变频调速异步电动机的设计要点
变频调速三相异步电动机的设计
变频调速三相异步电动机的设计本文将探讨变频调速技术在三相异步电动机设计中的应用。
本文将简要介绍变频调速技术的原理和发展概况;将详细阐述三相异步电动机的基本工作原理和设计步骤;将讨论变频调速技术在三相异步电动机设计中的应用及其优势。
变频调速技术是一种基于电力电子技术与微控制技术的调节电动机转速的方法。
它通过对电源频率的改变,实现对电动机的平滑调速。
变频调速技术具有高效、节能、精准控制等优点,已成为现代工业领域中广泛应用的调速技术之一。
近年来,随着电力电子器件的不断更新和微控制技术的进步,变频调速技术的性能和可靠性得到了极大的提高。
三相异步电动机是一种应用广泛的电动机类型,它利用电磁感应原理将电能转化为机械能。
三相异步电动机由定子和转子两部分组成,定子绕组接通电源后,产生旋转磁场,转子绕组在旋转磁场的作用下产生感应电流,进而产生电磁转矩,使电动机旋转。
三相异步电动机的设计核心是电磁场的分析和计算,以及转子结构和参数的优化。
三相异步电动机的设计步骤主要包括以下几个方面:(1)明确设计需求:根据实际应用场景,明确电动机的功率、转速、尺寸和温升等参数需求。
(2)选定电动机结构型式:根据应用场景的要求,选择电动机的结构型式,如封闭式、开启式、防护式等。
(3)确定电磁负荷:根据电动机的设计需求,计算电磁负荷,包括每相绕组的匝数、线径、磁路尺寸等。
(4)计算气隙磁通密度:通过电磁负荷的计算结果,计算气隙磁通密度,以确定电动机的电磁性能。
(5)优化转子结构和参数:根据气隙磁通密度计算结果,优化转子结构和参数,以获得更好的电磁性能和机械性能。
(6)设计定子铁心:根据电磁负荷和气隙磁通密度的计算结果,设计定子铁心,包括铁心尺寸、槽形和材料等。
(7)选择冷却方式:根据电动机的设计需求和结构型式,选择合适的冷却方式,如自然冷却、强迫通风冷却等。
变频调速技术在三相异步电动机设计中的应用及其优势变频调速技术在三相异步电动机设计中的应用,主要是通过在电源侧施加变频电压,达到调节电动机转速的目的。
异步电动机的变频调速系统的设计与仿真word
异步电动机变频调速系统的设计与仿真异步电机数学模型异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。
基于稳态数学模型的异步电机调速系统虽然能够在一定范围内实现平滑调速,要实现高动态性能的系统,必须首先认真研究异步电机的动态数学模型。
假设条件:(1)忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。
这时,异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。
电压方程将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /d tA A A sB B B sC C C s a a a r b b b r c c c r 000000000000000000000000000u i R u i R u i R p u i R u i R u i R ψψψψψψ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦可改写为: u Ri ψ=+p 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为:⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡=⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡C B A Cc Cb Ca CC CBCA Bc Bb Ba BC BB BA Ac Ab Aa AC AB AA C B A i i i i L L L L L L L L L L L L L L L L L L L L L L L L ψψψψ ABCu A u Bu Cω1ωu au b u ca bcθ可改写为: Li ψ=由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为:Lms Lmr =对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为转子各相自感为可得完整的磁链方程:sssr s s rsrr r r LL i L L i ψψ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 转矩方程根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和磁共能为:'m m 1122T T W W i i L ψ===而电磁转矩等于机械角位移变化时磁共能的变化率 (电流约束为常值),且机械角位移 θm = θ / n p ,于是:''rssr mme pp r s s r mconst.const.12T T i i L L W W T n n i i i i θθθθ==∂∂∂∂⎡⎤===⋅+⋅⎢⎥∂∂∂∂⎣⎦异步电机数学模型的过程中可以看出,这个数学模型之所以复杂,关键是因为有一个复杂的 6⨯6 电感矩阵,它体现了影响磁链和受磁链影响的复杂关系。
交流异步电动机变频调速系统设计报告
交流异步电动机变频调速系统设计报告一、引言异步电动机在工业生产中具有广泛的应用,通过变频调速系统可以实现对异步电动机的精确控制,提高生产效率和控制精度。
本文将详细介绍异步电动机变频调速系统设计的原理和过程。
二、系统设计原理异步电动机通过变频器驱动,实现调速功能。
变频器将交流电源转换为直流电源,通过PWM技术将直流电转换为交流电,进而控制电机的转速。
变频器的主要组成部分包括整流器、中间环节直流母线、逆变器和控制电路。
整流器将交流电源转换为直流电源,并通过滤波电路削波,保持直流电的稳定性。
中间环节直流母线存储电能,为逆变器提供稳定的电源。
逆变器将直流电源转换为交流电源,并通过PWM调制技术调整交流电的频率和幅值,从而控制电机的转速。
控制电路通过传感器采集电机的运行状态,并通过对逆变器的控制信号实现控制目标。
三、系统设计步骤1.确定系统需求:根据应用场景和任务要求,确定对异步电动机的调速要求,包括速度范围、控制精度等。
2.选择电机和变频器:根据系统需求,选择适合的异步电动机和变频器,确保其参数和性能满足需求。
3.设计电路连接:根据电机和变频器的技术规格,设计电机与变频器的连线方式和电路连接,确保信号传输畅通。
4.设计控制系统:根据系统需求,设计控制系统包括传感器、控制电路和控制算法等,确保对电机的精确控制。
5.实施系统调试:将设计好的电路和控制系统进行组装和调试,确保系统能够正常工作。
6.测试系统性能:对系统进行性能测试,包括速度响应、负载变化等测试,验证系统的设计目标是否达到。
7.优化系统性能:根据测试结果,对系统进行调整和优化,提高系统的性能和稳定性。
8.编写设计报告:整理系统设计过程、实施步骤和测试结果,撰写设计报告。
四、系统设计考虑因素1.变频器和电机的匹配性:选择变频器时需要考虑其输出能力是否足够满足电机的需求,包括最大输出功率、额定电流等。
2.控制系统的精确性:设计控制系统时需要考虑传感器的精度、控制器的计算性能等因素,确保控制系统能够精确控制电机的转速。
三相异步电动机双速可逆变频调速PLC控制
三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。
利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。
本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。
1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。
如图1 所示。
2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。
一般说来,在断路器和变频器之间,应该有接触器。
a. 可通过按钮开关方便地控制变频器的通电与断电。
b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。
另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。
2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。
a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。
因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。
b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。
另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。
通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。
交流异步电动机变压变频调速系统设计与仿真
交流异步电动机变压变频调速系统设计与仿真异步电动机变压变频调速系统是一种常见的电动机调速系统,可以实现电动机转速的精确控制和调节。
本文将介绍异步电动机变压变频调速系统的设计和仿真。
首先,异步电动机的调速原理简要介绍。
异步电动机是一种常用的交流电动机,其转速通常由额定电压和频率决定。
通过改变电动机的电压和频率,可以实现对电动机的调速。
变压变频调速系统通过调节电压和频率的大小,改变电动机的转速。
在设计异步电动机变压变频调速系统之前,首先要确定电动机的参数。
电动机的参数包括额定功率、额定电压、额定电流等,这些参数可以从电动机的标牌上获取。
另外,还需要确定变压变频器的参数,包括额定电压范围、频率范围等。
这些参数将决定整个系统的性能。
设计异步电动机变压变频调速系统的关键是选取合适的变压变频器。
变压变频器是将电网的交流电转换为可调频率和可调电压的交流电的装置。
根据电动机的额定电压和变压变频器的额定电压范围,选取合适的变压变频器,以满足调速系统的要求。
设计异步电动机变压变频调速系统的下一步是进行系统的电路设计。
电路设计包括电动机的接线和变压变频器的接线。
电动机的接线要根据电动机的型号和相数来进行,确保电机的正常运行。
变压变频器的接线要根据变压变频器的接线图进行,确保变压变频器与电动机的连接正确。
完成电路设计后,还需要进行系统的控制设计。
控制设计包括电机的启动和停止控制、电机的转速控制等。
启动和停止控制一般采用按钮控制或者遥控控制,可以通过按钮或者遥控装置来启动和停止电动机。
转速控制一般采用PID控制器进行,通过调节变压变频器的输出电压和频率,来实现对电动机转速的控制和调节。
完成设计后,可以使用仿真软件进行系统的仿真。
常用的仿真软件有MATLAB/Simulink、PSIM等。
通过仿真可以验证系统的设计是否正确,并进行性能评估。
仿真结果可以用来优化系统的设计,提高系统的性能。
综上所述,异步电动机变压变频调速系统的设计和仿真是一个系统工程,需要从确定电动机和变压变频器的参数开始,进行电路设计和控制设计,最后进行仿真验证。
起重变频调速异步电动机的设计
4 电压和频率 的不断变化产生 瞬时的高压 )
和高频脉 冲加 在 电机 绕 组 上 , 易产生 电晕放 极
电 , 坏漆 包 线 的绝 缘 。 损
率厂 i 5 , m = HZ 最高运行 频率厂 = 5HZ 而对 m 1O , p 2 = 3 N最低运 行频 率厂 i 1 HZ 最 = 、 3 Hz m =. , 6
高运行 频率厂 = 0 Hz 由于变 频调速 系统 在 m 10 。
低频 区域 通常采用补 偿 电压 的方法使 / 和 1l f
为了尽量减少 谐波影响, 绕组设计时采用 在
如 下措 施 :
1 定子绕 组设计时采用多槽和短 距绕组 , ) 提高基波绕组系数 , 降低高次谐波 ( 尤其是5 次、
的转矩变小。 如果需要在 额定速 度以下连 续运行实现恒
图 1 耐 电晕 漆 包 线 绝缘 结 构
转 矩输 出, 必须改善低速下的散 热能力或提高绝 25 转子槽形 . 为了减小 低频转 矩脉 动关键之处 是减小谐 波的影响 , 一般来说我们通常使用的变频器均属
电压型变频器 , 出的电压 波形非正弦形 , 输 因此 谐波电压 的大小取决于变频器 , 而谐波电流的大 小则由负载电机 的漏抗来 限制, 漏抗 大的电机谐
关键 词 : 频调 速 变 负荷
中图分类号 : TM3 3 文献标 识码 : 4 A DOI 编码 : 03 6 / is l 0 .8 72 1 .40 3 1 .9 9j sn 0 6 2 0 .0 10 .0 .
Ab t a t Th r i g p ro ma c ft e fe u n y s r c : ewo k n e f r n e o r q e c — h v ra l o o s d i el tn c a im sa ay e a ib em t r e t i i gme h m s wa l z d u nh f n Th h n i g wa o d sg e f e u n y v ra l t r e t i k n y t e i n t r q e c — a ib e mo o h m e t g wi h it g a p i a i n r q ie e twa n r — e i t t e lfi p l t e u r m n si t o n h n c o d c d ue. Ke wo ds F e u n y v i b en p e -e u a i n y r : r q e c - a a l i g s e d r g lto r
交流异步电动机变频调速设计
交流异步电动机变频调速设计异步电动机是工业生产过程中广泛使用的一种电机,widely used in industrial production. 它的运转速度受到电源的频率和极数的影响,因此在一些应用场合需要采取变频调速技术,以满足不同负载下的运转需求。
本文将介绍异步电动机变频调速设计的基本原理和具体实现方法。
一、异步电动机变频调速的原理异步电动机通过电源提供的交流电源驱动,其转速 n与电网频率 f 和定子极数 P 相关,公式为:n=60f/P 。
如图1所示,当电网频率为50Hz、极数为4极时,异步电动机的转速为1500 rpm。
当需要在同一台异步电动机下实现不同转速时,可以采用变频调速技术。
变频调速的原理是通过变频器改变电网电源的频率和电压,从而改变异步电动机的转速。
变频器通过将电源中的直流信号转换成相应的交流信号进行调节,例如通过将电源中的50Hz的电信号转换为30~50Hz的交流信号,使得异步电动机的转速得到调节。
二、异步电动机变频调速的实现方法1.输入电源与三相异步电动机连接。
2.将电源中的交流信号转换为直流信号,通过功率恒定的逆变器将直流信号转换为变频输出的交流信号。
3.通过多种控制方法调节电压频率,从而实现异步电动机转速的控制。
通常采用矢量控制和定速控制两种控制方式。
3.1 矢量控制矢量控制是一种高精度、高性能的控制方法,可以使异步电动机在不同的负载下达到相同的速度和扭矩。
矢量控制适用于较高的调速要求,可以在满足较高控制精度的同时,实现更好的动态性能。
3.2 定速控制定速控制是一种简单、常用的变频控制方法。
该方法通过设定电机的运行速度来调节输出频率和电压,使得异步电动机具有稳定的转速和扭矩。
三、结论本文通过介绍异步电动机变频调速的原理和实现方法,可以实现异步电动机在不同负载条件下达到相同的转速和扭矩,提高了运行效率和能源利用率。
异步电动机变频调速技术的应用将得到更加广泛的推广和应用。
5.3 异步电动机的变压变频调速解析
5.3.2 变压变频调速时的机械特性 式(5-5)已给出异步电机在恒压恒频正弦 波供电时的机械特性方程式 Te= f (s)。 当采 用恒压频比控制时,可以改写成如下形式:
Us s1 Rr' Te 3np ( sR R ' ) 2 s 2 2 ( L L' ) 2 (5-28) s r 1 ls lr 1
对于直流电机,励磁系统是独立的,只要 对电枢反应有恰当的补偿, m 保持不变 是很容易做到的。 在交流异步电机中,磁通 m 由定子和转 子磁势合成产生,要保持磁通恒定就需要 费一些周折了。
• 定子每相电动势
Eg 4.44 f1Ns kNS Φm
(5-11)
式中:Eg —气隙磁通在定子每相中感应电动势的有 效值,单位为V; f1 —定子频率,单位为Hz;
2
• 特性分析 当s很小时,可忽略上式分母中含s各项,则
U s s1 Te 3np R' s r 1
2
(5-29)
s1
Rr'Te Us 3n p 1
2
10 R T 60 n sn1 s1 2 n p n
阻抗压降所占的份量就比较显著,不再能
忽略。这时,需要人为地把电压 Us 抬高一
些,以便近似地补偿定子压降。
带定子压降补偿的恒压频比控制特性示
于下图中的 b 线,无补偿的控制特性则为a 线。
• 带压降补偿的恒压频比控制特性
Us
UsN
b —带定子压降补偿
a —无补偿
O
f 1N
图5-9 恒压频比控制特性
2
Eg R s1 Rr' 3np R '2 s 2 2 L'2 s 1 lr 1 r
变频调速三相异步电动机技术条件
变频调速三相异步电动机技术条件
变频调速三相异步电动机是一种通过变频器调节电机的转速的技术。
以下是该技术的一些技术条件:
1. 电源:变频调速电动机需要使用交流电源,通常为三相电源,频率范围为50Hz或60Hz。
2. 变频器:变频调速电动机需要配备变频器,用于调节电机的转速。
变频器可以将常规频率的电源输出转换为可调节的频率和电压。
3. 频率范围:变频调速电动机的频率范围通常为0-400Hz,可
根据实际需要进行调整。
4. 转矩特性:变频调速电动机需要具有良好的转矩特性,能够在不同转速下保持恒定的转矩输出。
5. 调速范围:变频调速电动机的调速范围通常较大,可以在额定转速的几倍范围内进行调整。
6. 控制方式:变频调速电动机可以通过开环控制或闭环控制进行控制。
闭环控制可以实现更精确的转速控制。
7. 电机保护:变频调速电动机需要具备过流、过载、过压、欠压、短路等保护功能,以保证电机的安全运行。
8. 故障诊断:变频调速电动机需要具备故障诊断功能,能够自
动检测并报警或保护电机在发生故障时。
需要注意的是,变频调速三相异步电动机的技术条件可能会根据具体的应用环境和要求而有所不同。
以上条件仅为一般情况下的技术要求。
「异步电动机变频调速系统的设计与仿真」
「异步电动机变频调速系统的设计与仿真」异步电动机变频调速系统是一种常见的电力传动系统,具有调速范围广、动态响应好、控制精度高等优点。
本文将介绍异步电动机变频调速系统的设计与仿真,包括系统的结构、控制方案以及仿真结果评估。
首先,异步电动机变频调速系统由变频器、电机、传动装置以及控制系统组成。
变频器作为系统的核心,通过改变输入电压的频率和幅值,控制电机的转速。
电机是系统的执行器,通过转动输出机械功。
传动装置用于将电机的转动传递到负载物体上。
控制系统则根据系统的反馈信号来调节变频器的输出,实现对电机转速的精确控制。
在控制方案的设计中,可以采用电流矢量控制算法。
该算法通过测量电机的转子电流和转速,根据电机的模型推算出合适的电压矢量,以实现对电机转速的控制。
具体的控制步骤包括电机速度测量、电机参数辨识、电机模型预测、电压矢量计算和电压输出等。
为了评估异步电动机变频调速系统的性能,需要进行仿真实验。
仿真实验可以通过模拟各种状态和故障条件,得到系统的输出结果,并评估控制方案的有效性和性能。
在进行仿真实验时,可以设定电机的负载变化、输入电压变化等参数,并根据实际应用需求设定系统的性能指标。
通过对系统的输出结果进行分析和比较,可以评估系统的控制性能和稳定性,并进行相应的调整和优化。
总之,异步电动机变频调速系统的设计与仿真是一个复杂的过程,需要考虑到电机的特性、负载情况以及控制系统的性能指标。
通过合理的设计和仿真实验,可以得到一个性能优越的调速系统,满足实际应用需求。
完整版《三相异步电动机变频调速系统设计》
完整版《三相异步电动机变频调速系统设计》
一、异步电动机变频调速系统简介
异步电动机变频调速系统是一种基于变频器技术完成频率控制的调速系统,其结构组成主要包括:异步电动机、变频器、控制器和传动机构等组成。
本系统可以实现对电动机的输出功率、转速和负载的关系,从而提高机器的能源利用率,减少电机输出的能耗。
二、异步电动机变频调速系统组成
1.异步电动机:异步电动机是一种由能量变换设备的机械部分,它通过电能激励的电磁作用而可发生转动,其结构由定子、转子及密封装置等组成。
该部件能够接受输入的直流电压,完成外界功率转换。
2.变频器:变频器是由变频技术控制异步电动机输出电压和频率的装置,其特性是能够将低电压变高,将低频率调整到高频率,使输出电压与频率可以随着被控制设备的运行状况而灵活变化,能有效节省电源能耗,减少设备故障。
3.控制器:控制器是负责控制变频器给异步电动机提供指令的,它的功能有:对异步电动机的转矩与频率进行控制;实现变频器与异步电动机的细微调整;实现较快速度的反应。
完整版《三相异步电动机变频调速系统设计》
完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统是一种应用广泛的电机控制系统,通过对电机的供电频率和电压进行调整,实现电机的调速功能。
本文将对三相异步电动机变频调速系统进行详细的设计。
1.系统结构三相异步电动机变频调速系统主要由电机、变频器和控制系统三部分组成。
电机作为执行元件,接受变频器输出的电压和频率进行运行;变频器则负责将输入的电网电压和频率转换为适合电机运行的电压和频率;控制系统则完成对变频器的控制和监测,实现对电机的精确调速。
2.硬件设计在硬件设计方面,需要选择适合电机的变频器和控制器,并完成相应的接线和连接。
变频器通常需要选择带有电压和频率调节功能的型号,以满足不同工作条件下的电机要求。
控制器则需要选择具备快速响应和稳定性能的型号,以确保系统的准确调速。
3.变频器参数设置变频器的参数设置对于电机的工作性能影响较大。
在设置参数时,首先需要根据电机的额定功率和工作特性确定变频器的额定输出功率。
同时,还需要根据电机的额定电压和额定转速设置变频器的额定输出电压和额定输出频率。
此外,还需要根据电机的负载特性设置变频器的过载保护和反馈调节参数。
4.控制系统设计控制系统的设计主要包括速度信号检测、计算和反馈控制三个步骤。
速度信号检测可以通过安装编码器或霍尔传感器等装置实现。
根据检测到的速度信号,控制系统可以计算出电机的当前转速,并与设定的目标转速进行比较,得到误差信号。
通过对误差信号进行PID控制,控制系统可以调整变频器的输出频率和电压,以实现对电机转速的控制。
5.保护措施设计三相异步电动机变频调速系统在运行过程中需要考虑到一些保护措施,以防止电机过载、短路等故障。
常见的保护措施包括过载保护、过流保护、过热保护和失速保护等。
通过在控制系统中添加相应的保护逻辑和监测装置,可以及时发现并处理电机故障,保证系统的安全运行。
总之,三相异步电动机变频调速系统设计涉及到硬件设计、变频器参数设置、控制系统设计和保护措施设计等方面。
(完整版)《三相异步电动机变频调速系统的设计》
控制电路:采用8051单片机和SPWM波生成芯片SA4828,控制电路的主要功能是接受各种设定信息和指令,根据这些指令和设定信息形成驱动逆变器工作的信号。这些信号经过光电隔离后去驱动开关管的关断。)
5、方案的可行性分析:
(1)参考了相关的文献和记录,并在老师的指导下制定了可行的计划。
整流电路:整流部分将交流电变为脉动的直流电,必须加以滤波。在本设计中采用三相不可控整流。它可以使电网的功率因数接近1。
滤波电路:因在本设计中采用电压型变频器,所以采用电容滤波,中间的电容除了起滤波作用外,还在整流电路与逆变电路间起到去耦作用,消除干扰。
逆变电路:逆变部分将直流电逆变成我们需要的交流电。在设计中采用三相桥逆变,开关器件选用全控型开关管IGBT。
[6]周志敏.变频调速系统工程设计与调试,人民邮电出版社,2009.
[7]张占彪.试论变频调速异步电动机在设计中的注意要点,2014.
[8]《电气应用》2011年总索引.电气应用,2012.
[9]崔坚.西门子S7可编程控制器STEP7编程指南,机械工业出版社,2007.
[10]Low-voltage distribution design specifications [S]. China plans Press.2006.
直到上世纪80年代,电力电子的发展变成了用晶闸管整流供电和现代控制论的迅猛发展是交流调速器取代直流调速成为必然。进入90年代,通用变频器以优异的控制性能,在调速领域独树一帜,并在工业领域及家电产品中得到迅速推广。此外,变频技术和变频制造从一般意义的拖动技术中分离出来,成为世界各国在工业自动化和机电一体化领域中争抢先站的阵地,各发达国家更是在该技术领域注入极大地人力物力,使之目前已进入高新技术行业。在进入21世纪的今天,电力电子器件的基片已从硅变换为碳化硅,使电力电子新元件具有了耐高压、低损耗、耐高温的优点。
交流异步电动机变频调速设计
交流异步电动机变频调速设计异步电动机是目前工业中最常用的一种电动机,广泛应用于各个领域。
异步电动机的调速是为了满足不同工况下的要求,提高电机的效率和运行稳定性。
变频调速是目前常用的一种调速方法,可以灵活调节电机的转速和负载。
异步电动机变频调速的基本原理是通过改变电机的供电频率和电压来实现调速。
传统的调速方法是通过改变电源电压来实现调速,但是这种方法的调速范围有限,效果也不好。
而变频调速可以通过改变电源的频率来实现调速,调速范围广,效果好。
异步电机的变频调速系统主要由变频器、电机和控制系统组成。
变频器是用来改变电源的频率和电压的设备,可以根据实际需要灵活调节电机的转速和负载。
控制系统是用来控制变频器的工作状态和参数的,可以根据实际需要设置电机的转速和负载要求。
在异步电机的变频调速设计中,需要考虑以下几个方面:1.变频器的选择:变频器是异步电机变频调速的关键设备,需要选择合适的变频器。
在选择变频器时,需要考虑电机的功率、转速范围和负载要求等因素,以确定变频器的额定功率和频率范围。
2.变频器参数的设置:根据实际需要设置变频器的工作参数,如频率、电压、转速等。
这些参数的设置要根据电机的特性和负载要求来确定,以保证电机的运行稳定性和效率。
3.电机的选型:根据实际需要选择合适的异步电机。
在选择电机时,需要考虑电机的功率、转速范围和负载要求等因素,以确定电机的额定功率和转速范围。
4.控制系统的设计:控制系统是异步电机变频调速的核心部分,用于控制变频器的工作状态和参数。
控制系统需要根据实际需要设计合适的控制算法和参数,以实现电机的准确控制和调速要求。
5.系统的稳定性和安全性:异步电机变频调速系统需要保证系统的稳定性和安全性。
在设计过程中,需要考虑各种故障情况的处理和保护措施,以确保系统的可靠性和安全性。
通过以上几个方面的设计,可以实现异步电动机的变频调速,提高电机的效率和运行稳定性。
异步电动机变频调速在工业领域有着广泛的应用前景,可以适应不同工况下的要求,提高生产效率和降低能耗。
交流异步电动机变频调速设计报告
绪论第1章系统总方案确定1.1变频器的选定根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。
(2)电压型变频器电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。
由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是运行几乎不受负载的功率因数或换流的影响,它主要适用于中、小容量的交流传动系统。
与之相比,电流型变频器施加于负载上的电流值稳定不变,其特性类似于电流源,它主要应用在大容量的电机传动系统以及大容量风机、泵类节能调速中。
本次设计中选用交-直-交变频器,采用电压型变频器。
第2章主电路的设计与分析2.1主电路工作原理变频调速实际上是向交流异步电动机提供一个频率可控的电源。
能实现这个功能的装置称为变频器。
变频器由两部分组成:主电路和控制电路,其中主电路通常采用交-直-交方式,先将交流电转变为直流电(整流,滤波),再将直流电转变为频率可调的交流电(逆变)。
在本设计中采用图2.1的主电路,这也是变频器常用的格式。
图2.1 电压型交直交变频调速主电路2.2整流电路整流电路是把交流电变换为直流电的电路。
目前在各种整流电路中,应用最广泛的是三相桥式全控整流电路,三相桥式全控整流电路每个时刻均需2个晶闸管导通,而且这两个晶闸管一个是共阴极组,一个是共阳极组,只有它们能同时导通,才能形成导电回路。
由于整流电路原理比较简单,设计中不再做详细的介绍,其原理如图2.2所示。
图2.2 三相桥式全控整流电路2.4 IGBT 简介及驱动要求IGBT 是压控器件,栅极输入阻抗高,所需要驱动功率小,驱动较为容易。
但必须注意,IGBT 的特性与栅极驱动条件密切相关,随驱动条件的变化而变化。
变频器调速电动机的设计说明
变频调速电机的设计摘要在这个经济快速发展的社会,随着电力电子技术、计算机技术和自动控制技术的发展,交流调速代替DC调速已经成为现代电气传动的主要发展方向,这使得交流变频调速系统广泛应用于工业电机传动领域。
许多国外企业会在生产中应用变频技术。
此外,由于PLC功能强大、使用方便、可靠性高,常被用作数据采集和设备控制。
工作中发现身边很多设备都应用了变频技术,在接触中感受到了变频技术的重要性。
通过调节电机的速度来达到节能增产的效果,在未来必然更加重要。
变频器和可编程控制器以其优越的调速、启停性能、高效率、高功率因数和显著的节电效果,广泛应用于大中型交流电动机,被公认为最有前途的调速控制。
关键词:电气传动,变频技术,调速目录第一章导言..........................................................一1.1交流变频调速发展历史综述........................................一1.2逆变器的结构和功能........................................一1.3....................................二、逆变器的关键技术。
第二章变频器调速...................................................四2.1变频调速原理.................................................四2.2逆变器的控制模式 (5)2.3变频器调速模式 (6)第三章变频调试技术 (8)3.1变频器的结构和功能预设有.........................................8.3.2操作...................................................变频器9的第四章变频调速电机的设计 (11)4.1硬件设计 (11)4.2软件设计 (14)摘要 (20)致谢 (21)参考 (22)第一章导言1.1交流变频调速发展历史概述自1965年变频器问世以来,已经经历了40多年的发展。
三相异步电动机变频调速的原理
学习目标:三相异步电动机变频调速的原理变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
我们现在使用的变频器主要采用交一直一交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。
变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。
整流部分为三相桥式不可控整流器,逆变部分为IGBT 三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
变频器选型:变频器选型时要确定以下几点:1)采用变频的目的;恒压控制或恒流控制等。
2)变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。
3)变频器与负载的匹配问题;I.电压匹配;变频器的额定电压与负载的额定电压相符。
II.电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。
对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。
III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。
4)在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。
因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。
5)变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。
6)对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。
变频器控制原理图设计:1)首先确认变频器的安装环境;I.工作温度。
变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0〜55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。
在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
完整版《三相异步电动机变频调速系统设计》
完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统设计摘要:变频调速技术是现代电气控制领域中的重要技术之一,广泛应用于水泵、风机、压缩机等各种场合。
本文以三相异步电动机为对象,着重介绍了变频调速系统的设计思路和实施步骤。
通过整理相关文献和实践经验,提供了一个完整的设计指南,希望能对读者进行指导和借鉴。
关键词:三相异步电动机;变频调速;设计一、引言随着工业自动化程度的不断提高,越来越多的机械设备开始采用变频调速技术。
相比传统的定频运行方式,变频调速具有调速范围广、运行稳定、能耗低等优点,在提高设备性能和效率的同时,也可以延长设备的使用寿命。
三相异步电动机作为最常用的驱动器之一,广泛应用于各个领域。
二、变频调速系统设计思路1.设计目标确定:根据实际需求确定设计的目标,包括调速范围、调速精度、系统运行稳定性等方面。
2.系统结构设计:根据目标确定系统的结构形式,包括控制器的选择、传感器的安装位置等。
3.控制策略选择:选择合适的控制策略,包括开环控制和闭环控制。
4.参数调节及整定:对系统的各项参数进行调节和整定,以获得最佳的运行效果。
三、变频调速系统实施步骤1.电机选型:根据实际需求选定合适的三相异步电动机。
2.变频器的选取:根据电机的功率、调速要求等参数选取合适的变频器。
3.运行控制程序的设计:根据实际需求设计运行控制程序,包括开机、停机、变速等功能。
4.传感器的选取与安装:根据系统要求选取合适的传感器,并将其正确安装在电机或相关位置。
5.控制器的选取与配置:根据系统的需求选取合适的控制器,并进行相应的配置和参数设定。
6.调试与测试:完成系统的硬件和软件的安装后,进行系统的调试和测试,以确保其正常工作。
7.系统运行与优化:在系统正式投入使用后,对系统进行运行监测和性能优化,以获得最佳的运行效果。
四、应用实例以一台水泵为例,设计了一个变频调速系统,并进行了实际测试。
通过对变频器的调节和控制器的优化,实现了水泵的稳定运行和能耗降低的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频调速异步电动机的设计要点
一、变频器运行时对变频电机工作的影响
在变频电机调速控制系统中,采用电力电子变压变频器作为供电电源,供电系统中电压除基波外不可避免含有高次谐波分量,对外表现为非正弦性,谐波对电机的影响主要体现在磁路中的谐波磁势和电路中的谐波电流上,不同振幅和频率的电流和磁通谐波将引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。
这些损耗都会使电动机效率和功率因数降低。
同时,这些损耗绝大部分转变成热能,引起电机附加发热,导致变频电机温升的增加。
如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。
同时这些谐波磁动势与转子谐波电流合成又产生恒定的谐波电磁转矩和振动的谐波电磁转矩,恒定谐波电磁转矩的影响可以忽略,振动谐波电磁转矩会使电动机发出的转矩产生脉动,从而造成电机转速(主要是低速时)的振荡,甚至引起系统的不稳定。
谐波电流还增加了电机峰值电流,在一定的换流能力下,谐波电流降低了逆变器的负载能力。
对于变频电机,如何在设计过程中采取合理措施避免或减小应用变频器所带来的影响,以求得系统最佳经济技术效果,是本文讨论的重点。
二、变频电机设计特点
对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。
设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。
与传统异步电机相比,一般变频电机设计有如下一些特点:
1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。
如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。
2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。
3.变频电机通过调节电压和频率,在每一个运行点都可以有多种运行方式,对应多种不同的转差频率,因而总能找到最佳的转差频率,使电机的效率或功率因数在很宽的调速范围内都很高。
因而,变频电机的功率因数和效率可以设计得更高,功率密度得以进一步提高。
现有数据表明:在额定工作点,逆变器供电下的异步电机效率比普通电机高2%~3%,功率因数高10%~20%。
4.变频电机采用变频装置供电,输入电流中含有较多的高次谐波,产生电机局部放电和空间电荷,增大了介质损耗发热和电磁振动力,加速了绝缘材料的老化,所以应加强电机绝缘和提高整体机械强度,变频电机的绝缘强度一般要达到F级以上。
5.变频供电时产生的轴电压和轴电流会使电机轴承失效,缩短轴承使用寿命,必须在设计上要加以考虑。
对较小的轴电流,可以适当增大电机气隙和选用专用润滑脂;另外,增加轴承的电气绝缘或者将电机轴通过电刷接地,可以有效解决轴承损坏问题;对过高轴电压,应设法隔断轴电流的回路,如采用陶瓷滚子轴承或实现轴承室绝缘。
同时,在逆变器输出端增加滤波环节,降低脉冲电压dU/dt也是一种有效的方法。
三、电磁设计
在普通异步电动机设计基础之上,为进一步提高变频调速电机的性能,对变频调速异步电动机的设计参数也要进行更加细致的考虑。
满足高性能要求时的变频电机设计参数的变化与设计目标之间的关系。
在设计参数和性能要求之间还必须折衷选择。
电磁设计时不能仅限于计算某一个工作状态,电磁参数的选取应使每个频率点的转矩参数满足额定参数要求,最大发热因数满足温升限值,最高磁参数满足材料性能要求,最高频率点满足转矩倍数要求,额定点效率、功率因数满足额定要求。
由于谐波磁势是由谐波电流产生的,为减小变频器输出谐波对异步电动机工作的影响,总之是限制谐波电流在一定范围内。
四、绝缘设计
电机运行于逆变电源供电环境,其绝缘系统比正弦电压和电流供电时承受更高的介电强度。
与正弦电压相比,变频电机绕组线圈上的电应力有两个不同点:一是电压在线圈上分布不均匀,在电机定子绕组的首端几匝上承担了约80%过电压幅值,绕组首匝处承受的匝间电压超过平均匝间电压10倍以上。
这是变频电机通常发生绕组局部绝缘击穿,特别是绕组首匝附近的匝间绝缘击穿的原因。
二是电压(形状、极性、电压幅值)在匝间绝缘上的性质有很大的差异,因此产生了过早的老化或破坏。
变频电机绝缘损坏是局部放电、介质损耗发热、空间电荷感应、电磁激振和机械振动等多种因素共同作用的结果。
变频电机从绝缘方面看应具有以下几个特点:(1)良好的耐冲击电压性能;(2)良好的耐局部放电性能;(3)良好的耐热、耐老化性能。
五、结构设计
在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般应注意以下问题:
1.普通电机采用变频器供电时,会使由电磁、机械、通风等因素所引起的振动和噪声变得更加复杂。
在设计时要充分考虑电动机构件及整体的刚度,尽力提高其固有频率,以避开与各次力波产生共振现象。
2.电机冷却方式:变频电机一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动,使其在低速时保持足够的散热风量。
3.对恒功率变频电机,当转速超过3000r/min时,应采用耐高温的特殊润滑脂,以补偿轴承的温度升高。
4.变频电机承受较大的冲击和脉振,电机在组装后轴承要留有一定轴向窜动量和径向间隙,即选用较大游隙的轴承。
5.对于最大转速较高的变频电机,可在端环外侧增加非磁性护环,以增加强度和刚度。
6.为配合变频调速系统进行转速闭环控制和提高控制精度,在电机内部应考虑装设非接触式转速检测器,一般选用增量型光电编码器。
7.调速系统对传动装置加速度有较高要求时,电机的转动惯量应较小,应设计成长径比较大的结构。
六、结论
与普通异步电动机不同,变频调速异步电动机采用变频器供电,其运行性能与电机本体和调速系统的设计都密切相关。
这一方面使变频调速电机的设计要同时兼顾电机本体和调速系统;另一方面也使得变频调速异步电动机的设计变得灵活,但同时也增加了高性能变频调速系统设计的复杂程度。
只有结合变频器和一定的控制策略,从整体上进行电机的设计和优化,才能获得最理想的运行性能。