采用运算放大器设计正弦波振荡器 (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用运算放大器设计正弦波振荡器(1)
2006-12-26 作者:来源:互联网浏览次数:1088 文字大小:【大】【中】【小】
振荡的判居
一个反馈系统的典型形式如图1所示,下式给出任何一个反馈系统的特性(一个放大器与源
的反馈元件构成一个反馈系统)。
VOUT/VIN=A/(1+Aβ) (1)
振荡是由不稳定的状态引起的,反馈系统处于不稳定状态是由于传递函数不满足稳定条件所引起的。当(1+Aβ)=0时,公式1等于∞,这表示VIN=0时,存在VOUT°因而设计一个振荡器的关键是确保Aβ=-1(巴克豪森判据),或者使用复数形式的Aβ=1<-180°。-18 0°相移判据适用于负反馈系统,而0°相移适用于正反馈系统。
当Aβ=-1时,反馈系统的输出电压变为无限大,当输出电压趋近于任何一个电源电压时,放大器中的有源器件改变增益,引起A值的改变,使Aβ≠-1,从而,振荡衰减,并最终停下来。这里可能出现三种情况之一:第一,由于饱和或截止的非线性,可以使系统趋于稳定;第二,超始的振荡,可能引起系统的饱和(或截止),并且在系统变为线性状态并向远离电源电压方向变化之前,可使这种状态保持很长一段时;第三,系统保持线性状态并向远离电源电压方向变化。两者交替产生高度失真的振荡(通常为准方波),而形成的振荡器被称为张弛振荡器。
三者交替产生正弦波振荡器。
所有振荡器都是由TLV247X运算放大器、5%精度的电阻和20%精度的电容构成的,从而
元件的容差引起理想值与测量值之间差别。
振荡器中的相移
公式Aβ=1<-180°中的180°相移是由有源元件和无源元件引入的,
像任何精心设计的反馈电路那样,使振荡器取决于无源元件的相移,因为它精确且几乎不漂移。应使由有源元件提供的相移最小,因为它随湿度而变化,有个很大的初始偏差,并且是与器件相关的。应这样来选择放大器,使
得它们在振荡频率处的相移极小或没有。
单极点RL或RC电路,每个极点提供90°的相移,为了实现振荡,要求的相移为180°,所以在振荡器的设计中,必须采用至少两个极点。一个TL电路有两个极点,从而它可提供180°的相移。但是在这里不考虑LC和LR振荡器,因为低频电感很贵、很笨重、体积又很大,所以是不理想的。在超出了电压反馈运算放大器频率范围的高频应用中,应设计LC振荡器,因为这时电感的尺寸、重量和成本都显著地减少。在低频振荡器设计中使用多个RC电路来代替
电感。
由于在累加相移达到-180°的频率处,电路产生振荡,所以相移决定振荡的频率。相移随频率的变化率dφ/dt决定了振荡的稳定性。当缓冲的各个RC(一个运算放大器缓冲器提供高输入和低输出阻抗)是级联的时候,相移要用个数n来乘。(见图2)
尽管两个级联的RC可提供180°相移,但在振荡频率上dφ/dt是低的,从而便各由两个级联的RC构成的振荡器的频率稳定性很差。三个同样的级联RC滤波器具有较高的dφ/dt,构成的振荡器改善了频率稳定性。加入一个第四个RC,制成一个具有极好dφ/dt的振荡器,
因而这是最稳定的振荡器结构。由于流行的是四个运算放大器封在一起,所以四个是所能采用的最大数目。而四个振荡器产生四个彼此相对相移为45°的正弦波,因此可以利用这个振
荡器来获得正弦/余弦或正交正弦波。
晶体或陶瓷谐振器可以制成最稳定的振荡器,因为谐振器具有由它们的非线性特性而引起的极高的dφ/dt。谐振器通常被用于重频振荡器,但是由于尺寸、重量和成本的限制,低频振荡器不使用谐振器。带有晶体或陶瓷揩振器的振荡器不采用运算放大器,因为运算放大器的带宽较低。经验表明,构成一个高频晶体振荡器,并利用对输出进行脉冲分频的方法来获得低频,
比使用低频谐振器成本更低。
振荡器的增益
振荡器的增益在振荡频率处必须等于1(Aβ=1<-180°)。
当增益大于1且振荡停止时,电路是稳定的,当增益大于1,同时上移为-180°时,有源器件的非线性将增益降低到1。当放大器摆到接近于电源电压时,由于截止或饱和降低了有源器件(晶体管)的增益,就有非线性情况发生。
这种矛盾是那种最坏的情形,设计实践要求额定的增
采用运算放大器设计正弦波振荡器(2)
2006-12-26 作者:来源:互联网浏览次数:1089 文字大小:【大】【中】【小】
益大于1,以便于制造,但是过量的增益会引起输出正弦波的更大失真。
当增益太低时,在最坏条件下振荡停止。而当增益太高时,输出波形的形状与正弦波相比看起来更像方波。失真是由于过量的增益导致放大器过驱动而直接造成的,所以对于低失真振荡器一定要十分仔细地控制增益。移相振荡器具有失真,但是由于各个级联的RC起失真滤波器的作用,所以它们能获得低失真的输出电压。缓冲的移相振荡器也具有低失真,因为可以对增益加以控制并把增益在各缓冲器中加以分配。
某些电路结构(文氏电桥)或低失真的规范要求有个辅助电路来调节增益,辅助电路包括从在反馈环路内插入的一个非线性元件,到由外部元件构成的自动增益控制(AGC)回路。
文氏电桥振荡器
图3绘出了文氏电桥电路的结构,回路在正输入处断开,利用下式来计算反馈系数。
式中s=jω,且j=根号-1
当ω=2πf=1/RC时,反馈是同相的(这是正反馈),而增益是1/3,因此振荡要求放大器具有3倍的增益。当RF=2RG时,放大器的增益是3,并且产生频率等于1/2πRC的振荡。在元件值如图3所示的情况下,电路在1.65kHz而不是在1.59kHz处振荡,但失真是显著的。图4表示的文氏电桥电路带有非线性反馈,把灯泡电阻RL选作反馈电阻RF的一半,灯炮上的电流由RF和RL确定,灯泡电流和电阻之间的非线性关系保持输出电压的变化很小。
有些电路使用二极管限幅代替非线性反馈元件,二极管通过对输出电压形成一个软限幅来降低失真。当这些技术中没有一种能提供低失真时,就必须使用AGC,带有AGC电路的典型文
氏电桥振荡器如图5所示。
通过D1对负正弦波取样,且所取样储存在C1上,要这样来选R1和R2,让Q1的偏置定在中心处,使得输出电压为期望值时,(RG+RQ1)=RF/2。当输出电压升高时,Q1增大电阻,从而使增益降低。在图3所示的振荡器中,给运算放大器的正输入端施加0.833V电源,使输出的静态电压处在中心位置处(Vcc/2=2.5V)。
移相振荡器(一个运算放大器)