上海好的数学补习班 上海好的高中补习班-各章节知识点总结(大纲版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[新王牌]高二数学复习知识点归纳总结

不等式单元知识总结 一、不等式的性质

1.两个实数a 与b 之间的大小关系

(1)a b 0a b (2)a b =0a =b (3)a b 0a b ->>;

-;-<<.⇔⇔⇔⎧⎨⎪

⎩⎪

若、,则>>;;

<<. a b R (4)a

b 1a b (5)a

b =1a =b (6)a

b 1a b ∈⇔⇔⇔⎧⎨⎪⎪⎪⎩⎪⎪⎪+

2.不等式的性质

(1)a b b a()><对称性⇔

(2)a b b c a c()>>>传递性⎫

⎬⎭⇒

(3)a b a c b c()>+>+加法单调性⇔

a b c 0 ac bc >>>⎫

⎬⎭⇒

(4) (乘法单调性)

a b c 0 ac bc ><<⎫

⎬⎭⇒

(5)a b c a c b()+>>-移项法则⇒

(6)a b c d a c b d()>>+>+同向不等式可加⎫⎬⎭⇒

(7)a b c d a c b d()><->-异向不等式可减⎫⎬⎭⇒ (8)a b 0c d 0ac bd()>>>>>同向正数不等式可乘⎫⎬⎭⇒ (9)a b 00c d b d ()

>><<>异向正数不等式可除⎫⎬⎭⇒a c

(10)

a b 0n N a b ()

n n

>>>正数不等式可乘方∈⎫⎬⎭

(11)a b 0n N a ()

n >>>正数不等式可开方∈⎫⎬⎭

⇒b n

(12)a b 01a ()>><正数不等式两边取倒数⇒

1

b

3.绝对值不等式的性质

(1)|a|a |a|= a (a 0)a (a 0)≥;≥,

-<.⎧⎨

(2)如果a >0,那么

|x|a x a a x a 22<<-<<;⇔⇔ |x|a x a x a x a 22>>>或<-.⇔⇔

(3)|a ·b|=|a|·|b|.

(4)|a b | (b 0)=≠.

||

||a b

(5)|a|-|b|≤|a ±b|≤|a|+|b|.

(6)|a 1+a 2+……+a n |≤|a 1|+|a 2|+……+|a n |. 二、不等式的证明 1.不等式证明的依据

(1)a b ab 0a b ab 0a b 0a b a b 0a b a b =0a =b

实数的性质:、同号>;、异号<->>;-<<;-⇔⇔⇔⇔⇔

(2)不等式的性质(略)

(3)重要不等式:①|a|≥0;a 2≥0;(a -b)2

≥0(a 、b ∈R)

②a 2+b 2

≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号)

③≥、,当且仅当时取“”号a b +∈+2ab(a b R a =b =)

2.不等式的证明方法

(1)比较法:要证明a >b(a <b),只要证明a -b >0(a -b <0),这种证明不等式的方法叫做比较法.

用比较法证明不等式的步骤是:作差——变形——判断符号.

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等. 三、解不等式

1.解不等式问题的分类

(1)解一元一次不等式. (2)解一元二次不等式.

(3)可以化为一元一次或一元二次不等式的不等式. ①解一元高次不等式; ②解分式不等式; ③解无理不等式; ④解指数不等式; ⑤解对数不等式;

⑥解带绝对值的不等式; ⑦解不等式组.

2.解不等式时应特别注意下列几点:

(1)正确应用不等式的基本性质.

(2)正确应用幂函数、指数函数和对数函数的增、减性. (3)注意代数式中未知数的取值范围. 3.不等式的同解性

(1)f(x)g(x)0 f(x)0 g(x)0 f(x)0

g(x)0·>与>>或<<同解.

⎧⎨⎩⎧⎨⎩ (2)f(x)g(x)0f(x)0g(x)0 f(x)0

g(x)0·<与><或<>同解.

⎧⎨⎩⎧⎨⎩ (3)f(x)

g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)>与>>或<<同解.≠⎧⎨⎩⎧⎨⎩

(4)f(x)

g(x)0f(x)0g(x)0 f(x)0g(x)0(g(x)0)<与><或<>同解.≠⎧⎨⎩⎧⎨⎩

(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)

(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.

(7)f(x)g(x) f(x)[g(x)]

f(x)0g(x)0f(x)0g(x)02>与>≥≥或≥<同解.

⎧⎨⎪

⎩⎪

⎧⎨⎩

(8)f(x)g(x)f(x)[g(x)]f(x)02

<与<≥同解.

⎧⎨⎩

(9)当a >1时,a

f(x)

>a

g(x)

与f(x)>g(x)同解,当0<a <1时,a

f(x)

>a

g(x)

与f(x)<g(x)同解.

(10)a 1log f(x)log g(x)f(x)g(x)

f(x)0a a 当>时,>与>>同解.

⎧⎨⎩

当<<时,>与<>>同解.

0a 1log f(x)log g(x)f(x)g(x) f(x)0g(x)0a a ⎧⎨⎪

⎩⎪

直线和圆的方程单元知识总结

一、坐标法 1.点和坐标

建立了平面直角坐标系后,坐标平面上的点和一对有序实数(x ,y)建立了一一对应的关系. 2.两点间的距离公式

设两点的坐标为P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离

|P P |=12()()x x y y 212212-+-

特殊位置的两点间的距离,可用坐标差的绝对值表示: (1)当x 1=x 2时(两点在y 轴上或两点连线平行于y 轴),则 |P 1P 2|=|y 2-y 1|

(2)当y 1=y 2时(两点在x 轴上或两点连线平行于x 轴),则 |P 1P 2|=|x 2-x 1| 3.线段的定比分点

相关文档
最新文档