12种开关电源拓扑及计算公式

合集下载

开关电源经典公式

开关电源经典公式

开关电源中的公式1, 电感的电压公式dt dI LV ==TI L ∆∆,推出ΔI =V ×ΔT/L 2, 电感存储的能量用峰值电流计算21×L ×I 2PK3,H =B/μ→B =μH ,μ是材料的磁导率。

空气磁导率μ0=4π×10-7H/m 也称磁场强度,场强,磁化力,叠加场等。

单位A/m4,磁通量:通过一个表面上B 的总量 Φ=⎰•SB ds ,如果B 是常数,则Φ=BA ,A 是表面积。

单位是特斯拉(T )或韦伯每平方米Wb/m 25, 安培环路定律,矢量H 沿闭合曲线积分,等于包围此曲线的电流代数总和∑⎰=I dl H ,电流和电磁场的方向符合右手螺旋定则。

6,电磁感应定律,法拉第定律和楞次定律的合称:N 匝线圈的感应电动势e =-N t∆∆φ,电感线圈可以近似表示为e=-tNBA∆,A 为线圈面积。

线圈感应电流产生的磁通总是阻止外加磁场的变化,保持原磁场。

7, 电感的自感:总磁通Ψ=N Φ,与电流i 成正比,Ψ=Li =N Φ,L =i N φ,e =-N t∆∆φ,所以,e =-t i L ∆∆=-L dtdi。

自感总是阻止电流的变化,保持线圈的磁通不变。

一匝线圈的感应电动势为-t ∆∆φ,N 匝线圈为-N t∆∆φ,所以总磁通或磁链Ψ=N Φ8, 电感储能:W =⎰t uidt 0=⎰t idt dt Ldi 0=⎰iLidi 0=21Li 2 9, 磁芯储能。

如右图 1-9N 匝磁环,磁导率为μ,内外径分别为d 和D ,内外径之比接近1,磁路的平均长度l =∏*( D+d )/2,磁环截面积为A ,均匀磁环。

加电压u感应电压e =-u =N t ∆∆φ=NA dtdB由安培环路定律∑⎰=I dl H 得,H l =Ni ,i =NHl输入到磁场的能量为We =⎰t uidt 0=⎰t dt NHldt NAdB 0*We =⎰BHlAdB 0=V ⎰BHdB 0,式中B 为最终达到的最大值,V =A l 为磁环体积。

开关电源拓扑计算公式

开关电源拓扑计算公式

开关电源拓扑计算公式01Buck变换器的功率器件设计公式(1)Buck 变换器的电路图:(2)Buck 变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D:上述公式是稳态工作时,功率器件上的电压、(电流)应力。

选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结(电容)、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。

02Boost 变换器的功率器件设计公式(1)Boost 变换器的电路图:(2)Boost 变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D:上述公式是稳态工作时,功率器件上的电压、电流应力。

选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结电容、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。

03Buckboost 变换器设计公式(1)Buckboost 变换器的电路图:(2)Buckboost 变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D:上述公式是稳态工作时,功率器件上的电压、电流应力。

选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结电容、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。

04三绕组去磁正激变换器的功率器件设计公式(1)三绕组去磁正激变换器的电路图:(2)三绕组去磁正激变换器的主要稳态规格:(3)功率器件的稳态应力:有源开关S:无源开关D1,D2:上述公式是稳态工作时,功率器件上的电压、电流应力。

选择功率器件时,其电压耐量可放一个合适的余量(保证最坏情况下的电压峰值不超过此值),电流耐量则得按器件的结温降额要求决定、它与外部散热条件和器件的通态电阻、通态压降、结电容、反向恢复、结到壳的热阻等密切相关,是功率器件热设计的内容。

开关电源11种拓扑结构介绍

开关电源11种拓扑结构介绍

开关电源11种拓扑结构介绍1、基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。

基本的脉冲宽度调制波形定义如下:2、Buck降压■把输入降至一个较低的电压。

■可能是最简单的电路。

■电感/电容滤波器滤平开关后的方波。

■输出总是小于或等于输入。

■输入电流不连续 (斩波)。

■输出电流平滑。

3、Boost升压■把输入升至一个较高的电压。

■与降压一样,但重新安排了电感、开关和二极管。

■输出总是比大于或等于输入(忽略二极管的正向压降)。

■输入电流平滑。

■输出电流不连续 (斩波)。

4、Buck-Boost降压-升压■电感、开关和二极管的另一种安排方法。

■结合了降压和升压电路的缺点。

■输入电流不连续 (斩波)。

■输出电流也不连续 (斩波)。

■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。

■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

5、Flyback反激■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。

■输出可以为正或为负,由线圈和二极管的极性决定。

■输出电压可以大于或小于输入电压,由变压器的匝数比决定。

■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。

6、Forward正激■降压电路的变压器耦合形式。

■不连续的输入电流,平滑的输出电流。

■因为采用变压器,输出可以大于或小于输入,可以是任何极性。

■增加次级绕组和电路可以获得多个输出。

■在每个开关周期中必须对变压器磁芯去磁。

常用的做法是增加一个与初级绕组匝数相同的绕组。

■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

7、Two-Transistor Forward双晶体管正激■两个开关同时工作。

■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。

■主要优点:■每个开关上的电压永远不会超过输入电压。

■无需对绕组磁道复位。

8、Push-Pull推挽■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。

开关电源各种拓扑集锦

开关电源各种拓扑集锦

开关电源拓扑六种基本DC/DC变换器拓扑:1、Buck2、Boost3、Buck-Boost4、CUK5、Zeta6、Sepic基本拓扑是Buck,Boost,其他是演变。

Buck为降压变换器,常用的拓扑基本上是Buck的:正激,半桥,全桥,推挽等等。

Boost变换器为Buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的Boost变换器也有推挽,双电感,全桥等电路。

Buck-Boost是反激变换器的原型,属于升降压变换器。

后面三种电路不是很常用,都是升降压变换器。

一、 反激1、单端反激2、双端反激二、 正激1、绕组复位正激2、R CD复位正激3、L CD复位正激4、有源钳位正激● Flyback钳位● Boost钳位5、双管正激6、无损吸收双正激7、有源钳位双正激8、原边钳位双正激9、软开关双正激三、 推挽1、推挽2、无损吸收推挽3、推挽正激推挽变换器是双端变换器。

其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。

但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。

而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。

如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。

其管子电压应力下降为输入电压。

其他等同。

推挽正激是通过一个电容来解决变换器漏感尖峰,偏磁等问题四、 半桥1、半桥2、不对称半桥3、谐振半桥4、移相半桥五、 全桥1、全桥2、全桥LLC3、移相全桥全桥变换器在大功率场合是最常用了,特别是移项ZVS和ZVZCS 六、 三电平变换器(three level converter)这些三电平是半桥演化而来,同样可以演化出多电平变换器,合适高压输入场合。

而且可以通过全桥的移相控制方式实现软开关。

七、 五种隔离三电平DC/DC变换器1、F orward三电平DC/DC变换器2、F lyback三电平DC/DC变换器3、P ush-Pull三电平DC/DC变换器4、半桥三电平DC/DC变换器5、全桥三电平DC/DC变换器八、 B oost隔离变换器1、双电感Boost2、全桥Boost。

开关电源各种拓扑结构集锦详解 后附笔记

开关电源各种拓扑结构集锦详解 后附笔记

《精通开关电源设计》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。

那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。

开关电源各种拓扑结构集锦详解

开关电源各种拓扑结构集锦详解

开关电源各种拓扑集锦1、先给出六种基本DC/DC变换器拓扑依次为buck,boost,buck-boost,cuk,zeta,sepic变换器以上六种拓扑被认为是DC/DC变换器的六种基本拓扑,不过也有专家认为最基本的拓扑是buck和boost,其他均由此演变而来。

buck变换器为降压变换器,也是最常用的变换器,工程上常用的拓扑基本上是buck族的,如正激,半桥,全桥,推挽等等。

boost变换器为buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上,对于隔离的boost 变换器也有推挽,双电感,全桥等电路。

buck-boost是反激变换器的原型,属于升降压变换器。

后面三种电路不是很常用,都是升降压变换器。

从效率的角度来说,这些变换器的输入和输出等同时候,效率最高。

也就是buck最佳占空比为1,boost 为0,buck-boost为0.5。

2、正激变换器:A、绕组复位正激变换器B、LCD复位正激变换器C、RCD复位正激变换器D、有源钳位正激变换器E、双管正激F、无损吸收双正激:G、有源钳位双正激H、原边钳位双正激、I、软开关双正激评论:正激变换器是常用变换器之一,特别在中小功率场合。

正激变换器属于单端变换器,所用开关管少,可靠性高,虽然变压器利用率低,但是在较高频率下其变压器磁通摆幅可以与双端变换器相当。

但是开关管电压应力较大。

双管正激开关管电压应力为输入电压,虽然用了两个管子,但是耐压低,导通电阻也小,损耗也小,同时散热面积相对大了,所以可靠性更好,在中大功率比较常用。

但是双管正激实现软开关较难,就目前的一些拓扑来说,都需要辅助开关管来实现。

如果能不加入辅助管而实现软开关,一定超有前途。

正激变换器也常用来交错并联,来扩大功率,能减小输出滤波器体积。

3、推挽变换器A、推挽变换器B、无损吸收推挽变换器C、推挽正激推挽变换器:推挽变换器是双端变换器。

其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。

电源拓扑工作原理以及数学公式

电源拓扑工作原理以及数学公式

电源拓扑工作原理以及数学公式全文共四篇示例,供读者参考第一篇示例:电源拓扑,顾名思义就是指电源系统中不同部件之间的连接方式和工作原理。

在电源系统设计中,拓扑结构是起着至关重要的作用的。

它决定了电源的稳定性、效率和可靠性。

本文将介绍电源拓扑的工作原理以及相关的数学公式。

一、电源拓扑的种类在电源系统中,常见的拓扑结构有多种,如单端、双端、全桥等。

不同的拓扑结构在工作原理上有所差异,适用于不同的应用场景。

下面我们将分别介绍几种电源拓扑的工作原理及数学公式。

1. 单端拓扑单端拓扑是最简单的电源结构,主要由开关管、变压器、整流器和滤波器等组成。

在单端拓扑中,开关管间隔时间地导通和关断,通过变压器实现电压变换,进而得到输出电压。

单端拓扑常用于低功率应用。

单端拓扑的数学公式包括输入功率、输出功率、效率等。

输入功率为Vin*Iin,输出功率为Vout*Iout,效率为输出功率除以输入功率。

通过这些数学公式,可以计算出单端拓扑的性能参数,为电源系统的设计提供参考。

双端拓扑的数学公式与单端拓扑类似,包括输入功率、输出功率、效率等。

通过对这些数学公式的分析,可以评估双端拓扑的性能优劣,并对其进行进一步优化。

3. 全桥拓扑二、数学公式的作用电源拓扑的工作原理虽然复杂,但通过数学公式的分析和计算,可以更好地理解各种拓扑结构的性能和特点。

数学公式是电源系统设计中重要的工具,能够帮助工程师评估电源拓扑的优劣,为系统的优化提供依据。

数学公式不仅可以用于计算电源拓扑的效率和功率转换情况,还可以用于设计参数的选择和系统的仿真分析。

通过对数学公式的合理应用,可以为电源系统的稳定性和可靠性提供保障,确保系统正常工作。

三、结语在今后的电源系统设计工作中,希望工程师们能够充分利用数学公式,深入研究电源拓扑的工作原理,不断提升设计水平,为电源系统的发展做出更大的贡献。

愿电源拓扑的数学公式在电源系统设计中发挥重要作用,为电气行业的发展做出更大的贡献。

12种开关电源拓扑及计算公式

12种开关电源拓扑及计算公式
Vds = Vin
二极管电流
Id1 = Iout × D
二极管反向电压
Vd1 = Vout + Vin ×
Ns Np
8、ACTIVE CLAMP FORWARD 电路
输入输出电压关系
Vout Ns Ton Ns = × = ×D Vin Np T Np
开关管电流
Iq1(max) =
Ns × Iout Np
1 ) 1− D
开关管电压
Vds = Vin × (
二极管电流
Id1 = Iout × D
二极管反向电压
Vd1 = Vout + Vin ×
Ns 1 × Np 1 − D
9、HALF BRIDGE 电路 输入输出电压关系
Vout Ns Ton Ns = × = ×D Vin Np T Np
开关管电流
2、BOOST 电路 输入输出电压关系
Vd1 = Vin
Vout T 1 = = Vin T − Ton 1 − D Iq1(max) = Iout × (
开关管电流
1 ) 1− D
开关管电压
Vds = Vout
Id1 = Iout
二极管电流
二极管反向电压
Vd1 = Vout
3、BUCK BOOST 电路
输入输出电压关系
5、FLYBACK 电路
Vout T × Vout =D Vin 2 × Iout × Lp
开关管电流
Iq1(max) =
Vin × Ton ) Lp
开关管电压
Vds = Vin + Vout ×
Np Ns
二极管电流
Id1 = Iout
二极管反向电压

12种电源拓扑:开关MOS与整流管的应力计算

12种电源拓扑:开关MOS与整流管的应力计算

12种电源拓扑:开关MOS与整流管的应力计算
1、BUCK电路
输入输出电压关系
开关管电压
二极管反向电压
2、BOOST电路
输入输出电压关系
开关管电压
二极管反向电压
3、BUCK BOOST电路
输入输出电压关系
开关管电压
二极管反向电压
4、SEPIC电路
输入输出电压关系
开关管电压
二极管反向电压
5、FLYBACK电路
输入输出电压关系
开关管电压
二极管反向电压
6、FORWARD电路
输入输出电压关系
开关管电压
二极管反向电压
7、2 SWITCH FORWARD电路
输入输出电压关系
开关管电压
二极管反向电压
8、ACTIVE CLAMP FORWARD电路
输入输出电压关系
开关管电压
二极管反向电压
9、HALF BRIDGE电路
输入输出电压关系
开关管电压
二极管反向电压
10、PUSH PULL电路
输入输出电压关系
开关管电压
二极管反向电压
11、FULL BRIDGE电路
输入输出电压关系
开关管电压
二极管反向电压
12、PHASE SHIFT ZVT
输入输出电压关系
开关管电压
二极管反向电压。

最全开关电源相关计算

最全开关电源相关计算

最全开关电源相关计算开关电源是一种将不稳定的电压转换成稳定的输出电压的电源装置。

它采用了开关管(通常是MOS管)的开关动作,通过时序控制产生一个高速的开关电压,然后通过电感和电容进行滤波以得到稳定的输出电压。

开关电源的效率高、体积小、重量轻且可靠性强,因此在现代电子设备中得到广泛应用。

在设计和计算开关电源时,一般需要考虑以下几个方面:1.输入功率计算:输入功率(Pin)是指从交流电源输入到开关电源的实际功率,可以通过以下公式计算:Pin = Vac × Iac × Power Factor其中,Vac是交流电源的电压值,Iac是交流电源的电流值,Power Factor是功率因素。

2.输出功率计算:输出功率(Pout)是指开关电源输出的电功率,可以通过以下公式计算:Pout = Vout × Iout其中,Vout是开关电源的输出电压值,Iout是开关电源的输出电流值。

3.开关电源的效率计算:效率(η)是指开关电源输出功率与输入功率之间的比率,可以通过以下公式计算:η = Pout / Pin × 100%4.输出电压波动计算:输出电压波动(Vripple)是指开关电源输出电压的纹波(波动),可以通过以下公式计算:Vripple = (ΔI × DT) / (2 × C)其中,ΔI是输出电流的波动值,DT是开关频率下通导时间的百分比,C是输出电容值。

5.电感电流峰值计算:电感电流峰值(Ipeak)是指开关电源输出电感上的最大电流值,可以通过以下公式计算:Ipeak = Iout + (ΔI / 2)其中,Iout是开关电源的输出电流值,ΔI是输出电流的波动值。

6.输出电容计算:输出电容(Cout)是为了减小输出电压波动而加入的电容,可以通过以下公式计算:Co ut = (ΔI × DT) / (2 × Vripple)其中,ΔI是输出电流的波动值,DT是开关频率下通导时间的百分比,Vripple是允许的输出电压波动值。

开关电源设计计算公式

开关电源设计计算公式

开关电源设计计算公式开关电源是一种能将交流电转换为直流电的电源,其特点是高效率、体积小、功率密度高。

开关电源的设计可分为两个部分:功率部分和控制部分。

功率部分主要包括输入滤波电路、整流电路、滤波电路和开关变换电路等;控制部分主要包括PWM控制电路和反馈控制电路等。

下面将详细介绍开关电源设计的计算公式。

1.输入电压计算公式:开关电源的输入电压可以由交流电源转换得到。

常用的交流电压为220V或110V。

对于220V交流电压来说,经过整流和滤波后,得到的平均电压为:Vavg = Vpk / π其中,Vavg为平均电压,Vpk为峰值电压。

2.输出电压计算公式:开关电源的输出电压取决于开关变换电路的设计。

常见的开关变换电路包括降压变换、升压变换和变换。

a.降压变换电路:降压变换电路是将输入电压通过变压器降低得到所需的输出电压。

降压变换电路的输出电压计算公式为:Vo = Vin * (D / (1-D))其中,Vo为输出电压,Vin为输入电压,D为占空比。

b.升压变换电路:升压变换电路是将输入电压通过变压器升高得到所需的输出电压。

升压变换电路的输出电压计算公式为:Vo = (Vin / (1-D)) * D其中,Vo为输出电压,Vin为输入电压,D为占空比。

c.变换电路:变换电路是将输入电压通过变压器升高或降低得到所需的输出电压。

变换电路的输出电压计算公式为:Vo = (Vin / (1-D1)) * D1 * (1-D2)其中,Vo为输出电压,Vin为输入电压,D1和D2为占空比。

3.电流计算公式:开关电源的电流计算包括输入电流和输出电流。

a.输入电流计算公式:输入电流计算公式为:Iin = Pout / (η * Vin)其中,Iin为输入电流,Pout为输出功率,η为开关电源的效率,Vin为输入电压。

b.输出电流计算公式:输出电流计算公式为:Iout = Pout / Vo其中,Iout为输出电流,Pout为输出功率,Vo为输出电压。

12种开关电源拓扑及计算公式

12种开关电源拓扑及计算公式

输入输出电压关系D TTonVin Vout ==开关管电流IoutIq =(max)1开关管电压VinVds =二极管电流)1(1D Iout Id −×=二极管反向电压VinVd =12、BOOST 电路输入输出电压关系D Ton T T Vin Vout −=−=11开关管电流11((max)1DIout Iq −×=开关管电压Vout Vds =二极管电流IoutId =1二极管反向电压VoutVd =13、BUCK BOOST 电路输入输出电压关系D DTon T Ton Vin Vout −=−=1开关管电流11((max)1DIout Iq −×=开关管电压VoutVin Vds −=二极管电流IoutId =1二极管反向电压VoutVin Vd −=1大比特压器论坛 p ://b b .b i g -b i t .c o m输入输出电压关系DDVin Vout −=1开关管电流)1((max)1DD Iout Iq −×=开关管电压VoutVin Vds +=二极管电流IoutId =1二极管反向电压VinVout Vd +=15、FLYBACK 电路输入输出电压关系LpIout VoutT D Vin Vout ×××=2开关管电流(max)1LpTonVin Iq ×=开关管电压NsNp Vout Vin Vds ×+=二极管电流IoutId =1二极管反向电压NpNs Vin Vout Vd ×+=16、FORW ARD 电路输入输出电压关系D NpNsT Ton Np Ns Vin Vout ×=×=开关管电流Iout NpNsIq ×=(max)1开关管电压VinVds ×=2二极管电流DIout Id ×=1大比特电子变压器论坛 ht t p ://b b s .b i g -b i t .c o m二极管反向电压NpNs Vin Vout Vd ×+=17、2SWITCH FORWARD 电路输入输出电压关系D NpNsT Ton Np Ns Vin Vout ×=×=开关管电流Iout NpNsIq ×=(max)1开关管电压VinVds =二极管电流DIout Id ×=1二极管反向电压NpNs Vin Vout Vd ×+=18、ACTIVE CLAMP FORWARD 电路输入输出电压关系D NpNsT Ton Np Ns Vin Vout ×=×=开关管电流Iout Np NsIq ×=(max)1开关管电压)11(DVin Vds −×=二极管电流DIout Id ×=1二极管反向电压DNp Ns Vin Vout Vd −××+=111变压器论坛 hp s .b i g -b i t .c o m输入输出电压关系D NpNsT Ton Np Ns Vin Vout ×=×=开关管电流Iout NpNsIq ×=(max)1开关管电压VinVds =二极管电流)21(21D IoutD Iout Id −×+×=二极管反向电压21Vin Np Ns Vd ×=10、PUSH PULL 电路输入输出电压关系D NpNsT Ton Np Ns Vin Vout ××=××=22开关管电流Iout NpNsIq ×=(max)1开关管电压VinVds ×=2二极管电流)21(21D IoutD Iout Id −×+×=二极管反向电压NpNs Vin Vd ×=1大变压器论坛 ht t p :s .b i g -b i t .c o m输入输出电压关系D NpNsT Ton Np Ns Vin Vout ××=××=22开关管电流Iout NpNsIq ×=(max)1开关管电压VinVds =二极管电流)21(21D IoutD Iout Id −×+×=二极管反向电压NpNs Vin Vd ×=112、PHASE SHIFT ZVT输入输出电压关系D NpNsT Ton Np Ns Vin Vout ××=××=22开关管电流Iout NpNsIq ×=(max)1开关管电压Vin Vds =二极管电流Iout Id ×=211二极管反向电压NpNs Vin Vd ×=1大比特变压器论坛 ht t p ://b b s .b i g -b i t .c o m。

开关电源(SMPS)的拓扑结构(第一部分)

开关电源(SMPS)的拓扑结构(第一部分)
MOSFET 能够以任一方向进行导通;这意味着如果电 感中的电流由于负载较轻到零时,同步 MOSFET 应被 立即关断。否则,因为输出 LC 谐振的原因,电感电流 的方向将反向 (在达到零后 )。在这一场景下,同步 MOSFET 作为输出电容的负载并因其导通电阻 RDSON 而耗能,从而导致断续运行 (在一个开关周期内电感电
前馈控制
在降压转换器中,输入电压变化在电压输出端产生的影 响通常可通过输入电压前馈控制降到最低。与模拟控制 方式相比,使用具有输入电压检测功能的数字信号控制 器能轻易实现前馈控制。在前馈控制方法中,数字信号 控制器一旦检测到输入电压的变化,在输入变化对输出 参数造成实际影响之前就将开始采取自适应措施进行相 应的处理。
AN1114
开关电源 (SMPS)的拓扑结构 (第一部分)
作者: Mohammad Kamil Microchip Technology Inc.
简介
工业驱动向更小、更轻和更高效的电子设备的发展趋势 促 进 了 开 关 电 源 (Switch Mode Power Supply, SMPS)的发展。通常可采用几种不同的拓扑结构实现 SMPS。
DS01114A_CN 第 2 页
2008 Microchip Technology Inc.
图 2:
(A)
降压转换器 IIN
Q1 VIN
D1
L
+ IL -
IOUT VOUT
AN1114
(B) Q1GATE
t
(C)
VL
VIN - VOUT
t
-VOUT
(VIN - VOUT)/L
(D)
IIN
t
-VOUT/L IL2
输入和输出电容的设计取决于每一个转换器的开关频率 乘以并联转换器的个数。从输出电容的角度来看纹波电 流减少 “n”倍。与图 2 (D)中所示的单一转换器相 比,多相同步降压转换器汲取的输入电流是连续的且纹 波较少,如图 3 (E)所示。因此,对于多相同步降压 转换器来说,较小的输入电容能满足设计要求。

开关电源拓扑结构全解

开关电源拓扑结构全解

开关电源拓扑结构全解!什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。

最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。

开关电源的拓扑结构,常见拓扑大约有14种,每种都有自身的特点和适用场合。

选择原则是要看是大功率还是小功率,高压输出还是低压输出,以及是否要求器件尽量少等。

因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。

错误的选择会使电源设计一开始就注定失败。

下面为大家整理汇总了开关电源20种基本拓扑,帮助系统掌握每种电路结构的工作原理与基本特性。

一、20种开关电源拓扑对比常见的基本拓扑结构:■Buck 降压■Boost 升压■Buck-Boost 降压-升压■Flyback 反激■Forward 正激■Two-Transistor Forward 双晶体管正激■Push-Pull 推挽■Half Bridge 半桥■Full Bridge 全桥■SEPIC■C’uk二、基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关,基本的脉冲宽度调制波形定义如下:三、Buck降压特点:■把输入降至一个较低的电压■可能是最简单的电路■电感/电容滤波器滤平开关后的方波■输出总是小于或等于输入■输入电流不连续(斩波)■输出电流平滑四、Boost升压特点:■把输入升至一个较高的电压■与降压一样,但重新安排了电感、开关和二极管■输出总是比大于或等于输入(忽略二极管的正向压降)■输入电流平滑■输出电流不连续(斩波)五、Buck-Boost降压-升压特点:■电感、开关和二极管的另一种安排方法■结合了降压和升压电路的缺点■输入电流不连续(斩波)■输出电流也不连续(斩波)■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

各类拓扑变压计算公式汇总

各类拓扑变压计算公式汇总

16
原边电流峰值 Ipmax
Ipmax = Ipmin+ΔIp
17
原边有效电流 Ip
Ip = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]
18 原边电流直流分量 Ipdc
Ipdc = (Ipmin+ΔIp/2) *θon
19 原边电流交流分量 Ipac
Ipac = √(Ip2- Ipdc2)
δ′=μo*(Np2*Sc/Lp-Sc/AL)
如果δ′/lc≤0.005: δ=δ′
30
实际磁芯气隙 δ
如果δ′/lc>0.03: δ=μo*Np2*Sc/Lp
否则
δ=δ′*Sg/Sc
31
穿透直径 ΔD
ΔD = 132.2/√f
32
开关管反压 Uceo
Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′
5
导通时间 Ton
Ton =θon /f
6
最小副边电流 Ismin
Ismin =[Po-(Vs-0.5)*(Vs-0.5-Vo)*θon/(4*f*Ls)]/[(Vs-0.5)*θon]
7
副边电流增量 ΔIs
ΔIs = (Vs-0.5-Vo)* Ton/(2*Ls)
8
副边电流峰值 Ismax
Ismax = Ismin+ΔIs
副边电流增量 ΔIs
ΔIs = (Vs-0.5-Vo)* Ton/ Ls
8
副边电流峰值 Ismax
Ismax = Ismin+ΔIs
9
副边有效电流 Is
Is = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]

开关电源容量计算公式

开关电源容量计算公式

开关电源容量计算公式开关电源是一种常见的电源供应器件,其容量计算可以通过以下公式进行:P_out = η * Ρ_in其中P_out 是开关电源的输出功率,单位为瓦特(W);η是开关电源的效率,表示输入功率与输出功率之间的比率;P_in 是开关电源的输入功率,单位也为瓦特(W)。

一般来说,开关电源的容量与其输出功率成正比,因此容量计算的关键是确定输出功率。

常用的电流、电压和功率之间的关系可以通过以下公式表示:P=I*V其中P是功率,单位为瓦特(W);I是电流,单位为安培(A);V是电压,单位为伏特(V)。

根据这个公式,我们可以得出:V_out * I_out = η * V_in * I_in其中V_out 是开关电源的输出电压,单位为伏特(V);I_out 是开关电源的输出电流,单位为安培(A);V_in 是开关电源的输入电压,单位为伏特(V);I_in 是开关电源的输入电流,单位为安培(A)。

根据这个公式,我们可以推导出开关电源的输出功率公式:P_out = η * P_in其中P_out 是开关电源的输出功率,单位为瓦特(W);P_in 是开关电源的输入功率,单位也为瓦特(W)。

根据实际的电源输入情况,可以计算出输入功率 P_in,然后乘以效率η,即可确定开关电源的容量 P_out。

需要注意的是,在计算开关电源容量时,还需要考虑到负载功率的因素。

负载功率是指电源供应的设备或电路所需的功率。

如果负载功率超过了开关电源的容量,可能会导致电源的过载或失效。

综上所述,开关电源容量的计算公式为:P_out = η * P_in通过确定输入功率 P_in 和效率η,可以计算出开关电源的容量P_out。

但要注意负载功率的影响,确保电源容量能够满足负载需求。

开关电源的拓扑结构

开关电源的拓扑结构

主回路—开关电源中,功率电流流经的通路。

主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。

开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。

开关电源主回路可以分为隔离式与非隔离式两大类型。

1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。

1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。

开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。

串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。

例如buck拓扑型开关电源就是属于串联式的开关电源上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。

其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。

在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。

开关电源的基本拓扑结构

开关电源的基本拓扑结构

开关电源基本拓扑
10
电感电流临界连续(TM)
Io
1 2 iLf
max
iLf
max
Vin Vo Lf
DyTs
(1.14) (1.15)
若用IoG表示临界电流连续的负载电流, then
I oG
Io
1 2
I Lf
max
I oG
Vin Vout 2Lf fs
Dy
(1.16)
开关电源基本拓扑
11
Vin = constant (输入电压恒定)
Vout Lf
Ton
Vin
Vout Lf
Ts Dy
(1.10)
iLf
Vout Lf
Toff
Vout Lf
Ts D
where
D
T' off
Ts
(1 Dy )
Vout Dy Vin Dy D
Io
1 Ts
I Lf max 2
(Ton
T' off
)
1 2 I Lf max(Dy D)
(1.11) (1.12) (1.13)
开关电源基本拓扑
32
From (1.2 ) & (1.4)
Vout Vin
Dy
(1.6)
I0
I Lf
m in
I Lf 2
max
(1.7)
Q 1 iLf Ts 22 2
Vo
Q Cf
(1 Dy )Vo
8Lf C f
f
2 s
(1.8)
开关电源基本拓扑
8
Fig 1.3
开关电源基本拓扑
电流断续时的工作模式 (DCM)

开关电源的经验公式

开关电源的经验公式

FLYBACK SWITCHING POWER SUPPLY各主要元件設計參考值1.洩放電阻的計算:經驗公式: R=T/2.21C時間T取1S, C為CX電容容量的總和(單位:uF)則24V/1.25A此MODEL的洩放電阻R為(因CX1=0.33uF)R=1/2.21*0.33 ≒1.37MΩ,取近似值1.5MΩ, R1,R2串聯750KΩ;所以R1,R2各取750KΩ2.S側整流二極體的計算:A:正向截止電壓額定值經驗公式: V d=1.2V InMax(N s/N p)則24V/1.25A在此MODEL下的整流二極體正向截止電壓的額定值為V d=1.2*264*1.414(16/60)≒120V 取值為200VB:最小峰值正向電流值經驗公式: I fm=2I out/(1-δmax)則24V/1.25A在此MODEL下的整流二極體最小峰值正向電流值為 I fm=2*1.25/(1-0.47)≒4.7A 取值為10A所以D4取BYQ28E 200 (10A/200V)3.功率晶體管的計算:A:MOS管V dss電壓值經驗公式: V cemax=V InMax/(1-δMax)則24V/1.25A在此MODEL下的MOS體管DS電壓值為V dssMax=370/(1-0.2)≒460V 取值為600VA:MOS管I d電流值經驗公式: I d=2P out/(ηV InδMax)I d=2*30/(0.8*107*0.4)≒1.75A 取值為5.1A所以MOS管Q2取值為SSS10N60A (5.1A/600V)4.P側輸入電解電容的計算:經驗公式: C=2P out則24V/1.25A此MODEL的電解電容C3容量為C=2*30=60uF 取經驗值為56uF/400V所以電容C3取值為56uF/400V5.整流橋的計算:經驗公式: I0=P out/(ηVin min PF)則24V/1.25A此MODEL的整流橋為I0=30/(0.8*90*0.6)≒0.69A 取經驗值為1A所以整流橋D5,D6,D7,D8均取為1N4007 (1A/1000V)6.變壓器參數的計算:為計算參數的方便,假設變壓器工作在不連續模式, 再通過調整初級電电感量,來確定其工作模式.(1). 基本參數的確定工作頻率 f=55KHz V In=100V(90~264V AC)D Max=0.48 △B=0.18 TV2Min=V F+V L+V O=0.8+0.2+24=25V 電流密度 J=4A/mm2(2). 磁芯選取經驗公式: A E=0.15P O1/2=0.15*301/2=0.82cm2取EI28磁芯 A E=86mm2(3). 參數計算N=V2Min(1-D Max)/(V In*D Max)=25(1-0.48)/(100*0.48)=0.2708I PK=2P0/(V In D Maxη)=2*30/(100*0.48*0.85)=1.47AL P=V In D Max/(I PK f)=100*0.48/(1.47*55*103)=0.6mHN S>N*I PK*L P/(△B*A E)=0.2708*1.47*0.6*10-3/(0.18*86*106)=15.4 T S取N S=16T SN P=N S/N=16/0.2708=59.08取N P=60T SN F=V F N S/V2Min=18*16/25=11.5 T S (SG6840 AUX電源V F=18V)取N F=12T S(4). 線徑計算I PK RMS=I PK(D Max/3)1/2=1.47(0.48/3)1/2=0.59AΦN P=(I PK RMS/Jπ)1/2*2=(0.59/4*3.14)1/2*2=0.43mm取ΦN P=0.45mmΦN S=(I0/Jπ)1/2*2=(1.25/4*3.14)1/2*2=0.63mm取ΦN S=0.65mm取ΦN F = 0.35mm以上計算所得參數需經驗證,以確保窗口面積是否合適,可適當調整.為讓系統在整個電壓範圍內工作穩定,效率最高,電感量需作进一步调整,使其在整个电压范围内,两种工作模式(连续模式﹑不连续模式)都有跑到.最终电感量调整在1.25mH.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输入输出电压关系
D
T
Ton
Vin Vout ==
开关管电流
Iout
Iq =(max)1开关管电压
Vin
Vds =二极管电流
)
1(1D Iout Id −×=二极管反向电压
Vin
Vd =12、BOOST 电路
输入输出电压关系
D
Ton T T Vin Vout −=
−=11
开关管电流
11(
(max)1D
Iout Iq −×=开关管电压
Vout
Vds =二极管电流
Iout
Id =1二极管反向电压
Vout
Vd =13、BUCK BOOST 电路
输入输出电压关系
D
D
Ton T Ton Vin Vout −=
−=1开关管电流
11(
(max)1D
Iout Iq −×=开关管电压
Vout
Vin Vds −=二极管电流
Iout
Id =1二极管反向电压
Vout
Vin Vd −=1
输入输出电压关系
D
D
Vin Vout −=
1开关管电流
)1(
(max)1D
D Iout Iq −×=开关管电压
Vout
Vin Vds +=二极管电流
Iout
Id =1二极管反向电压
Vin
Vout Vd +=15、FLYBACK 电路
输入输出电压关系
Lp
Iout Vout
T D Vin Vout ×××=2开关管电流
(max)1Lp
Ton
Vin Iq ×=
开关管电压
Ns
Np Vout Vin Vds ×
+=二极管电流
Iout
Id =1二极管反向电压
Np
Ns Vin Vout Vd ×
+=16、FORW ARD 电路
输入输出电压关系
D Np
Ns
T Ton Np Ns Vin Vout ×=×=开关管电流
Iout Np
Ns
Iq ×=
(max)1开关管电压
Vin
Vds ×=2二极管电流
D
Iout Id ×=1
二极管反向电压
Np
Ns Vin Vout Vd ×
+=17、2SWITCH FORWARD 电路
输入输出电压关系
D Np
Ns
T Ton Np Ns Vin Vout ×=×=开关管电流
Iout Np
Ns
Iq ×=
(max)1开关管电压
Vin
Vds =二极管电流
D
Iout Id ×=1二极管反向电压
Np
Ns Vin Vout Vd ×
+=18、ACTIVE CLAMP FORWARD 电路
输入输出电压关系
D Np
Ns
T Ton Np Ns Vin Vout ×=×=开关管电流
Iout Np Ns
Iq ×=
(max)1开关管电压
)11(
D
Vin Vds −×=二极管电流
D
Iout Id ×=1二极管反向电压
D
Np Ns Vin Vout Vd −×
×
+=111
输入输出电压关系
D Np
Ns
T Ton Np Ns Vin Vout ×=×=开关管电流
Iout Np
Ns
Iq ×=
(max)1开关管电压
Vin
Vds =二极管电流
)21(2
1D Iout
D Iout Id −×+
×=二极管反向电压
2
1Vin Np Ns Vd ×=
10、PUSH PULL 电路
输入输出电压关系
D Np
Ns
T Ton Np Ns Vin Vout ××=××=22开关管电流
Iout Np
Ns
Iq ×=
(max)1开关管电压
Vin
Vds ×=2二极管电流
)21(2
1D Iout
D Iout Id −×+
×=二极管反向电压
Np
Ns Vin Vd ×
=1
输入输出电压关系
D Np
Ns
T Ton Np Ns Vin Vout ××=××=22开关管电流
Iout Np
Ns
Iq ×=
(max)1开关管电压
Vin
Vds =二极管电流
)21(2
1D Iout
D Iout Id −×+
×=二极管反向电压
Np
Ns Vin Vd ×
=112、PHASE SHIFT ZVT
输入输出电压关系
D Np
Ns
T Ton Np Ns Vin Vout ××=××=22开关管电流
Iout Np
Ns
Iq ×=
(max)1开关管电压
Vin
Vds =二极管电流
Iout Id ×=
2
1
1二极管反向电压
Np
Ns Vin Vd ×
=1。

相关文档
最新文档