一箱内有十张标有0到9的卡片,从中任选一张,则取到卡片上的数字不小于6的概率是( )A.13B.35C.25D.142.从数字1,2,3,4,5中任取三个数字,组成没有重复数字的三位数,则这个三位数大于400的概率是( ).A.2/5 B、2/3 C.2/7 D.3/43.同时掷两枚骰子,所得点数之和为5的概率为( ).A.1/4 B.1/9 C.1/6 D.1/124.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( ).A.5/6 B.4/5 C.2/3 D.1/2巩固练习1、下列事件(1)物体在重力作用下会自由下落; (2)方程x2+2x+3=0有两个不相等的实根; (3)某传呼台每天某一时段内收到传呼次数不超过10次; (4)下周日会下雨,其中随机事件的个数为( )A.1个B.2个C.3个D.4个2.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( ).A.60%B.30%C.10%D.50%4.根据多年气象统计资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为( ).A.0.65 B.0.55 C.0.35 D.0.755、若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域+-y-x内的概率是|22||2|≤A.3611B.61C.41D.367 二、填空题:6.对于①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”这5种生活现象,发生的概率由小到大排列为(填序号) 。
7.在10000张有奖明信片中,设有一等奖5个,二等奖10个,三等奖l00个,从中随意买l 张.(1)P(获一等奖)= ,P(获二等奖)= ,P(获三等奖)= . (2)P(中奖)= ,P(不中奖)= .8.同时抛掷两枚骰子,则至少有一个5点或6点的概率是 .三、解答题:9. 由经验得知,在某商场付款处排队等候付款的人数及概率如下表:(1)至多有2人排队的概率是多少? (2)至少有2人排队的概率是多少?10.袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求:(1)3个全是红球的概率. (2)3个颜色全相同的概率. (3)3个颜色不全相同的概率. (4)3个颜色全不相同的概率.11.某地区的年降水量在下列范围内的概率如下表所示:(1)求年降水量在[100,200)(mm)范围内的概率;(2)求年降水量在[150,300)(mm)范围内的概率.12.抽签口试,共有10张不同的考签.每个考生抽1张考签,抽过的考签不再放回.考生王某会答其中3张,他是第5个抽签者,求王某抽到会答考签的概率.提高题13、已知一元二次方程x²+ax+b²=0,(1)若a是从区间[0,3]任取的一个整数,b是从区间[0,2]任取的一个整数,求上述方程有实数根的概率。