天津理工大学 大学物理同步练习答案 第1章 质点运动学答案
大学物理课后习题答案第一章
第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述数据求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m). 根据自由落体运动公式s = gt 2/2,得下落的时间为:= 4.49(s). 因此人飞越的时间为:t = t 1 + t 2 = 6.98(s).人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1),v a 22(1)(1)n sa n t -=+22(1)(1)n sa n t -=+22(51)30(51)10a -=+222h t g=70m22.5º 图1.3所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程, 解得:.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为; (2)试证在时间t 内,船行驶的距离为. [证明](1)分离变量得, 故 ,可得:. (2)公式可化为,由于v = d x/d t ,所以: 积分.因此 . 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则d v /d t = -kv n .(1)如果n = 1,则得, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .201sin 02gt v t y θ-+=0(sin t v g θ=011kt v v =+01ln(1)x v kt k =+2d d vk t v =-020d d v t v v k t v =-⎰⎰011kt v v =+001v v v kt=+00001d d d(1)1(1)v x t v kt v kt k v kt ==+++00001d d(1)(1)x tx v kt k v kt =++⎰⎰01ln(1)x v kt k=+d d ()m vt f v =d d vk t v=-而d v = v 0e -kt d t ,积分得:. 当t = 0时,x = 0,所以C` = v 0/k ,因此.(2)如果n ≠1,则得,积分得. 当t = 0时,v = v 0,所以,因此. 如果n = 2,就是本题的结果.如果n ≠2,可得,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求:(1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2);角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即.由此得,即 ,解得 .所以 =3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α. 运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s).将t 代入x 的方程求得x = 9000m .0e `ktv x C k-=+-0(1-e )kt vx k -=d d n vk t v=-11n v kt C n -=-+-101n v C n-=-11011(1)n n n kt v v --=+-1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-3n t a a =23r r ωβ=22(12)243t t =33/6t =3242(13/3)t θ=+=+32012x x x v t a t =+2012y y y v t a t =-+201cos cos 2x v t a t θα=⋅+⋅201sin sin 2y v t a t θα=-⋅+⋅02sin 103sin v t a θα== y xO α v 0θ a a xa yv 0x v 0y[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为= 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距 2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= 0.705(s).算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为;(3)如果气流的速度向北,证明来回飞行的总时间为.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为 . (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB 方向的速度大小为,所以飞行时间为212t h a t =∆2n v a R=21012h v t at =+22012h v t gt =-21()2h a g t =+2/()t h a g =+02l t v =1221/t t u v =-02221/t t u v=-1222l l vl t v u v u v u =+=+--022222/1/1/t l v u v u v==--22V v u =-RA图1.7AB AB vv + uv - uABvuuvv. 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕. 方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.22222222/1/l l l v t V v u u v ===--0221/t u v=-2v r 3v r 1v r12(sin cos )lv v hθθ=+12sin()sin(90)v v θαα=+︒-12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+12(sin cos )lv v hθθ=+v 1hl v 2θ图1.10v 1h lv 2θ v 3 α α v ⊥。
大学物理学(课后答案解析)第1章
第1章 质点运动学习 题一 选择题1-1 对质点的运动,有以下几种表述,正确的是[ ] (A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零(C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化 (D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C 。
1-2 某质点的运动方程为)(12323m t t x +-=,则该质点作[ ] (A)匀加速直线运动,加速度沿ox 轴正向 (B)匀加速直线运动,加速度沿ox 轴负向 (C)变加速直线运动,加速度沿ox 轴正向 (D)变加速直线运动,加速度沿ox 轴负向 解析:229dx v t dt ==-,18dva tdt==-,故答案选D 。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速率为v ,平均速度为v ,他们之间的关系必定有[ ](A)v =v ,v =v (B)v ≠v ,v =v (C)v ≠v ,v ≠v (D)v =v ,v ≠v解析:瞬时速度的大小即瞬时速率,故v =v ;平均速率sv t∆=∆,而平均速度t∆∆rv =,故v ≠v 。
答案选D 。
1-4 质点作圆周运动时,下列表述中正确的是[ ] (A)速度方向一定指向切向,所以法向加速度也一定为零 (B)法向分速度为零,所以法向加速度也一定为零 (C)必有加速度,但法向加速度可以为零 (D)法向加速度一定不为零解析:质点作圆周运动时,2n t v dva a dtρ=+=+n t n t a e e e e ,所以法向加速度一定不为零,答案选D 。
1-5 某物体的运动规律为2dvkv t dt=-,式中,k 为大于零的常量。
当0t =时,初速为0v ,则速率v 与时间t 的函数关系为[ ](A)2012v kt v =+ (B)20112kt v v =+(C)2012v kt v =-+ (D)20112kt v v =-+解析:由于2dvkv t dt=-,所以020()vtv dv kv t dt =-⎰⎰,得到20112kt v v =+,故答案选B 。
(完整版)大学物理01质点运动学习题解答
第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
大学物理练习册(上册)答案
练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。
2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。
3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。
大学物理上 练习册 第1章《质点运动学》答案
第1章 质点运动学一、选择题1(D),2(B ),3(D),4(D),5(B),6(D),7(D),8(E),9(B),10(B), 二、填空题(1). sin 2t A ωω,()ωπ+1221n (n = 0,1,… ), (1). 8 m ,10 m. (2). 23 m/s.(3). 16Rt 2 ,4 rad /s 2(5). 4t 3-3t 2 (rad/s),12t 2-6t (m/s 2). (6).331ct ,2ct ,c 2t 4/R . (7). 2.24 m/s 2,104o(8). )5c o s 5s i n (50j t i t+-m/s ,0,圆.(4). 02121v v +=kt(5). h 1v /(h 1-h 2)三、计算题1. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2, v (2) =-6 m/s. (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m.2. (1) 对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i 、j表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω 如图所示;(2)由(1)导出速度 v 与加速度 a的矢量表示 式;(3) 试证加速度指向圆心.解:(1) j t r i t r j y i x rsin cos ωω+=+=(2) j t r i t r trcos sin d d ωωωω+-==vj t r i t r ta sin cos d d 22ωωωω--==v (3) ()r j t r i t r asin cos 22ωωωω-=+-=这说明 a 与 r方向相反,即a 指向圆心 。
大学物理课后习题答案(上)
1、26t i dt r d v+==,j i v 61+= ,j i tr r v 261331+=-=-∆ , j v v a 24131331=--=-2、0202212110v Kt v Ktdt v dv t Kv dt dv t v v +=⇒-⎰=⎰⇒-= 所以选(C ) 3、因为位移00==v r ∆,又因为,v 0≠∆0≠a 。
所以选(B )4、选(C )5、(1)由,mva Fv P ==dt dv a = ,所以:dt dv mv P =,⎰⎰=vtmvdv Pdt 0积分得:mPtv 2=(2)因为m Pt dtdx v 2==,即:dt m Ptdx tx ⎰⎰=002,有:2398t mP x = 练习二 质点运动学 (二)1、平抛的运动方程为2021gt y tv x ==,两边求导数有:gtv v v y x ==0,那么2220t g v v +=,222022t g v tg dt dv a t +==,=-=22t n a g a 2220tg v gv +。
2、 2241442s /m .a ;s /m .a n n ==3、 (B )4、(A )1、0232332223x kt x ;tk )t (a ;)k s (t +=== 2、0321`=++v v v 3、(B ) 4、(C )练习四 质点动力学(一)1、m x ;i v 912==2、(A )3、(C )4、(A )练习五 质点动力学(二)1、m'm muv )m 'm (v V +-+-=002、(A )3、(B )4、(C )5、(1)Ns v v m I v s m v t t v 16)(,3,/19,38304042=-===+-= (2)J mv mv A 17621212024=-=练习六、质点动力学(三)1、J 9002、)R R R R (m Gm A E 2121-=3、(B )4、(D )5、)(21222B A m -ω练习七 质点动力学(四)1、)m m (l Gm v 212212+=2、动量、动能、功3、(B )4、(B )练习八 刚体绕定轴的转动(一)1、πωω806000.,.解:(1)摩擦力矩为恒力矩,轮子作匀变速转动 因为00120180ωωωββωω..t -=-=⇒+=;同理有00260ωβωω.t =+=。
大学物理学(课后答案)第1章
第 1 章质点运动学习题一选择题1-1 对证点的运动,有以下几种表述,正确的选项是[](A)在直线运动中,质点的加快度和速度的方向同样(B)在某一过程中均匀加快度不为零,则均匀速度也不行能为零(C)若某质点加快度的大小和方向不变,其速度的大小和方向可不停变化(D)在直线运动中,加快度不停减小,则速度也不停减小分析:速度是描绘质点运动的方向和快慢的物理量,加快度是描绘质点运动速度变化的物理量,二者没有确立的对应关系,故答案选C。
1-2 某质点的运动方程为x 2t 3t 312(m) ,则该质点作[](A)匀加快直线运动,加快度沿 ox 轴正向(B)匀加快直线运动,加快度沿ox 轴负向(C)变加快直线运动,加快度沿ox 轴正向(D)变加快直线运动,加快度沿ox 轴负向dx 2 dv分析:vdt 2 9t ,adt18t,故答案选 D。
1-3 一质点在平面上作一般曲线运动,其刹时速度为v ,刹时速率为 v ,某一段时间内的均匀速率为 v ,均匀速度为 v ,他们之间的关系必然有 [](A) v v , v v (B) v v , v v(C) v v , v v (D) v v , v v分析:刹时速度的大小即刹时速率,故v v ;均匀速率 vs ,而均匀速r,故 v v 。
答案选 D。
t度 v =t1-4 质点作圆周运动时,以下表述中正确的选项是[](A) 速度方向必定指向切向,所以法向加快度也必定为零(B)法向分速度为零,所以法向加快度也必定为零(C)必有加快度,但法向加快度能够为零(D)法向加快度必定不为零分析:质点作圆周运动时,v 2dva a n e n a t e te ndte t,所以法向加快度一定不为零,答案选 D 。
1-5 某物体的运动规律为dvkv 2t ,式中, k 为大于零的常量。
当 t 0 时,dt初速为 v 0 ,则速率 v 与时间 t 的函数关系为 [](A) v 1 kt 2 v 0(B)1 kt2 12v 2 v 0(C) v1 kt2 v 0 (D)1 kt2 12v2v 0分析:因为dvvt( kv 2t) dt ,获得1kt 21,故答案kv 2t ,所以 dvdtv 0v 2 v 0选 B 。
(完整版)大学物理01质点运动学习题解答
第一章 质点运动学一 选择题1. 下列说法中,正确的是:( )A. 一物体若具有恒定的速率,则没有变化的速度;B. 一物体具有恒定的速度,但仍有变化的速率;C. 一物体具有恒定的加速度,则其速度不可能为零;D. 一物体具有沿x 轴正方向的加速度而有沿x 轴负方向的速度。
解:答案是D 。
2. 长度不变的杆AB ,其端点A 以v 0匀速沿y 轴向下滑动,B 点沿x 轴移动,则B 点的速率为:( )A . v 0 sin θB . v 0 cos θC . v 0 tan θD . v 0 / cos θ 解:答案是C 。
简要提示:设B 点的坐标为x ,A 点的坐标为y ,杆的长度为l ,则222l y x =+ 对上式两边关于时间求导:0d d 2d d 2=+t y y t x x ,因v =tx d d ,0d d v -=t y ,所以 2x v -2y v 0 = 0 即 v =v 0 y /x =v 0tan θ所以答案是C 。
3. 如图示,路灯距地面高为H ,行人身高为h ,若人以匀速v 背向路灯行走,则人头影子移动的速度u 为( ) A.v H h H - B. v h H H - C. v H h D. v hH 解:答案是B 。
v x选择题2图灯s选择题3图简要提示:设人头影子到灯杆的距离为x ,则H h x s x =-,s hH H x -=, v hH H t s h H H t x u -=-==d d d d 所以答案是B 。
4. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作A. 匀加速直线运动,加速度沿x 轴正方向.B. 匀加速直线运动,加速度沿x 轴负方向.C. 变加速直线运动,加速度沿x 轴正方向.D. 变加速直线运动,加速度沿x 轴负方向. ( )解:答案是D5. 一物体从某一确定高度以v 0的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是:( ) A. g 0v v -t B. g 20v v -t C. g 202v v -t D. g2202v v -t 解:答案是C 。
大学物理第一章质点运动学习题解(详细、完整)
第一章 质点运动学1–1 描写质点运动状态的物理量是。
解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。
1–2 任意时刻a t =0的运动是运动;任意时刻a n =0的运动是运动;任意时刻a =0的运动是运动;任意时刻a t =0,a n =常量的运动是运动。
解:匀速率;直线;匀速直线;匀速圆周。
1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为()m/s 102=g 。
解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。
解:将s t 1=代入t x 2=,229t y -=得2=x m ,7=y ms t 1=故时质点的位置矢量为j i r 72+=(m )由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s )质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。
1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。
解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=7.81m/s ;1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。
(完整版)大学物理质点运动学习题及答案(2)
第1章 质点运动学 习题及答案1.|r ∆|与r ∆ 有无不同?t d d r 和dr dt 有无不同? t d d v 和dv dt有无不同?其不同在哪里?试举例说明. 解: |r ∆|与r ∆ 不同. |r ∆|表示质点运动位移的大小,而r ∆则表示质点运动时其径向长度的增量;t d d r 和dr dt 不同. t d d r 表示质点运动速度的大小,而dr dt则表示质点运动速度的径向分量;t d d v 和dv dt 不同. t d d v 表示质点运动加速度的大小, 而dv dt则表示质点运动加速度的切向分量. 2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么? 解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为2362x t t =-,式中各量均采用国际单位制,求:(1)第二秒内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==- 所以:(1)第二秒内的平均速度: 1(2)(1)4()21x x v ms --==- (2)第三秒末的速度: 21(3)1236318()v ms -=⨯-⨯=-(3)第一秒末的加速度:2(1)121210()a ms -=-⨯=(4)物体运动的类型为变速直线运动。
5.一质点运动方程的表达式为2105(t t t =+r i j ),式中的,t r 分别以m,s 为单位,试求;(1)质点的速度和加速度;(2)质点的轨迹方程。
大学物理同步训练第2版第一章质点运动学详解
6. (不做要求)一质点沿 x 轴运动,其速度与时间的关系为 v t 4 ,式中 v 的单位为
2
m/s, t 的单位为 s。 当 t=3s 时, 质点位于 x=9m 处, 则质点的位置与时间的关系为 答案: x t / 3 4t 12
3
。
分析:由定义 v dx / dt t 4 可得
d 2x d 2 y d 2z d 2r dv dv 2 2 (5) (1) (2) ( 3) (4) dt dt dt 2 dt dt dt 2
(A)只有(1)正确 (C)只有(4) (6)正确 答案:B 分析:由加速度的定义 (B)只有(1) (5)正确
v2 R
d 2s dt 2
v dx / dt 3 12t 6t 2
v(0) 3 m/s
2 3
a dv / dt 12 12t 0 t * 1 , v(1) 3 12 6 9 m/s
3. (★)一质点沿直线运动,其运动学方程为 x 5 3t t (SI) ,则在 t 由 1s 至 3s 的时 间间隔内, 质点的位移大小为 答案:2m; 6m 分析:位移 x x(3) x(1) 5 27 27 5 3 1 2 m,大小为 2m; ; 在 t 由 1s 至 3s 的时间间隔内, 质点走过的路程为 。
dx 0 dt
(B)
dx 0 dt
(C)
d (x 2 ) 0 dt
(D)
d (x 2 ) 0 dt
dx 1 d ( x 2 ) 可知 C 选项正确。 dt 2 dt
2. 质点以 v(t ) 沿 x 轴运动, dv / dt 是非零常数。当 t 0 时, v 0 ;当 t 0 时, vdv / dt (A)小于 0 答案:C
大学物理课后答案第1章质点运动学习题解答
大学物理课后答案第1章质点运动学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第1章质点运动学习题解答1-1 如图所示,质点自A 点沿曲线运动到B 点,A 点和B 点的矢径分别为A r 和B r 。
试在图中标出位移r ∆和路程s ∆,同时对||r ∆和r ∆的意义及它们与矢径的关系进行说明。
解:r ∆和s ∆如图所示。
||r ∆是矢径增量的模||A B r r -,即位移的大小;r ∆是矢径模的增量A B A B r r r r -=-|||| ,即矢径长度的变化量。
1-2 一质点沿y 轴作直线运动,其运动方程为32245t t y -+=(SI )。
求在计时开始的头3s 内质点的位移、平均速度、平均加速度和所通过的路程。
解:32245t t y -+=,2624t v -=,t a 12-=)(18)0()3(m y y y =-=∆)/(63s m y v =∆= )/(183)0()3(2s m v v a -=-= s t 2=时,0=v ,质点作反向运动)(46|)2()3(|)0()2(m y y y y s =-+-=∆1-3 一质点沿x 轴作直线运动,图示为其t v -曲线图。
设0=t 时,m 5=x 。
试根据t v -图画3出:(1)质点的t a -曲线图;(2)质点的t x -曲线图。
解:⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v(1)dtdv a = ,可求得: ⎪⎩⎪⎨⎧≤≤-≤≤+≤≤+-=)106( 5.775)62( 5.215)20( 2020t t t t t t v质点的t a -曲线图如右图所示(2)dt dx v = ,⎰⎰=t x vdt dx 00, 可求得:20≤≤t 时,⎰⎰+-=tx dt t dx 05)2020(, 520102+-=t t x 62≤≤t 时,⎰⎰⎰+++-=t x dt t dt t dx 2205)5.215()2020(, 3015452-+=t t x 106≤≤t 时,⎰⎰⎰⎰-++++-=tx dt t dt t dt t dx 662205)5.775()5.215()2020(, 210754152-+-=t t x4⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-+-≤≤-+≤≤+-=∴)106( 21075415)62( 301545)20( 52010222t t t t t t t t t x质点的t x -曲线图如右图所示。
大学物理第1章 质点运动学习题解答
第1章质点运动学习题解答1-9质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=- .⑴求质点轨迹;⑵求自t=-1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y e x t t ,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e ie e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x rγβα轴夹角与轴夹角与轴夹角与1-10⑴k t j t R it R r ˆ2ˆsin ˆcos ++= ,R 为正常数,求t=0,π/2时的速度和加速度。
⑵k t j t i t r ˆ6ˆ5.4ˆ332+-= ,求t=0,1时的速度和加速度(写出正交分解式)。
解:⑴k j t R it R dt r d v ˆ2ˆcos ˆsin /++-== j R a k i R v iR a k j R v j t R i t R dt v d a t t t t ˆ|,ˆ2ˆ|,ˆ|,ˆ2ˆ|.ˆsin ˆcos /2/2/00-=+-=-=+=∴--======ππ ⑵kt j dt v d a k t j t i dt r d v ˆ36ˆ9/,ˆ18ˆ9ˆ3/2+-==+-== ; kj a k j i v j a i v t t t t ˆ36ˆ9|,ˆ18ˆ9ˆ3|,ˆ9|,ˆ3|1100+-=+-=-====== 1-12质点直线运动的运动学方程为x=acost,a 为正常数,求质点速度和加速度,并讨论运动特点(有无周期性,运动范围,速度变化情况等)解:t a dt dv a t a dt dx v t a x x x x cos /,sin /,cos -==-=== 显然,质点随时间按余弦规律作周期性运动,运动范围:a a a a v a a x a x x ≤≤-≤≤-≤≤-,,1-13图中a 、b 和c 表示质点沿直线运动三种不同情况下的x-t 图像,试说明每种运动的特点(即速度,计时起点时质点的位置坐标,质点位于坐标原点的时刻)t(s)解:质点直线运动的速度dt dx v /=,在x-t 图像中为曲线斜率。
(完整版)大学物理学(课后答案)第1章.doc
第 1 章质点运动学习题一选择题1-1 对质点的运动,有以下几种表述,正确的是[](A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零(C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化(D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C。
1-2 某质点的运动方程为x 2t 3t 312(m) ,则该质点作[](A)匀加速直线运动,加速度沿 ox 轴正向(B)匀加速直线运动,加速度沿ox 轴负向(C)变加速直线运动,加速度沿ox 轴正向(D)变加速直线运动,加速度沿ox 轴负向dx 2 dv解析:vdt 2 9t ,adt18t,故答案选 D。
1-3 一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为 v ,某一段时间内的平均速率为 v ,平均速度为 v ,他们之间的关系必定有 [](A) v v , v v (B) v v , v v(C) v v , v v (D) v v , v v解析:瞬时速度的大小即瞬时速率,故v v ;平均速率 vs ,而平均速r,故 v v 。
答案选 D。
t度 v =t1-4 质点作圆周运动时,下列表述中正确的是[](A) 速度方向一定指向切向,所以法向加速度也一定为零(B)法向分速度为零,所以法向加速度也一定为零(C)必有加速度,但法向加速度可以为零(D)法向加速度一定不为零解析:质点作圆周运动时,v 2dva a n e n a t e te ndte t,所以法向加速度一定不为零,答案选 D 。
1-5 某物体的运动规律为dvkv 2t ,式中, k 为大于零的常量。
当 t 0 时,dt初速为 v 0 ,则速率 v 与时间 t 的函数关系为 [](A) v 1 kt 2 v 0(B)1 kt2 12v 2 v 0(C) v1 kt2 v 0 (D)1 kt2 12v2v 0解析:由于dvvt( kv 2t) dt ,得到1kt 21,故答案kv 2t ,所以 dvdtv 0v 2 v 0选 B 。
大学物理第一章质点运动学-习题及答案
(C ) 只有(2)是对的。
(D ) 只有(3)是对的。
dr _ d$工d 厂 dr dt dt .只有③正确。
1-3在相对地面静止的坐标系内,A 、B 二船都以2m s-1的速率匀速行驶,A 船沿x 轴正向,B 船沿),轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(%, y 方向单 位矢用'〃表示),那么在A 船上的坐标系中,B 船的速度(以m s^为单位)为(A ) 2i + 2j(B ) - 2i + 2j (C ) —2i — 2j (D )2i — 2j 第一章质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为 r = at 2i + bt 2j (其中。
上为常量) 则该质点作 (A )匀速直线运动 (E )变速直线运动 (C )抛物线运动 (D ) —般曲线运动 v = — = 2citi + 2btj 解:由 缶 知卩随/变化,质点作变速运动。
x = at 2 又由y=bfl -b y = —x a 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2质点作曲线运动,「表示位置矢量,s 表示路程,①表示切向加速度,下列表达式中, 1 dv/dt = a ③ d5/d/ = v (2)dr /dz = v④ |dv/d/| = (A )只有(1)、 (4)是对的。
(B) 只有(2). (4)是对的。
[D] 解:由定义: dv a =— dr dv 丰— dr . ■[B]解:由"A 对地=2d,叫对地=2f 可得 "B 对A = "g 对地+ "地对A=%对地一对地= 2j-2i=一2i + 2/ ( m. S _1)1-4 一质点沿x 方向运动,其加速度随时间变化关系为 a = 3 + 2/ (SI)如果初始时质点的速度%为5H1-S-1,则当/为3S 时,质点的速度 W m s tv= v 0 + J adt 解: o3=5 + J (3 + 2t)dto=23 m-s'11-5 一质点的运动方程为"'-/-(SI),则在/由o 至4s 的时间间隔内,质点的位 移大小为 8m ,在/由0到4s 的时间间隔内质点走过的路程为10m 。
大学物理习题答案解答第一章质点的运动
第一章 质点的运动一、填空题1、质点的位移为21()()2r r t r t Ri ∆=-=由r xi yj =+可知cos sin x R t y R t ωω=⎧⎨=⎩(1-1) 消去t ,可得质点的轨道方程为222x y R += 表明质点作已原点为圆心,半径为R 的圆周运动。
结合(1-1)可知运动周期为2T πω=从1t 到2t ,时长为2T ,所求路程为半圆周长,即R π。
2、因为()()32()()()281068d d d v t r t x t i t t i t i dt dt dt ⎡⎤===-+=-⎣⎦ 所以第二秒末的速度为1(2)16()v i m s -=⋅3、因为()()232()()()10203090040d d d v t r t x t i t t i t t i dt dt dt ⎡⎤===-+=-⎣⎦ 而()()2()()90040180040d d a t v t t t i t i dt dt ⎡⎤==-=-⎣⎦ 所以初始时刻的加速度为2(0)40()a i m s -=-⋅4、在地面上取竖直向下方向为x 轴方向。
(1)重物从开始脱落到再次回到脱落处是一个对称过程。
速度从105v m s -=-⋅变化至15v m s -=⋅,而加速度为210.0a m s -≈⋅,由0v v at =+ (1-2)可解出所花时间为1 1.0t s =。
(2)考察重物继续下落至触地的过程。
以初速105v m s -=⋅,加速度210.0a m s -≈⋅下落,发生的路程为20s m ∆=,由 2012s v t at ∆=+ 可解出21 1.6()2t s == 由(1-2)可计算出落地时的速度为121v m s -=⋅,方向竖直向下,而所求重物落地时间为12 2.6()t t t s =+=5、由图1-1,可得汽车行驶的总路程为30302080()s AB BC AB km ∆=++=++=取东北方向为x 轴,则总位移为2062.4()r AB BC CD i i km ∆=++=+≈ 图1-16、由r xi yj =+可知4cos 23sin 2x t y t=⎧⎨=⎩ (1-2) 消去t ,可得质点的轨道方程为2222143x y += 表明质点的运动轨迹为一椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章质点运动学答案
一.选择题
1、C
2、C
3、B
4、B
5、B
6、A
7、B
8、C
二.填空题
1、[4s ]
2、[3m/s;9m/s]
3、[2m;6m]
4、
/s
/s ]5、[2
39
y x =+]6、[124313-+=
t t x ]7、[s t ∆;02t
υ
∆]8、[6.28m;0;0;6.28m/s]9、[圆周运动;匀速率圆周运动]10、[3.8]11、[sin sin R ti R tj ωωωω-+
;0;半径为R 的圆周]。
三.计算题
1.解:标量形式
(1)位移)
(0)1()2(m x x x =-=∆平均速度)/(0s m i t
i
x v
=∆∆=由t dt
dx
v x 46-==
可知s t v 5.10==时路程)(1)5.1()2()1()5.1(m x x x x s =-+-=∆平均速率)/(1s m t
s
v =∆∆=
(2)第2秒末的速度
)/(246s m t dt
dx
v x -=-==方向沿x 轴负向
矢量形式
(1)位移)(0))1()2((m i i x x x
=-=∆平均速度)/(0s m i t
i
x v
=∆∆=由t dt
dx
v x 46-==可知s t v 5.10==时路程)(1)5.1()2()1()5.1(m x x x x s =-+-=∆平均速率)/(1s m t
s
v =∆∆=
(2)第2秒末的速度
)/(2)46(s m i i t i dt
dx v x
-=-==方向沿x 轴负向
2.
解:
222
3058.365.12x y t n t n gt
d a dt a g
a t s m a m s m
a s
s υυυυ⎧=⎪⎨=⎪⎩===
======时,3.解:
解.t =2s 时质点在
轨迹上的位置.S =80(m)(在大圆上)质点的速率:t
t S 1030d /d +==v 故t =2s 时,
v =50m/s
因此,质点的切向加速度和法向加速度大小:
v 10d d d d 2
2===t S t a t m/s 2
;
ρ
2
v =n a ;30m
ρ=故t =2s 时,
a t =10m/s 2,
a n =83.3m/s 2
4.解:
02
3
03
00044
002232()3114366
v
t
t
v x
t
t
x dv a dt dv adt dv adt t dt
v v t dx v dt dx vdt
dx vdt v t dt x x v t t t t =
====+=
===+=++=++⎰⎰⎰⎰⎰⎰。