人教版高一物理下册 抛体运动单元复习练习(Word版 含答案)
物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.一种定点投抛游戏可简化为如图所示的模型,以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P点,OP的连线正好与斜面垂直;当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小球落在P点的时间是1tanvgθB.Q点在P点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21xx>,所以21v v>,BC错误;D.落在P点的时间与落在Q点的时间之比是11222t vt v=,D正确。
故选D。
2.如图所示,一根长木杆ab两端分别固定在水平地面和竖直墙壁aO上,已知杆与水平地面之间的夹角为θ=53°,a点到地面的距离为12m。
从竖直墙壁上距地面8m的c点以水平速度v0射出一颗小石子,小石子运动的轨迹恰好与ab杆相切(重力加速度g取10m/s2,sin53°=0.8,cos53°=0.6),则小石子射出时的水平初速度为()A.310m/s B.35m/s C.352m/s D.3102m/s【答案】B【解析】【分析】【详解】将速度和重力都分解到垂直于杆的方向和沿着杆的方向,如图所示在垂直于杆的运动方向上10sin0.8v v vθ==在垂直于杆的方向的加速度1cos0.6g g gθ==由题可知,减速到零时的,恰好与杆相碰,则211cos2vacgθ=整理得35m/sv=故选B。
人教版物理高一下册 抛体运动单元综合测试(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()A6m/s22m/sv<<B.22m/s 3.5m/sv<≤C2m/s6m/sv<<D6m/s23m/sv<<【答案】A【解析】【分析】【详解】若小球打在第四级台阶的边缘上高度4h d=,根据2112h gt=,得1880.4s0.32s10dtg⨯===水平位移14x d=则平抛的最大速度1112m/s0.32xvt===若小球打在第三级台阶的边缘上,高度3h d=,根据2212h gt=,得260.24sdtg==水平位移23x d=,则平抛运动的最小速度2226m/s0.24xvt===所以速度范围6m/s22m/sv<<故A正确。
故选A。
【点睛】对于平抛运动的临界问题,可以通过画它们的运动草图确定其临界状态及对应的临界条件。
2.一小船在静水中的速度为3m/s ,它在一条河宽150m 、水流速度为4m/s 的河流中渡河,则该小船( ) A .能到达正对岸 B .渡河的时间不少于50sC .以最短时间渡河时,它渡河的位移大小为200mD .以最短位移渡河时,位移大小为150m 【答案】B 【解析】 【分析】 【详解】A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;B .当船在静水中的速度垂直河岸时,渡河时间最短min 150s 50s 3d t v ===船 选项B 正确;C .船以最短时间50s 渡河时,沿水流方向的位移大小450m 200m min x v t ==⨯=水渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误; D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
高一物理下册 抛体运动单元练习(Word版 含答案)
一、第五章 抛体运动易错题培优(难)1.如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点。
O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为30°,重力加速度为g ,不计空气阻力,则小球抛出时的初速度大小为( )A (323)6gR +B 332gRC (13)3gR +D 33gR【答案】A 【解析】 【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有0tan60y v v =竖直方向y gt =v水平方向小球做匀速直线运动,则有0cos30R R v t +=联立解得0(323)6gRv +=故A 正确,BCD 错误。
故选A 。
【点睛】解决本题的关键是掌握平抛运动在水平方向和竖直方向上的运动规律,抓住速度方向,结合位移关系、速度关系进行求解。
2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M 点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s 后落到斜面雪坡上的N 点。
运动员离开M 点时的速度大小用0v 表示,运动员离开M 点后,经过时间t 离斜坡最远。
(sin370.60︒=,cos370.80︒=,g 取210m/s ),则0v 和t 的值为( )A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
人教版高一物理下册 抛体运动单元综合测试(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s后落到斜面雪坡上的N点。
运动员离开M点时的速度大小用v表示,运动员离开M点后,经过时间t离斜坡最远。
(sin370.60︒=,cos370.80︒=,g取210m/s),则0v和t的值为()A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
人教版高一下册物理 抛体运动单元测试卷 (word版,含解析)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
人教版高一物理下册 抛体运动单元测试卷 (word版,含解析)
一、第五章 抛体运动易错题培优(难)1.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
所以知重物的速度先增大后减小,且最大速度为ωL ,此时杆是与绳垂直,而不是水平的,故ACD 错误;B .上面的分析得出,重物的速度先增大后减小,所以重物M 先向上加速后向上减速,即先超重后失重,故B 正确。
故选B 。
【点睛】解决本题的关键在于掌握运动的合成与分解,把C 点的速度分解为沿绳方向和垂直于绳的方向,沿绳方向的分速度等于重物的速度。
2.在光滑水平面上,有一质量为m 的质点以速度0v 做匀速直线运动。
t =0时刻开始,质点受到水平恒力F 作用,速度大小先减小后增大,运动过程中速度最小值为012v 。
质点从开始受到恒力作用到速度最小的过程经历的时间为t ,发生位移的大小为x ,则判断正确的是( )A .02mv t F=B .04t F =C .204x F=D .28x F=【答案】D 【解析】 【分析】 【详解】AB .在t =0时开始受到恒力F 作用,加速度不变,做匀变速运动,若做匀变速直线运动,则最小速度可以为零,所以质点受力F 作用后一定做匀变速曲线运动。
人教版高一下册物理 抛体运动单元测试卷 (word版,含解析)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A .α的值B .小球的初速度v 0C .小球在空中运动时间D .小球初动能 【答案】A 【解析】 【分析】 【详解】设初速度v 0与竖直方向夹角β,则β=90°−α(1);由A 点斜抛至至最高点时,设水平位移为x 1,竖直位移为y 1,由最高点至碰撞点D 的平抛过程Ⅱ中水平位移为x 2,竖直位移y 2。
A 点抛出时:0sin x v v β=(2)10cos y v v β=(3)2112y v y g=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sin x v v β=不变,斜面倾角θ=45°,20tan 45sin y x x v v v v β===(5)2222y y y g=(6)()222012cos sin 2v y y y gββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
高一下册物理 抛体运动单元复习练习(Word版 含答案)(1)
一、第五章 抛体运动易错题培优(难)1.一小船在静水中的速度为3m/s ,它在一条河宽150m 、水流速度为4m/s 的河流中渡河,则该小船( ) A .能到达正对岸 B .渡河的时间不少于50sC .以最短时间渡河时,它渡河的位移大小为200mD .以最短位移渡河时,位移大小为150m 【答案】B 【解析】 【分析】 【详解】A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;B .当船在静水中的速度垂直河岸时,渡河时间最短min 150s 50s 3d t v ===船 选项B 正确;C .船以最短时间50s 渡河时,沿水流方向的位移大小450m 200m min x v t ==⨯=水渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误; D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
若以最短位移渡河,情景如图根据三角形相似可知,最短位移150m 200m v s v =⨯=水船选项D 错误。
故选B 。
2.不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v =2m/s 的速度由C 点匀速向下运动到D 点,同时甲由A 点向右运动到B 点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
已知sin37°=0.6,cos37°=0.8。
则下列说法正确的是( )A .甲在A 点的速度为2m/sB .甲在A 点的速度为2.5m/sC .甲由A 点向B 点运动的过程,速度逐渐增大D .甲由A 点向B 点运动的过程,速度先增大后减小 【答案】C 【解析】 【分析】 【详解】AB .将甲的速度分解为沿绳子方向和垂直于绳子方向,如图所示,拉绳子的速度等于甲沿绳子方向的分速度,设该速度为v 绳,根据平行四边形定则得,B 点的实际速度cos53B v v =︒绳同理,D 点的速度分解可得cos37D v v =︒绳联立解得cos53cos37B D v v ︒=︒那么,同理则有cos37cos53A C v v ︒=︒由于控制乙物体以2m s v =的速度由C 点匀速向下运动到D 点,因此甲在A 点的速度为1.5m A v =,AB 错误;CD .设甲与悬点连线与水平夹角为α,乙与悬点连线与竖直夹角为β,由上分析可得cos cos A C v v αβ=在乙下降过程中,α角在逐渐增大,β角在逐渐减小,则有甲的速度在增大,C 正确,D故选C。
人教版物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan 90222tan y x v y x v ββ==-=(8) 由(8)变形化解:2011cos sin 2tan v x y gβββ==(9)同理,Ⅱ中水平位移为:22022sin 2tan 45v x y gβ==(10)()2012sin sin cos v x x x gβββ+=+=总(11) =tan45yx ∆总故=y x ∆总即2sin sin cos βββ-=-(12)由此得1tan 3β=19090arctan 3αβ=-=-故可求得α的值,其他选项无法求出; 故选:A 。
2.如图所示,一块橡皮用细线悬挂于O 点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度A .大小和方向均不变B .大小不变,方向改变C .大小改变,方向不变D .大小和方向均改变 【答案】A 【解析】 【分析】【详解】橡皮参与了水平向右和竖直向上的分运动,如图所示,两个方向的分运动都是匀速直线运动,v x 和v y 恒定,则v 合恒定,则橡皮运动的速度大小和方向都不变,A 项正确.3.一小船在静水中的速度为3m/s ,它在一条河宽150m 、水流速度为4m/s 的河流中渡河,则该小船( ) A .能到达正对岸 B .渡河的时间不少于50sC .以最短时间渡河时,它渡河的位移大小为200mD .以最短位移渡河时,位移大小为150m 【答案】B 【解析】 【分析】 【详解】A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;B .当船在静水中的速度垂直河岸时,渡河时间最短min 150s 50s 3d t v ===船 选项B 正确;C .船以最短时间50s 渡河时,沿水流方向的位移大小450m 200m min x v t ==⨯=水渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误; D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
物理高一下册 抛体运动单元练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan90222tanyxvyx vββ==-=(8)由(8)变形化解:211cos sin2tanvx ygβββ==(9)同理,Ⅱ中水平位移为:2222sin2tan45vx ygβ==(10)()212sin sin cosvx x xgβββ+=+=总(11)=tan45yx∆总故=y x∆总即2sin sin cosβββ-=-(12)由此得1tan3β=19090arctan3αβ=-=-故可求得α的值,其他选项无法求出;故选:A。
2.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M,C点与O点距离为L,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是()A.重物M做匀速直线运动B.重物M先超重后失重C.重物M的最大速度是Lω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章 抛体运动易错题培优(难)1.如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点。
O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为30°,重力加速度为g ,不计空气阻力,则小球抛出时的初速度大小为( )A (323)6gR +B 332gRC (13)3gR +D 33gR【答案】A 【解析】 【分析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有0tan60y v v =竖直方向y gt =v水平方向小球做匀速直线运动,则有0cos30R R v t +=联立解得0(323)6gRv +=故A 正确,BCD 错误。
故选A 。
【点睛】解决本题的关键是掌握平抛运动在水平方向和竖直方向上的运动规律,抓住速度方向,结合位移关系、速度关系进行求解。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/sC .4m/sD .4.75m/s【答案】B 【解析】 【分析】 【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
故选B 。
3.一个半径为R 的空心球固定在水平地面上,球上有两个与球心O 在同一水平面上的小孔A 、B ,且60AOB ∠=︒2gR设水流出后做平抛运动,重力加速度g ,则两孔流出的水的落地点间距离为( ) A .R B 3RC .2RD .23R【答案】C 【解析】 【分析】 【详解】水做平抛运动,竖直方向上有2 12R gt=解得运动时间2Rtg=水平方向上有22gR Rx v t Rg===则两落地点距圆心在地面投影点的距离为2R,与圆心在地面投影点的连线夹角为60︒,两落地点和圆心在地面投影点组成等边三角形,根据几何知识可知,两落地点间距为2R,选项C正确,ABD错误。
物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.一种定点投抛游戏可简化为如图所示的模型,以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P点,OP的连线正好与斜面垂直;当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰。
不计空气阻力,重力加速度为g,下列说法正确的是()A.小球落在P点的时间是1tanvgθB.Q点在P点的下方C.v1>v2D.落在P点的时间与落在Q点的时间之比是122vv【答案】D【解析】【分析】【详解】A.以水平速度v1从O点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan12v t vgtgtθ==所以112tanvtgθ=A错误;BC.当以水平速度v2从O点抛出小球,小球正好与斜面在Q点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tanvgtθ=即22tanvtgθ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q点在P点的上方,21t t<,水平位移21x x >,所以21v v >,BC 错误; D .落在P 点的时间与落在Q 点的时间之比是11222t v t v =,D 正确。
故选D 。
2.一个半径为R 的空心球固定在水平地面上,球上有两个与球心O 在同一水平面上的小孔A 、B ,且60AOB ∠=︒,球装满水后,有水以2gR的速度从两孔沿径向水平流出,设水流出后做平抛运动,重力加速度g ,则两孔流出的水的落地点间距离为( ) A .R B .3R C .2R D .23R【答案】C 【解析】 【分析】 【详解】水做平抛运动,竖直方向上有212R gt =解得运动时间2Rt g=水平方向上有022gR Rx v t R g=== 则两落地点距圆心在地面投影点的距离为2R ,与圆心在地面投影点的连线夹角为60︒,两落地点和圆心在地面投影点组成等边三角形,根据几何知识可知,两落地点间距为2R ,选项C 正确,ABD 错误。
物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s后落到斜面雪坡上的N点。
运动员离开M点时的速度大小用v表示,运动员离开M点后,经过时间t离斜坡最远。
(sin370.60︒=,cos370.80︒=,g取210m/s),则0v和t的值为()A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
人教版高一下册物理 抛体运动单元测试题(Word版 含解析)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan90222tanyxvyx vββ==-=(8)由(8)变形化解:211cos sin2tanvx ygβββ==(9)同理,Ⅱ中水平位移为:2222sin2tan45vx ygβ==(10)()212sin sin cosvx x xgβββ+=+=总(11)=tan45yx∆总故=y x∆总即2sin sin cosβββ-=-(12)由此得1tan3β=19090arctan3αβ=-=-故可求得α的值,其他选项无法求出;故选:A。
2.如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点。
O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为30°,重力加速度为g,不计空气阻力,则小球抛出时的初速度大小为()A(323)6gR+B332gRC(13)3gR+D33gR【答案】A【解析】根据题意,小球在飞行过程中恰好与半圆轨道相切于B点,可知速度的方向与水平方向成600角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
人教版物理高一下册 抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()A6m/s22m/sv<<B.22m/s 3.5m/sv<≤C2m/s6m/sv<<D6m/s23m/sv<<【答案】A【解析】【分析】【详解】若小球打在第四级台阶的边缘上高度4h d=,根据2112h gt=,得1880.4s0.32s10dtg⨯===水平位移14x d=则平抛的最大速度1112m/s0.32xvt===若小球打在第三级台阶的边缘上,高度3h d=,根据2212h gt=,得260.24sdtg==水平位移23x d=,则平抛运动的最小速度2226m/s0.24xvt===所以速度范围6m/s22m/sv<<故A正确。
故选A。
【点睛】对于平抛运动的临界问题,可以通过画它们的运动草图确定其临界状态及对应的临界条件。
2.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
高一下册抛体运动单元复习练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s后落到斜面雪坡上的N点。
运动员离开M点时的速度大小用v表示,运动员离开M点后,经过时间t离斜坡最远。
(sin370.60︒=,cos370.80︒=,g取210m/s),则0v和t的值为()A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
物理高一下册 抛体运动单元练习(Word版 含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.一小船在静水中的速度为3m/s,它在一条河宽150m、水流速度为4m/s的河流中渡河,则该小船()A.能到达正对岸B.渡河的时间不少于50sC.以最短时间渡河时,它渡河的位移大小为200mD.以最短位移渡河时,位移大小为150m【答案】B【解析】 【分析】 【详解】A .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸,选项A 错误;B .当船在静水中的速度垂直河岸时,渡河时间最短min 150s 50s 3d t v ===船 选项B 正确;C .船以最短时间50s 渡河时,沿水流方向的位移大小450m 200m min x v t ==⨯=水渡河位移应为水流方向的位移与垂直河岸方向位移的合位移,选项C 错误; D .因为船在静水中的速度小于河水的流速,由平行四边形法则求合速度不可能垂直河岸,小船不可能垂直河岸正达对岸。
高一物理下册 抛体运动单元复习练习(Word版 含答案)
一、第五章 抛体运动易错题培优(难)1.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )A .重物M 做匀速直线运动B .重物M 先超重后失重C .重物M 的最大速度是L ω,此时杆水平D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为c v L ω=该线速度在绳子方向上的分速度为1v1cos v L ωθ=θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
所以知重物的速度先增大后减小,且最大速度为ωL ,此时杆是与绳垂直,而不是水平的,故ACD 错误;B .上面的分析得出,重物的速度先增大后减小,所以重物M 先向上加速后向上减速,即先超重后失重,故B 正确。
故选B 。
【点睛】解决本题的关键在于掌握运动的合成与分解,把C 点的速度分解为沿绳方向和垂直于绳的方向,沿绳方向的分速度等于重物的速度。
2.甲、乙两船在静水中航行的速度分别为5m/s 和3m/s ,两船从同一渡口过河,已知甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同。
则水的流速为( ) A .3m/s B .3.75m/sC .4m/sD .4.75m/s【答案】B 【解析】 【分析】 【详解】由题意,甲船以最短时间过河,乙船以最短航程过河,结果两船抵达对岸的地点恰好相同,可知,甲乙实际速度方向一样,如图所示可得tan v v θ=水甲cos v v θ=乙水两式相乘,得3sin =5v v θ=乙甲 则3tan =4v v θ=水甲,解得v 水=3.75m/s ,B 正确,ACD 错误。
人教版物理高一下册 抛体运动单元测试题(Word版 含解析)
一、第五章抛体运动易错题培优(难)1.如图,光滑斜面的倾角为θ=45°,斜面足够长,在斜面上A点向斜上方抛出一小球,初速度方向与水平方向夹角为α,小球与斜面垂直碰撞于D点,不计空气阻力;若小球与斜面碰撞后返回A点,碰撞时间极短,且碰撞前后能量无损失,重力加速度g取10m/s2。
则可以求出的物理量是()A.α的值B.小球的初速度v0C.小球在空中运动时间D.小球初动能【答案】A【解析】【分析】【详解】设初速度v0与竖直方向夹角β,则β=90°−α(1);由A点斜抛至至最高点时,设水平位移为x1,竖直位移为y1,由最高点至碰撞点D的平抛过程Ⅱ中水平位移为x2,竖直位移y2。
A点抛出时:sinxv vβ=(2)10cosyv vβ=(3)2112yvyg=(4)小球垂直打到斜面时,碰撞无能力损失,设竖直方向速度v y2,则水平方向速度保持0sinxv vβ=不变,斜面倾角θ=45°,20tan45siny x xv v v vβ===(5)2222yyyg=(6)()22212cos sin2vy y ygββ-∆=-=(7),平抛运动中,速度的偏向角正切值等于位移偏向角的正切值的二倍,所以:()111111tan90222tanyxvyx vββ==-=(8)由(8)变形化解:211cos sin2tanvx ygβββ==(9)同理,Ⅱ中水平位移为:2222sin2tan45vx ygβ==(10)()212sin sin cosvx x xgβββ+=+=总(11)=tan45yx∆总故=y x∆总即2sin sin cosβββ-=-(12)由此得1tan3β=19090arctan3αβ=-=-故可求得α的值,其他选项无法求出;故选:A。
2.不可伸长的轻绳通过定滑轮,两端分别与甲、乙两物体连接,两物体分别套在水平、竖直杆上。
控制乙物体以v=2m/s的速度由C点匀速向下运动到D点,同时甲由A点向右运动到B点,四个位置绳子与杆的夹角分别如图所示,绳子一直绷直。
人教版物理高一下册 抛体运动单元试卷(word版含答案)
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4m,一小球以水平速度v飞出,欲打在第四台阶上,则v的取值范围是()A 6m/s 22m/s v <<B .22m/s 3.5m/s v <≤C 2m/s 6m/s v <<D 6m/s 23m/s v <<【答案】A 【解析】 【分析】 【详解】若小球打在第四级台阶的边缘上高度4h d =,根据2112h gt =,得 1880.4s 0.32s 10d t g ⨯=== 水平位移14x d = 则平抛的最大速度1112m/s 0.32x v t === 若小球打在第三级台阶的边缘上,高度3h d =,根据2212h gt =,得 260.24s dt g== 水平位移23x d =,则平抛运动的最小速度2226m/s 0.24x v t === 所以速度范围6m/s 22m/s v <<故A 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第五章抛体运动易错题培优(难)1.如图所示,半径为R的半球形碗竖直固定,直径AB水平,一质量为m的小球(可视为质点)由直径AB上的某点以初速度v0水平抛出,小球落进碗内与内壁碰撞,碰撞时速度大小为2gR,结果小球刚好能回到抛出点,设碰撞过程中不损失机械能,重力加速度为g,则初速度v0大小应为()A.gR B.2gR C.3gR D.2gR【答案】C【解析】小球欲回到抛出点,与弧面的碰撞必须是垂直弧面的碰撞,即速度方向沿弧AB的半径方向.设碰撞点和O的连线与水平夹角α,抛出点和碰撞点连线与水平夹角为β,如图,则由21sin2y gt Rα==,得2sinRtgα=,竖直方向的分速度为2sinyv gt gRα==,水平方向的分速度为22(2)(2sin)42sinv gR gR gR gRαα=-=-,又00tan yv gtv vα==,而20012tan2gt gtv t vβ==,所以tan2tanαβ=,物体沿水平方向的位移为2cosx Rα=,又0x v t=,联立以上的方程可得3v gR=,C正确.2.2022年第24届冬奥会由北京市和张家口市联合承办。
滑雪是冬奥会的比赛项目之一,如图所示。
若斜面雪坡的倾角37θ=︒,某运动员(可视为质点)从斜面雪坡顶端M点沿水平方向飞出后,在空中的姿势保持不变,不计空气阻力,若运动员经3s后落到斜面雪坡上的N点。
运动员离开M点时的速度大小用v表示,运动员离开M点后,经过时间t离斜坡最远。
(sin370.60︒=,cos370.80︒=,g取210m/s),则0v和t的值为()A .15m/s 2.0sB .15m/s 1.5sC .20m/s 1.5sD .20m/s 2.0s【答案】C 【解析】 【分析】 【详解】运动员离开M 点做平抛运动,竖直方向上有212h gt =解得45m h =由几何关系有tan hx θ=又0x v t =解得020m/s v =运动员离开斜坡最远时速度方向与斜坡平行,有tan y v v θ=又y gt =v解得1.5s t =选项C 正确,ABD 错误。
故选C 。
3.一种定点投抛游戏可简化为如图所示的模型,以水平速度v 1从O 点抛出小球,正好落入倾角为θ的斜面上的洞中,洞口处于斜面上的P 点,OP 的连线正好与斜面垂直;当以水平速度v 2从O 点抛出小球,小球正好与斜面在Q 点垂直相碰。
不计空气阻力,重力加速度为g ,下列说法正确的是( )A .小球落在P 点的时间是1tan v g θB .Q 点在P 点的下方C .v 1>v 2D .落在P 点的时间与落在Q 点的时间之比是122v v【答案】D 【解析】 【分析】 【详解】A .以水平速度v 1从O 点抛出小球,正好落入倾角为θ的斜面上的洞中,此时位移垂直于斜面,由几何关系可知1112112tan 12v t vgt gt θ== 所以112tan v t g θ=A 错误;BC .当以水平速度v 2从O 点抛出小球,小球正好与斜面在Q 点垂直相碰,此时速度与斜面垂直,根据几何关系可知22tan v gt θ=即22tan v t g θ=根据速度偏角的正切值等于位移偏角的正切值的二倍,可知Q 点在P 点的上方,21t t <,水平位移21x x >,所以21v v >,BC 错误;D .落在P 点的时间与落在Q 点的时间之比是11222t v t v =,D 正确。
故选D 。
4.一个半径为R 的空心球固定在水平地面上,球上有两个与球心O 在同一水平面上的小孔A 、B ,且60AOB ∠=︒,球装满水后,有水以2gR的速度从两孔沿径向水平流出,设水流出后做平抛运动,重力加速度g ,则两孔流出的水的落地点间距离为( ) A .R B .3R C .2R D .23R【答案】C 【解析】 【分析】 【详解】水做平抛运动,竖直方向上有212R gt =解得运动时间2Rt g=水平方向上有022gR Rx v t R g=== 则两落地点距圆心在地面投影点的距离为2R ,与圆心在地面投影点的连线夹角为60︒,两落地点和圆心在地面投影点组成等边三角形,根据几何知识可知,两落地点间距为2R ,选项C 正确,ABD 错误。
故选C 。
5.如图为平静的湖边一倾角为30°的大坝的横截面示意图,水面与大坝的交点为O 。
一人站在A 点处以速度v 0沿水平方向扔小石子,已知AO =40m ,下列说法中正确的是( )A .若v 0=18m/s ,则石块可以落入水中B .v 0越大,平抛过程速度随时间的变化率越大C .若石块不能落入水中,则v 0越大,落到斜面上时速度方向与斜面的夹角越大D .若石块能落入水中,则v 0越大,全程的速度变化量越大 【答案】A 【解析】 【分析】 【详解】A .根据平抛运动规律可得tan 302y gt x v ==当018m/s v =时,解得635t = 从A 到O 的有211sin 2AO θgt ⋅=解得12s t =,由于1t t >,所以石块可以落入水中,A 正确;B .速度随时间的变化率即加速度,平抛运动的加速度不变,与初速度无关,B 错误;C .若石块不能落入水中,速度方向与水平方向的夹角的正切值为tan gt v α=位移方向与水平方向夹角的正切值tan 2y gt x v θ== 可知tan 2tan αθ=,因为θ一定,则速度与水平方向的夹角一定,可知石块落到斜面时速度方向与斜面的夹角一定,与初速度无关,C 错误;D .若石块能落入水中,由于距水面高度不变,落水时间相同,速度变化量为ΔΔv g t =所以全程的速度变化量相同,D 错误。
故选A 。
6.如图,A 、B 、C 三个物体用轻绳经过滑轮连接,物体A 、B 的速度向下,大小均为v ,则物体C 的速度大小为( )A .2vcosθB .vcosθC .2v/co sθD .v/cosθ【答案】D 【解析】 【分析】 【详解】将C 速度分解为沿绳子方向和垂直与绳子方向,根据平行四边形定则,则有cos C v v θ=,则cos C vv θ=,故选D . 【点睛】解决本题的关键知道沿绳子方向上的速度是如何分解,将C 的速度分解,沿绳子方向的分速度大小等于小物体的速度大小,掌握运动的合成与分解的方法.7.如图所示,水平面上有一汽车A ,通过定滑轮用绳子拉同一水平面的物体B ,使物体B 匀速向右运动,物体B 与地面的动摩擦因数为0.6,当拉至图示位置时,两绳子与水平面的夹角分别为α、β,二者速度分别为A v 和B v ,则( )A .汽车向右做减速运动B .若图示位置αβ<,则A B v v <C .β从30°到60°的过程中组子对B 的拉力越来越小D .β从30°到60°的过程中绳子对B 的拉力的功率越来越小 【答案】ABD 【解析】 【详解】A. A 、B 两物体的速度分解如图:由图可知,A A v v cos α=绳B B v v cos β=绳 A B v v =绳绳物体B 匀速向右运动,所以β增大,A B v v =绳绳减小,又α减小,cos α增大,所以A v 减小,即汽车向右做减速运动,选项A 正确; B.若图示位置αβ<,则A B v v <,选项B 正确;C.β从30°到60°的过程中绳子对B 的拉力先减小后增大,选项C 错误;D.因为β从30°到60°的过程中B 的摩擦力减小,故绳子对B 的拉力的功率减小。
选项D 正确。
故选ABD 。
8.如图所示,斜面倾角为37θ=°,小球从斜面顶端P 点以初速度0v 水平抛出,刚好落在斜面中点处。
现将小球以初速度02v水平抛出,不计空气阻力,小球下落后均不弹起,sin370.6︒=,cos370.8︒=,重力加速度为g,则小球两次在空中运动过程中()A.时间之比为1:2B.时间之比为1:2C.水平位移之比为1:4D.当初速度为0v时,小球在空中离斜面的最远距离为2940vg【答案】BD【解析】【详解】AB.设小球的初速度为v0时,落在斜面上时所用时间为t,斜面长度为L。
小球落在斜面上时有:200122gt gttanv t vθ==解得:2v tantgθ⋅=设落点距斜面顶端距离为S,则有22002v t v tanS vcos gcosθθθ==∝若两次小球均落在斜面上,落点距斜面顶端距离之比为1:4,则第二次落在距斜面顶端4L 处,大于斜面的长度,可知以2v0水平拋出时小球落在水平面上。
两次下落高度之比1:2,根据212h gt=得:2htg=所以时间之比为1:2,选项A 错误,B 正确; C.根据0x v t =得水平位移之比为:12010122122x x v t v t =⋅=::():选项C 错误;D.当小球的速度方向与斜面平行时,小球到斜面的距离最大。
即在小球距离斜面最远时,垂直于斜面方向的速度等于0。
建立沿斜面和垂直于斜面的平面直角坐标系,将初速度v0和重力加速度g 进行分解,垂直于斜面的最远距离2200()92cos 40v sin v H g gθθ==选项D 正确。
故选BD 。
9.如图所示,斜面ABC 放置在水平地面上,AB =2BC ,O 为AC 的中点,现将小球从A 点正上方、A 与F 连线上某一位置以某一速度水平抛出,落在斜面上.己知D 、E 为AF 连线上的点,且AD=DE=EF ,D 点与C 点等高.下列说法正确的是A .若小球落在斜面上的速度与斜面垂直,则小球的飞行时间由初速度大小决定B .若小球从D 点抛出,有可能垂直击中O 点C .若小球从E 点抛出,有可能垂直击中O 点D .若小球从F 点抛出,有可能垂直击中C 点 【答案】AD 【解析】 【详解】A .假设∠A 的为θ,若小球落在斜面上的速度与斜面垂直,将落点的速度分解在水平方向和竖直方向,则:tan y θ=v vy gt =v所以,解得:tan v t g θ=角度是确定的1tan 2BC AB θ== 可以解得:2v t g=所以小球的飞行时间由初速度大小决定.故A 正确.BCD .若小球落在斜面上的速度与斜面垂直,则小球的飞行时间由初速度大小决定. 水平方向的位移:2000022v v x v t v g g==⋅=竖直方向的位移:222002211()22v v y gt g x AD g g=====则抛出点距离A 点的距离为:33'tan 22y y x y AD θ=+== 所以若小球落在斜面上的速度与斜面垂直,则小球的水平位移和竖直位移相等. 垂直击中O 点,有:12o x AB BC AD ===,则3'2o y AD =即在DE 的中点抛出才有可能垂直击中O 点,故小球从D 点、E 点抛出均不能垂直击中O 点,故BC 错误. 垂直击中O 点,有:2C x AB AD ==,则3'32C C y x AD ==即小球从F 点抛出,有可能垂直击中C 点.故D 正确.10.如图所示,船停在平静的河水中,人在岸上拉船,人匀速向左的速度为v ,则( )A .船在河中做匀速直线运动,速度也为vB .船在河中做匀减速直线运动C .船在河中做加速度增加的加速直线运动D .斜绳与水平成30时,2:3v v =人船【答案】CD 【解析】 【分析】 【详解】AB .由题意知,船的速度方向水平向左。