6- 电磁感应 电磁场(带答案)
电磁感应与电磁场练习题及答案
12
的大小关系为:
[C ]
(A) 21 = 212 ; (B) 21 > 12 ;
(C)
=
21
12
;
(D) 21 = 12 .
I
I
S 1 2S
2
6、电位移矢量的时间变化率 dD / dt 的单位是
(A)库仑/米2 ; (B)库仑/秒; (C)安培/米2 ; (D)安培•米2 .
解: (1)
U q 1 t i d t 1 0.2et t 0.2 (1 et )
C C0
C
0C
(2) 由全电流的连续性,得
I d i 0.2et
四、问答题
18、 简述方程
L
H
d
l
I
S
t
D
d
S
中各项的意义,并简述这个
方程揭示了什么规律.
C
(2) 非均匀的时变磁场 B Kx cost .
O B
v
D
解:(1) 由法拉第电磁感应定律:
B 1 xy
2
y tg x
x vt
x N
i
d
/d t
d dt
(1 2
B tg
x2)
1 B tg 2x d x /dt B tg v 2t
2
在导体MN内 i 方向由M向N.
[C]
7、在感应电场中电磁感应定律可写成
EK
为感应电场的电场强度.此式表明: L
d
l
d
dt
(A) 闭合曲线 L上 EK 处处相等;
电磁感应-麦克斯韦电磁场理论
dB dt
导体
• 涡电流的机械效应(磁阻尼摆) • 涡电流的热效应
电磁灶
第24页 共48页
§13.4 自感和互感
13.4.1 自感 • 自感现象
因回路中电流变化,引起穿 过回路包围面积的全磁通变 化,从而在回路自身中产生感 生电动势的现象叫自感现象. • 自感系数
B I, 又 Ψ B Ψ I
1 12
2 21
• 互感系数
I1 I2
21 N221 M21I1
M12 M21 M 单位: 亨利(H)
M 称为互感系数简称互感.
12 N112 M12I2
第29页 共48页
• 互感电动势
根据法拉第电磁感应定律:
21
dΨ 21 dt
(M
dI1 dt
I1
dM dt
)
若M 保持不变
12
B
E内
E感 半 径 Oa Oc 0
o
E外
Oac Oa ac Oc ac
Rh
通过 Oac 的磁通量:
a
E内 b
c
Φm
B dS
S
B(SOab
S扇)
B(3
3 π R2) 12
dΦm 3 3 π R2 dB a () , c ( )
dt
12
dt
第22页 共48页
例题9. 某空间区域存在垂直向里且随时间变化的非均匀磁
场B=kxcost. 其中有一弯成角的金属框COD,OD与x轴重
合, 一导体棒沿x方向以速度v匀速运动. 设t =0时x =0, 求框
内的感应电动势. 解: 设某时刻导体棒位于l 处
y B
C
任取 dS ydx x tan dx
电磁场课后习题答案
电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。
在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。
本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。
1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。
洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。
将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。
因此,速度与运动半径之间的关系是v 与R成正比。
2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。
答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。
可以看出,磁场强度与距离的关系是B与1/r成反比。
3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。
答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。
可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。
4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。
当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。
大学物理参考答案(白少民)第6章 电磁感应 电磁场
则电子在涡旋电场中所受的力为:
F = −eE = 1 dB F e dB e r ,加速度 a = = r 2 dt m 2m dt
图 6.22 题 6.14 示图
在 a 点, r = 5cm = 5 ×10 −2 m
aa = 1 ×1.76 ×1011 × ( −1.0 ×10 −2 ) × 5 ×10 −2 = −4.4 ×10 7 m / s 2 ,方向向右。 2
f m = IlB = ε υBl cos θ υcos θ 2 2 lB lB = l B R R R υ 2 2 dυ l B cos θcos θ = Rm dt
沿斜面方向应用牛二得:
g sin θ −
图 6.21 题 6.13 示图
这是 υ 对 t 的常微分方程,解之得:
4
− mgR sin θ υ= 2 2 − Ce 2 B l cos θ
ε
R
dt = −
∫ (6 − 8t )dt = − 10
0
1
100
× (6 − 4) = −20C 6 = 0.75s 8
(4)由 ε = −N (6 − 8t ) 知,电动势开始反转的时刻 t =
6.11 如图 6.19(a)表示一根长度为 L 的铜棒平行于一载有电流 i 的长直导线,从距 离电流为 a 处开始以速度 υ 向下运动。求铜棒所产生的感应电动势。已知 υ= 5m·s-1 , i=100A,L= 20cm ,a =1cm。 又如图 6.19(b)所示若铜线运动的方向 υ 与电流方向平行。 设铜棒的上端距电流为 a,问此时铜棒的感应电动势又为多少。 解:在图(a)中: µ i ε = ∫ υ × B ⋅ dl = υBL = υ 0 L 2πa
第六章 电磁感应与暂态过程习题及答案
第六章 电磁感应与暂态过程一、判断题1、若感应电流的方向与楞次定律所确定的方向相反,将违反能量守恒定律。
√2、楞次定律实质上是能量守恒定律的反映。
√3、涡电流的电流线与感应电场的电场线重合。
×4、设想在无限大区域内存在均匀的磁场,想象在这磁场中作一闭合路径,使路径的平面与磁场垂直,当磁场随时间变化时,由于通过这闭合路径所围面积的磁感通量发生变化,则此闭合路径存在感生电动势。
×5、如果电子感应加速器的激励电流是正弦交流电,只能在第一个四分之一周期才能加速电子。
√6、自感系数I L ψ=,说明通过线圈的电流强度越小,自感系数越大。
×7、自感磁能和互感磁能可以有负值。
×8、存在位移电流,必存在位移电流的磁场。
×9、对一定的点,电磁波中的电能密度和磁能密度总相等。
√ 10、在电子感应加速器中,轨道平面上的磁场的平均磁感强度必须是轨道上的磁感强度的两倍。
√11、一根长直导线载有电流I ,I 均匀分布在它的横截面上,导线内部单位长度的磁场能量为:πμ1620I 。
√12、在真空中,只有当电荷作加速运动时,它才可能发射电磁波。
√13、振动偶极子辐射的电磁波,具有一定方向性,在沿振动偶极子轴线方向辐射最强,而与偶极子轴线垂直的方向没有辐射。
×14、一个正在充电的圆形平板电容器,若不计边缘效应,电磁场输入的功率是⎪⎪⎭⎫⎝⎛=∙=⎰⎰C q dt d A d S P 22 。
(式中C 是电容,q 是极板上的电量,dA 是柱例面上取的面元)。
√二、选择题1、一导体棒AB 在均匀磁场中绕中点O 作切割磁感线的转动AB 两点间的电势差为: (A )0(B )1/2OA ωB (C )-1/2AB ωB (D )OA ωB A2、如图所示,a 和b 是两块金属板,用绝缘物隔开,仅有一点C 是导通的,金属板两端接在一电流计上,整个回路处于均匀磁场中,磁场垂直板面,现设想用某种方法让C 点绝缘,而同时让C 点导通,在此过程中(A )电路周围的面积有变化。
第八章电磁感应 电磁场习题解答-感生电场习题
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载第八章电磁感应电磁场习题解答-感生电场习题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第八章电磁感应电磁场习题解答8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为,求在时,线圈中的感应电动势.分析由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成,其中称为磁链.解线圈中总的感应电动势当时,.8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁通量就需用来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B1 与B2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即,故取一个平行于长直导线的宽为dx、长为d 的面元dS,如图中阴影部分所示,则,所以,总磁通量可通过线积分求得(若取面元,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式求解.解1 穿过面元dS 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为当电流以变化时,线圈中的互感电动势为8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析本题及后面几题中的电动势均为动生电动势,除仍可由求解外(必须设法构造一个闭合回路),还可直接用公式求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势.在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B)的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距形导轨左侧距离为x,则即由于静止的形导轨上的电动势为零,则ε =-2RvB.式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c)所示的坐标系,在导体上任意处取导体元dl,则由矢量(v ×B)的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量.由法拉第电磁感应定律可知,ε =0又因ε =εOP +εPO即εOP =-εPO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -12 如图所示,长为L 的导体棒OP,处于均匀磁场中,并绕OO′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析如前所述,本题既可以用法拉第电磁感应定律计算(此时必须构造一个包含OP导体在内的闭合回路,如直角三角形导体回路OPQO),也可用来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得由矢量的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势显然,εQO =0,所以由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速平行于一长直导线移动,此导线通有电流I =40A.求杆中的感应电动势,杆的哪一端电势较高?分析本题可用两种方法求解.(1)用公式求解,建立图(a)所示的坐标系,所取导体元,该处的磁感强度.(2)用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB在一个静止的形导轨上滑动,如图(b)所示.设时刻t,杆AB 距导轨下端CD的距离为y,先用公式求得穿过该回路的磁通量,再代入公式,即可求得回路的电动势,亦即本题杆中的电动势.解1 根据分析,杆中的感应电动势为式中负号表示电动势方向由B 指向A,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx、长为y 的面元dS,则穿过面元的磁通量为穿过回路的磁通量为回路的电动势为由于静止的形导轨上电动势为零,所以式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A,故点A 电势较高.8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率为常量,且为正值,试求:(1)管内外由磁场变化激发的感生电场分布;(2)如,求距螺线管中心轴r =5.0 cm处感生电场的大小和方向.分析变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率等)密切相关,即.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆(若电场线是其他类型的曲线则与其对称性特点不符),同一圆周上各点的电场强度Ek 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当时,电场线绕向与B 方向满足右螺旋关系;当时,电场线绕向与前者相反.解如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l(半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R,r >R,由于,故电场线的绕向为逆时针.(2)由于r >R,所求点在螺线管外,因此将r、R、的数值代入,可得,式中负号表示Ek的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率为常量.试证:棒上感应电动势的大小为分析变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由计算棒上感生电动势.此外,还可连接OP、OQ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP、OQ 沿半径方向,与通过该处的感生电场强度Ek 处处垂直,故,OP、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有证2 由题8-17可知,在r <R 区域,感生电场强度的大小设PQ 上线元dx 处,Ek的方向如图(b)所示,则金属杆PQ 上的电动势为讨论假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势?该如何求解?8 -23 如图所示,一面积为4.0 cm2 共50 匝的小圆形线圈A,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1)两线圈的互感;(2)当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析设回路Ⅰ中通有电流I1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M21 =Φ21I1 ;也可设回路Ⅱ通有电流I2 ,穿过回路Ⅰ的磁通量为Φ12 ,则.虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS.反之,如设线圈A 通有电流I,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解(1)设线圈B 有电流I 通过,它在圆心处产生的磁感强度穿过小线圈A 的磁链近似为则两线圈的互感为(2)互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A、C 的半径分别为R 和r,两线圈相距为d.若r很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为穿过线圈C 的磁通为则两线圈的互感为若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -26 一个直径为0.01 m,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1)如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少?磁能密度是多少?*(2)从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析单一载流回路所具有的磁能,通常可用两种方法计算:(1)如回路自感为L(已知或很容易求得),则该回路通有电流I 时所储存的磁能,通常称为自感磁能.(2)由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即,式中为磁场能量密度,积分遍及磁场存在的空间.由于,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用求解L.解(1)密绕长直螺线管在忽略端部效应时,其自感,电流稳定后,线圈中电流,则线圈中所储存的磁能为在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管中,并为均匀磁场,故磁能密度处处相等,(2)自感为L,电阻为R 的线圈接到电动势为E 的电源上,其电流变化规律,当电流稳定后,其最大值按题意1,则,将其代入中,得8 -31 设有半径R =0.20 m 的圆形平行板电容器,两板之间为真空,板间距离d =0.50 cm,以恒定电流I =2.0 A 对电容器充电.求位移电流密度(忽略平板电容器的边缘效应,设电场是均匀的).分析尽管变化电场与传导电流二者形成的机理不同,但都能在空间激发磁场.从这个意义来说,变化电场可视为一种“广义电流”,即位移电流.在本题中,导线内存在着传导电流Ic,而在平行板电容器间存在着位移电流Id,它们使电路中的电流连续,即.解忽略电容器的边缘效应,电容器内电场的空间分布是均匀的,因此板间位移电流,由此得位移电流密度的大小。
大学物理第9章 电磁感应和电磁场 课后习题及答案
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
第十二章 电磁感应电磁场(一)作业答案
一.选择题[ A ]1.(基础训练1)半径为a的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60︒时,线圈中已通过的电量与线圈面积及转动时间的关系是:(A)与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】[ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】dt dI LL -=ε,在每一段都是常量。
dtdI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω (B) =0,U a – U c =221l B ω- (C) =2l B ω,U a – U c =221l B ω (D) =2l B ω,U a – U c=221l B ω-【解析】金属框架绕ab 转动时,回路中0d d =Φt,所以0=ε。
2012cL a c b c bc b U U U U v B d l lBdl Bl εωω→→→⎛⎫-=-=-=-⨯⋅=-=- ⎪⎝⎭⎰⎰[ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。
当直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220r a a R Ir +-πμ (B)ar a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=εaIR q 21φφ-=感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为:∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daR Ir R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈[ C ]6.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1.【解析】自感系数为l r n V n L 222πμμ==,磁能为221LI W m =[ B ]7.(附录C3)在圆柱形空间内有一磁感应强度为B 的均匀磁场,如图所示,B的大小以速率dB/dt 变化。
《大学物理》电磁感应练习题及答案
《大学物理》电磁感应练习题及答案一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。
2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。
由于磁感强度变化而引起的感应电动势称为感生电动势。
3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。
两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。
4、简述位移电流与传导电流有什么异同答:共同点:都能产生磁场。
不同点:位移电流是变化电场产生的(不表示有电荷定向运动,只表示电场变化),不产生焦耳热;传导电流是电荷的宏观定向运动产生的,产生焦耳热。
5 简述感应电场与静电场的区别?答:感生电场和静电场的区别6、写出麦克斯韦电磁场方程的积分形式。
答:⎰⎰==⋅s v q dv ds D ρ dS tB l E s L ⋅∂∂-=⋅⎰⎰d 0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d 7、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差8、 简述磁能密度, 并写出其表达式答:单位体积中的磁场能量,221H μ。
9、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。
10、全电流安培环路定理答:磁场强度沿任意闭合回路的积分等于穿过闭合回路围成的曲面的全电流 s d t D j l d H s e •⎪⎪⎭⎫ ⎝⎛∂∂+=•⎰⎰二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M .若它们分别流过1i 和2i 的变化电流且dt di dt di 21<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈1中产生的互感电动势为21ε,下述论断正确的是( D )A 、 12212112,εε==M MB 、 12212112,εε≠≠M MC 、 12212112,εε>=M MD 、 12212112,εε<=M M3、对于位移电流,下列四种说法中哪一种说法是正确的 ( A )A 、位移电流的实质是变化的电场B 、位移电流和传导电流一样是定向运动的电荷C 、位移电流服从传导电流遵循的所有规律D 、位移电流的磁效应不服从安培环路定理4、下列概念正确的是 ( B )。
电磁感应与电磁场作业纸答案
第10章 电磁感应与电磁场一、选择题1、一导体圆线圈在均匀磁场中运动,在下列情况下,会产生感应电流的是( D )A .线圈沿磁场方向平移B .线圈以自身直径为轴转动,轴与磁场方向平行C .线圈沿垂直于磁场方向平移D .线圈以自身直径为轴转动,轴与磁场方向垂直 2、将磁铁从迅速插入和缓慢插入金属环,若两种情况下磁铁的起始位置和终了位置均相同,则关于两种情况环中的感应电动势和感生电量的说法正确的是( C )A .感应电动势不同;感生电量也不同B .感应电动势相同,感生电量也相同;C .感应电动势不同,感生电量相同;D .感应电动势相同,感生电量不同. 3、如图所示,A 为闭合的导体环,B 为有间隙的导体环,则当磁铁分别移近A 和B 时,关于A 和B 的运动描述正确的是( A )A .A 环被排斥,B 环不动 B .A 环被吸引,B 环不动C .A 环被吸引,B 环被吸引D .A 环被排斥,B 环被排斥4、在感应电场中电磁感应定律可写成⎰-=•L K dtdl d E φ ,式中K E 为感应电场的电场强度。
此式表明( D )A. 闭合曲线L 上K E处处相等 B. 感应电场是保守力场。
C .感应电场的电力线不是闭合曲线D .在感应电场中不能像对静电场那样引入电势的概念 5、关于长直螺线管线圈的自感,以下说法正确的是( D ) A 、螺线管中通有的电流越大,自感也越大; B 、螺线管横截面通过的磁通量越大,自感也越大C 、在单位长度匝数不变的情况下,真空中螺线管长度越长,自感就越大;D 、在单位长度匝数不变的情况下,真空中螺线管体积越大,自感就越大6、如图,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时钟方向匀角速度转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时。
图(A)--(D)的t -ε函数图像中哪一条属于半圆形导线回路中产生的感应电动势(A )7、如图所示的闭合线圈abcda 均位于匀强磁场中,当磁场不断减小时,回路中不产生感应电流的是( B )8、如图所示,两个圆环形导体a 、b 互相垂直地放置,且圆心重合,当它们的电流I 1、和I 2同时发生变化时,则( D )(A) a 导体产生自感电流,b 导体产生互感电流(B) 两导体同时产生自感电流和互感电流(C) b 导体产生自感电流,a 导体产生互感电流;(D)两导体只产生自感电流,不产生互感电流。
物理学-第八章电磁感应 电磁场
1 = B ( R12 22 ) = 226V R 2
盘边缘的电势高于中 心转轴的电势。
8-2 动生电动势和感生电动势
二 感生电动势
产生感生电动势的非静电场
感生电场
麦克斯韦假设:变化的磁场在其周围空间激发一种电场,这个电 场叫感生电场 E k 。
闭合回路中的感生电动势:
l
8-1 电磁感应定律
楞次定律是能量守恒定律的一种 表现。
要移动导线,就需要外力对它作 功,这样就把某种形式的能量转 换为其它形式的能量。 (1)稳恒磁场中的导体运动,或者回路面积变化、取向变化等 动生电动势 (2)导体不动、磁场变化
感生电动势
= Ek d l Ek
非静电的电场强度
H =0
R1 < r < R 2 , H =
wm
r > R 2, H = 0 I2 1 I = H2= )2= ( 82 r 2 2 2r 2
I 2r
8-5 磁场的能量 磁场能量密度
I2 W m = Vw m dV = V 2 2 dV 8 r
单位长度壳层体积:
= 2 rdr × 1 R2 I 2 I2 R 2 dr = ln Wm= R1 4 r 4 R1 dV
8-1 电磁感应定律
一 电磁感应现象
法拉第(1791-1867):伟大的英 国物理学家和化学家。他创造性地提出 场的思想,磁场这一名称是法拉第最早 引入的。他是电磁理论的创始人之一, 于1831年发现电磁现象,后又相继发现 电解定律,物质的抗磁性和顺磁性,以 及光的偏振面在磁场中的旋转。
N
S
当穿过闭合导体回路所围面积的磁通 量发生变化时,不管这种变化是由于 什么原因所引起的,回路中就有电 流。这种现象叫做电磁感应现象。回 路中所出现的电流叫做感应电流。
大学物理第九章练习参考答案
第九章 电磁感应 电磁场理论练 习 一一.选择题1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势 ,磁通量为正值。
若磁铁沿箭头方向进入线圈,则有( B ) (A) d /dt 0, 0 ; (B) d /dt 0, 0 ; (C) d /dt 0,0 ; (D) d /dt 0,0。
2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向(以螺线管内流向为准)以及电表两端电势U A 和U B 的高低为( C )(A) I 由A 到B ,U A U B ; (B) I 由B 到A ,U A U B ; (C) I 由B 到A ,U A U B ; (D) I 由A 到B ,U A U B 。
3. 一长直螺线管,单位长度匝数为n ,电流为I ,其中部放一面积为A ,总匝数为N ,电阻为R 的测量线圈,如图3所示,开始时螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通过测量线圈某导线截面上的电量q 为( A ) (A) 2nINA /R ; (B)nINA /R ; (C)NIA /R ; (D)nIA /R 。
4. 尺寸相同的铁环和铜环所包围的面积中,磁通量的变化率相同,则环中( A ) (A )感应电动势相同,感应电流不同; (B )感应电动势不同,感应电流相同; (C )感应电动势相同,感应电流相同; (D )感应电动势不同,感应电流不同。
S N v图1· ·GA B NS 图2IIA图3二.填空题1.真空中一长度为0l 的长直密绕螺线管,单位长度的匝数为n ,半径为R ,其自感系数L可表示为0220l R n L πμ=。
2. 如图4所示,一光滑的金属导轨置于均匀磁场B v中,导线ab 长为l ,可在导轨上平行移动,速度为v ,则回路中的感应电动势ε=θsin Blv ,a 、b 两点的电势a U < b U (填<、=、>),回路中的电流I=R Blv /sin θ,电阻R 上消耗的功率P=R Blv /)sin (2θ。
电磁场与电磁波(第六章)
2
t
H
E
2
t
2
0
二、H 的波动方程
同E 的波动方程,有
H
2
H
2
t
2
0
三、直角坐标系下的波动方程
2
为矢量的拉普拉斯算符,则有 磁场
2 2 2
电场
Ex Ex Ex Ex 0 2 2 2 2 x y z t 2 2 2 2E Ey Ey Ey y 0 2 2 2 2 x y z t 2 2 2 2E Ez Ez Ez z 0 2 2 2 2 x y z t
三、媒质的本构关系式 对于线性各向同性媒质有
D E 0 r E B H 0 r H J E
四、麦克斯韦方程组的限定形式 ◇ 麦氏方程的非限定形式:用E、D、B、H四个场量写出的方程。 ◇ 麦氏方程的限定形式:用E、H 二个场量写出的方程。 微分形式
H E E t
in
E dl
C
◇ 穿过回路的磁通量为 综上可得
m
B d S
S
法拉第电磁感应定律的积分形式
C
E dl =
B dS dt
S
d
法拉第电磁感应定律的微分形式 E 五、意义
B t
◇ 积分形式:感应电场在时变磁场中沿闭合曲线的线积分等于该曲线所围曲面 上穿过磁通的负变化率。 ◇ 微分形式: 1.感应电场是涡旋场,不是保守场; 2.感应电场的源是时变的磁场。
1
l
H 1t
H1
C
H dl JS dS +
电磁感应基础知识试题题库(有答案)
电磁感应基础知识试题题库(有答案)一、选择题1.下列与电磁感应有关的四幅图中说法正确的是()A.甲图,变化的磁场激发出感生电场,自由电荷在感生电场的作用下定向移动,从而形成感应电流B.乙图,磁块在没有裂缝的铝管中由静止开始下落做的是自由落体运动C.丙图,是麦克斯韦验证了电磁波存在的实验装置D.丁图,断开开关的瞬间,因原线圈中没有电流,所以副线圈中也没有电流【答案】A【知识点】电磁感应的发现及产生感应电流的条件;涡流、电磁阻尼、电磁驱动;电磁场与电磁波的产生;电磁感应现象中的感生电场2.如图所示,A、B两闭合线圈用同样的导线绕成,A有10匝,B有20匝,两线圈半径之比为2∶1。
均匀磁场只分布在B线圈内,当磁场随时间均匀增强时()A.A中无感应电流B.B中无感应电流C.A中磁通量总是等于B中磁通量D.A中磁通量总是大于B中磁通量【答案】C【知识点】电磁感应的发现及产生感应电流的条件;磁通量3.如图所示,闭合线圈平面与条形磁铁的轴线垂直,现保持条形磁铁不动,使线圈由A位置沿轴线移动到B位置。
在此过程中()A.穿过线圈的磁通量将增大,线圈中有感应电流B.穿过线圈的磁通量将减小,线圈中有感应电流C.穿过线圈的磁通量先减小,后增大,线圈中无感应电流D.穿过线圈的磁通量先增大,后减小,线圈中无感应电流【答案】B【知识点】电磁感应的发现及产生感应电流的条件4.关于电磁场和电磁波,下列说法正确的是()A.麦克斯韦首先预言了电磁波的存在并通过实验进行了证实B.变化的电场周围一定产生变化的磁场,变化的磁场周围也一定产生变化的电场C.电磁波波长越长,其能量子的能量越小D.闭合导线的一部分在磁场中运动一定会产生感应电流【答案】C【知识点】电磁感应的发现及产生感应电流的条件;电磁场与电磁波的产生5.如图所示,OO′是矩形导线框abcd的对称轴,线框左半部分处于垂直纸面向外的匀强磁场中。
下列说法正确的是()A.将线框abcd向右匀减速平移,线框中产生的感应电流方向为abcdaB.将线框abcd向纸面外平移,线框中产生的感应电流方向为abcdaC.将线框abcd以ad为轴向外转动60°,线框中产生的感应电流方向为adcbaD.将线框abcd以OO′为轴ad向里转动,线框中产生的感应电流方向为adcba【答案】D【知识点】电磁感应的发现及产生感应电流的条件;楞次定律【解析】【解答】A.根据楞次定律可知,线框中产生的感应电流方向为adcba,故A错误;B.穿过线圈的磁通量保持不变,线框中不会产生感应电流,故B错误;C.穿过线圈的磁通量保持不变,线框中不会产生感应电流,故C错误;D.将线框abcd以OO′为轴ad向里转动,穿过线圈的磁通量向外减小,根据楞次定律可知,线框中产生的感应电流方向为adcba,故D正确。
大学_电磁场试题及参考答案
电磁场试题及参考答案电磁场试题一、选择题一、选择题:(每小题至少有一个选项是正确的,每小题4分,共48分)1.D2.BCD3.A4.CD5.ABC6.ABC7.D8.B9.B10.D11.B12.A二、填空题(每空3分,共30分,请把答案填写在题中横线上)13、最大、最大、零、零、零14、充电完毕、负电荷15、3:116、1.64106 1.83102三,计算题电磁场试题二、填空题17、(7分)(由法拉第电磁感应现象说明均匀变化的磁场所产生的电场是恒定的18、(7分)某雷达工作时发射的电磁波的波长=20m,每秒脉冲数n=5000个,每个脉冲持续时间t=0.02s,问电磁波的振荡频率为多少?每个光脉冲的长度L 是多少?最大的侦察距离是多少?19.(8分)一个波长范围为150~600m的无线电波段内,为避免邻台干扰,两个相邻电台频率至少应相差10kHz,求在此波段内,最多能容纳Q多少个电台.电磁场试题三、计算题(每空3分,共30分)13、LC振荡电路中,当电容器C放电完毕时,下列各物理量为(最大或零):电流i____,磁场能E磁____,电压UC___,L中电动势自____,C上电量q____。
14、如图中LC振荡电路的周期为T=210-2s。
从电流逆时针最大开始计时,当t=2.510-2s时,电容器正处于_____状态;这时电容器上极板的带电情况为_____。
15.在图所示的电路中,可变电容器的最大电容是270 pF,最小电容为30 pF,若L保持不变,则可变电容器的动片完全旋出与完全旋入时,电路可产生的振荡电流的频率之比为_____. 16.某收音机调谐电路的可变电容器动片完全旋入时,电容是390 PF,这时能接收到520kHz 的无线电电波,动片完全旋出时,电容变为39 PF,这时能收到的无线电电波的频率是______106 Hz,此收音机能收到的无线电电波中,最短的波长为______m.(取三位有效数字)电磁场试题参考答案(每小题至少有一个选项正确,每小题4分,共48分)1.根据麦克斯韦电磁理论,如下说法正确的是 ( )A.变化的电场一定产生变化的磁场B.均匀变化的电场一定产生均匀变化的磁场C.稳定的电场一定产生稳定的磁场D.振荡的电场一定产生同频率的振荡磁场2、关于LC振荡电路在振荡过程中,下列说法正确的是( )A、电流最大的时刻电压也最高B、电流增大的过程是电容器的放电过程C、电流最小的时刻电压却最高D、自感电动势最大时电容器带电量最大3. 要使LC振荡电路的周期增大一倍,可采用的办法是 ( )A.自感系数L和电容C都增大一倍B.自感系数L和电容C都减小一半C.自感系数L增大一倍,而电容C减小一半D.自感系数L减小一半,而电容C增大一倍4.在LC振荡电路的`工作过程中,下列的说法正确的是 ( )A.在一个周期内,电容器充、放电各一次B.电容器两极板间的电压最大时,线圈中的电流也最大C.电容器放电完了时,两极板间的电压为零,电路中的电流达到最大值D.振荡电路的电流变大时,电场能减少,磁场能增加5.LC回路发生电磁振荡时,振荡周期为T.若从电容器开始放电取作t=0,则 ( )A.5T/4和7T/4两个时刻,回路中电流最大,方向相反B.3T/2和2T两个时刻,电容器所带电量最大C.5T/4至3T/2时间内,回路中电流减小,电容器所带电量增加D.3T/2至7T/4时间内,磁场能向电场能转化6、下列说法正确的是 ( )A、摄像机摄像管实际上是一种将光信号转变为电信号的装置B、电视机显像管实际上是一种将电信号转变为光信号的装置C、摄像机在一秒钟内要送出25张画面D、电视机接收的画面是连续的7、由自感系数为L的线圈和可变电容器C构成收音机的调谐电路,为使收音机能接收到f1为550千赫至 f2为1650千赫范围内的所有电台的播音,则可变电容器与f1 对应的电容C1与f2对应的电容C2之比为( )A、1:3B、 3 :1C、1:9D、9:18、如图所示,L是不计电阻的电感器,C是电容器,闭合电键K,待电路达到稳定状态后,再断开电键K,LC电路中将产生电磁振荡。
大学基础物理学答案(习岗) 电磁感应与电磁场
dx x O L x
I
d
a
图 7-3
99
第七章 电磁感应
于是,在 d=10cm 时,一匝线圈中产生的感生电动势为
0 2
L
2
0
ln
a
d dI d dt
N 匝线圈中产生的感生电动势为
N
由于
2
NL a d dI ln 2 d dt 500 cos100 t
dI dt
带入数据,得
4.36 10 2 cos100 t (V)
96
第七章 电磁感应
7-2 灵敏电流计的线圈处于永磁体的磁场中,通入电流线圈就会发生偏转, 切断电流后线圈在回到原来位置前总要来回摆动几次。这时,如果用导线把线圈 的两个头短路,摆动就会马上停止,这是为什么? 答:处于永磁体磁场中的灵敏电流计的通电线圈要受到四个力矩的作用,它 们是: (1)磁场对线圈的电磁力矩 BSNIg,其中,B 为磁场的磁感应强度,S 为线 圈的截面积,N 为线圈的总匝数,Ig 为线圈中通过的电流; (2)线圈转动时张丝 扭转而产生的反抗(恢复)力矩-Dθ,其中,D 为张丝的扭转系数,θ 为线圈的 偏转角; (3)电磁阻尼力矩; (4)空气阻尼力矩。 电磁阻尼力矩产生的原因是因为线圈在磁场中运动时的电磁感应现象。根据 电磁感应定律,线圈在磁场中运动时会产生感应电动势。灵敏电流计的内阻 Rg 和外电路的电阻 R 构成一个回路,因而有感应电流 i 流过线圈,这个电流又与磁 场相互作用,产生了一个阻止线圈运动的电磁阻尼力矩 M。可以证明,M 与回路 的总电阻 Rg+R 成反比,有 d M BNSi dt 其中,
E H
电磁波的传播速度为
v 1
其中, 和 分别为介质的电容率和磁导率。在真空中 0 =8.8542× 10 - 12F/m , 0 =4 ×10 7 H/m。由此可知,电磁波在真空中的传播速度为 C=
电磁感应电磁场习题
电磁感应、电磁场习题班级 姓名 学号 成绩一、选择题1、已知圆环式螺线管的自感系数为L ,若将该螺线管锯成两个半环式的螺线管,则两个半环式的螺线管的自感系数为【 】(A) 都等于L /2 (B) 有一个大于L /2,另一个小于 L /2 (C) 都大于L /2 (D) 都小于L /22、如图,一导体棒ab 在均匀磁场中沿金属导轨向右作匀加速运动,磁场方向垂直导轨所在平面,若导轨电阻忽略不计,并设铁心磁导率为常数,则达到稳定后在电容器的M 极板上【 】(A) 带有一定量的正电荷 (B) 带有一定量的负电荷 (C) 带有越来越多的正电荷 (D) 带有越来越多的负电荷3、两个闭合的金属环,穿在一光滑的绝缘杆上,如图所示。
当条形磁铁N 极自右向左插向圆环时,两圆环的运动是【 】(A) 边向左移动边分开 (B) 边向右移动边合拢 (C) 边向左移动边合拢 (D) 同时同向运动 4、导体棒AB 在匀强磁场中绕ON 轴匀角速转动。
磁感应强度为B ,方向平行ON 轴,角速度为ω。
ON 轴垂直于棒AB 且通过其中点C ,棒长为l ,如图所示。
A 、B 、C 三点电势以U A 、U B 、U C 表示,则【 】和【 】是正确的。
(A) U A > U C (B) U C >U A (C) U B >U C (D) U B <U C5、如图所示,圆形均匀分布的磁场中,磁场的磁感应强度变化率dB/dt<0,磁场中有三条导线,分别为直线ab 、曲线acb 、和折线acb ,导线中感应电动势最大的是【 】,最小的是【 】(A) 直线ab (B) 曲线acb (C) 折线acb (D) 无法确定 6、一导体圆线圈在均匀磁场中运动,下列几种情况,能产生感应电流的是【 】 (A) 线圈沿磁场方向平移 (B) 线圈沿垂直磁场方向平移 (C) 线圈以自身的直径为轴转动, 转动轴与磁场方向平行 (D) 线圈以自身的直径为轴转动, 转动轴与磁场方向垂直7、有一个铜环和木环, 其尺寸完全一样. 今用两根相同的磁铁, 从相同起始距离, 以相同的速度插入铜环和木环, 则在插入过程某一时刻【 】(A) 铜环中的磁通量大于木环中的磁通量 (B) 铜环中的磁通量小于木环中的磁通量(C) 两个环中的磁通量相等 (D) 无法判定8、在自感为0.25H 的线圈中, 当电流在(1/16)s 内由2A 线性减少到零的感应电压为【 】 (A) 2V (B) 4V (C) 8V (D) 16V9、由两个完全相同的电感器L 0组成一个电感器组, 使得每一个线圈耦合的全部磁通也与另一个线圈耦合, 则它们串联时电感与并联时电感之比为【 】(A) 1:1 (B) 2:1 (C) 3:1 (D) 4:1 10、在有磁场变化的空间, 如果没有导体, 则在此空间【 】(A) 一定有电场存在, 也有感应电动势 (B) 一定无电场存在, 也无感应电动势 (C) 一定无电场存在, 但有感应电动势 (D) 一定有电场存在, 但无感应电动势二、填空题1、一导线被弯成如图所示形状,弧a ,c ,b 为 半径为R 的四分之三圆弧,直线段oa 长为R ,若将此导线放在匀强磁场B 中,B 的方向垂直图面向内,导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势εi = 。
电磁感应 电磁场(二)答案
第九章 电磁感应 电磁场(二)一. 选择题[ D ]1. 用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为μr 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 (A) 磁感强度大小为B = μ0 μ r NI . (B) 磁感强度大小为B = μ r NI / l . (C) 磁场强度大小为H = μ 0NI / l .(D) 磁场强度大小为H = NI / l . 【参考答案】 B = μ0 μ r nI= μ NI / l=μH[ C ]2. 磁介质有三种,用相对磁导率μr 表征它们各自的特性时, (A) 顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1. (B) 顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1. (C) 顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1.(D) 顺磁质μr <0,抗磁质μr <1,铁磁质μr >0.[ C ]3. 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H ϖ的环流与沿环路L 2的磁场强度H ϖ的环流两者,必有:(A) >'⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ. (B)='⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ.(C)<'⎰⋅d L l H ϖϖ⎰⋅'d L l H ϖϖ. (D)0d ='⎰⋅L l H ϖϖ.【参考答案】全电流总是连续的。
位移电流大小和传导电流相等,位移电流均匀分布在平板电容器所对应的面积上,环路L1所包围电流小于位移电流,即小于传导电流,由安培环路定律知(C) <'⎰⋅1d L l H ϖϖ⎰⋅'2d L l H ϖϖ[ A ]4. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[ C ]5. 电位移矢量的时间变化率t D d /d ϖ的单位是(A )库仑/米2 (B )库仑/秒(C )安培/米2 (D )安培•米2H ϖL1L 2[ D ]6. 如图所示.一电荷为q 的点电荷,以匀角速度ω作圆周运动,圆周的半径为R .设t = 0 时q 所在点的坐标为x 0 = R ,y 0 = 0 ,以i ϖ、j ϖ分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为:(A) i t R q ϖωωsin 42π (B)j t R q ϖωωcos 42π (C) k Rq ϖ24πω (D) )cos (sin 42j t i t Rq ϖϖωωω-π 【参考答案】方向由点电荷所在位置指向圆心O 点,单位矢量与x 轴夹角为t ω,分解为x 轴和y 轴上的分量为()j t it ρρωωsin cos --二. 填空题1. 一个绕有500匝导线的平均周长50 cm 的细环,载有 0.3 A 电流时,铁芯的相对磁导率为600.(1) 铁芯中的磁感强度B 为_____0.226T_____. (2) 铁芯中的磁场强度H 为.n=500/0.5 T nI B r 226.0102.73.010*******370=⨯=⨯⨯⨯⨯==--ππμμ2. 图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表_____铁磁质 __________的B ~H 关系曲线.b 代表______顺磁质__________的B ~H 关系曲线.c 代表______抗磁质__________的B ~H 关系曲线.3. 图示为一圆柱体的横截面,圆柱体内有一均匀电场E ϖ,其方向垂直纸面向内,E ϖ的大小随时间t 线性增加,P 为柱体内与轴线相距为r 的一点则(1)P 点的位移电流密度的方向为_垂直纸面向内___. (2) P 点感生磁场的方向为__竖直向下___. 【参考答案】(1)dt E d j d /ρρε=,E ϖ是一均匀电场,方向不变,大小随时间t 线性增加,所以位移电流密度的方向与电场方向相同。
第八章电磁感应电磁场
第八章 电磁感应 电磁场一、选择题尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中:(A) 感应电动势不同, 感应电流不同.(B) 感应电动势相同,感应电流相同.(C) 感应电动势不同, 感应电流相同.(D) 感应电动势相同,感应电流不同.2. 如图14.1所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪种情况可以做到?(A) 载流螺线管向线圈靠近;(B) 载流螺线管离开线圈;(C) 载流螺线管中电流增大;(D) 载流螺线管中插入铁芯.3. 在一通有电流I 的无限长直导线所在平面内, 有一半径为r 、电阻为R 的导线环,环中心距直导线为a ,如图14.2所示,且a >>r .当直导线的电流被切断后,沿导线环流过的电量约为(A) )11(220ra a R Ir +-πμ. (B) rR Ia 220μ.图图(C) a r a R Ir +ln 20πμ. (D) aR Ir 220μ.4. 如图14.3所示,导体棒AB 在均匀磁场中绕通过C 点的垂直于棒长且沿磁场方向的轴OO 转动(角速度与B 同方向), BC 的长度为棒长的1/3. 则: (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(C) A 点比B 点电势低.(D) 有稳恒电流从A 点流向B 点.5. 如图14.4所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势ε和a 、c 两点的电势差U a U c 为(A) ε= 0, U a U c = B l 2/2 .(B) ε= Bw l 2, U a U c =B l 2/2 .(C) ε= 0, U a U c = B l 2/2.(D) ε= Bw l 2 , U a U c = B l 2/2 . 6.一块铜板放在磁感应强度正在增大的磁场中时,铜板中出现涡流(感应电流),则涡流将:(A) 减缓铜板中磁场的增加.(B) 加速铜板中磁场的增加.(C) 对磁场不起作用.(D) 使铜板中磁场反向.7. 磁感应强度为B 的均匀磁场被限制在圆柱形空间内,.B 的大小以速率d B /d t >0变化,在磁场中有一等腰三角形ACD 导线线圈如图O B O C B A 图14.3 B l c b a 图× × × × × O B A C D15.1放置,在导线CD 中产生的感应电动势为ε1,在导线CAD 中产生的感应电动势为ε2,在导线线圈ACDA 中产生的感应电动势为ε. 则:(A) ε1= ε2 , ε=ε1+ε2 =0.(B) ε1>0, ε2<0 , ε=ε1+ε2 >0.(C) ε1>0, ε2>0 , ε=ε1ε2 <0. (D) ε1>0, ε2>0 , ε=ε2ε1>0. 8. 自感为0.25H 的线圈中,当电流在(1/16)s 内由2A 均匀减小到零时, 线圈中自感电动势的大小为: (A) 7.8103V. (B) 2.0V.(C) 8.0V. (D) 3.1102V. 9. 匝数为N 的矩形线圈长为a 宽为b ,置于均匀磁场B 中.线圈以角速度旋转,如图15.2所示,当t =0时线圈平面处于纸面,且AC 边向外,DE边向里.设回路正向ACDEA . 则任一时刻线圈内感应电动势为(A) abNBsin t (B) abNBcos t (C) abNBsin t (D) abNB cos tC A E O O B b图10. 用导线围成如图15.3所示的正方形加一对角线回路,中心为O 点, 放在轴线通过O 点且垂直于图面的圆柱形均匀磁场中. 磁场方向垂直图面向里, 其大小随时间减小, 则感应电流的流向在图18.2的四图中应为: , 11. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向,使:(A) 两线圈平面都平行于两圆心的连线.(B) 两线圈平面都垂直于两圆心的连线.(C) 两线圈中电流方向相反.(D) 一个线圈平面平行于两圆心的连线,另一个线圈平面垂直于两圆心的连线.12. 对于线圈其自感系数的定义式为L =m /I .当线圈的几何形状,大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流变小,则线圈的自感系数L(A) 变大,与电流成反比关系.(B) 变小.(C) 不变. (D) 变大,但与电流不成反比关系.13. 一截面为长方形的环式螺旋管共有N 匝线圈,其尺寸如图16.1所示.则其自感系数为(A) 0N 2(b a )h/(2a ). (B) [0N 2h/(2)]ln(b/a ). (C) 0N 2(b a )h/(2b ). (D) 0N 2(b a )h/[(a+b ). 14. 一圆形线圈C 1有N 1匝,线圈半径为r .将此线圈放在另一半径为R (R>>r ),匝数为N 2的圆形大线圈C 2的中心,两者同轴共面.则此二线圈的互感系数M 为(A) 0N 2N 2R /2.图× × O I II (A × × O I I (B × × O I I I (C × × O I I (Dh ba 图(B) 0N 2N 2R 2/(2r ). (C) 0N 2N 2r 2/(2R ). (D) 0N 2N 2r /2.15. 可以利用超导线圈中的持续大电流的磁场储存能量, 要储存1kW h 的能量,利用1.0T 的磁场需要的磁场体积为V , 利用电流为500A 的线圈储存1kW h 的能量,线圈的自感系数为L. 则(A) V=9.05m 3, L =28.8H.(B) V=7.2×106m 3, L =28.8H.(C) V=9.05m 3, L =1.44×104H. (D) V=7.2×106m 3, L =1.44×104H. 16. 如图17.1所示,平板电容器(忽略边缘效应)充电时, 沿环路L 1、L 2磁场强度H 的环流中, 必有: (A) ⎰⋅1d L l H >⎰⋅2d L l H . (B) ⎰⋅1d L l H =⎰⋅2d L l H . (C) ⎰⋅1d L l H <⎰⋅2d L l H . (C) ⎰⋅1d L l H =0. 17. 关于位移电流,下述四种说法哪一种说法正确.(A) 位移电流是由变化电场产生的.(B) 位移电流是由线性变化磁场产生的.(C) 位移电流的热效应服从焦耳-楞次定律.(D) 位移电流的磁效应不服从安培环路定理.18. 一平面电磁波在非色散无损耗的媒质里传播,测得电磁波的平均能流密度为3000W/m 2,媒质的相对介电常数为4,相对磁导率为1,则在媒质中电磁波的平均能量密度为:(A) 1000J/m 3.(B) 3000J/m 3 .O O图LL 图(C) 1.0×10-5J/m 3.(D) 2.0×10-5J/m 19. 电磁波的电场强度E 、磁场强度H 和传播速度u 的关系是:(A) 三者互相垂直,而且E 和H 相位相差/2. (B) 三者互相垂直,而且E 、H 、u 构成右手螺旋直角坐标系.(C) 三者中E 和H 是同方向的,但都与u 垂直.(D) 三者中E 和H 可以是任意方向,但都必须与u 垂直.20. 设在真空中沿着x 轴正方向传播的平面电磁波,其电场强度的波的表达式是,E z =E 0cos2(νtx /), 则磁场强度的波的表达式是:(A) H y =00/μεE 0cos2(νt x /).(B) H z =00/μεE 0cos2(νt x /).(C) H y =-00/μεE 0cos2(νt x /).(D) H y =-00/μεE 0cos2(νt +x /).二、填空题1. 如图14.5所示,半径为r 1的小导线环,置于半径为r 2的大导线环中心,二者在同一平面内,且r 1<<r 2.在大导线环中通有正弦电流I=I 0sin t ,其中、I 为常数,t 为时间,则任一时刻小导线环中感应电动势的大小为 .设小导线环的电阻为R ,则在t =0到t =/(2)时间内,通过小导线环某截面的感应电量为q= .2. 如图14.6所示,长直导线中通有电流I ,有一与长直导线共面且垂直于导线的细金属棒AB ,以速度v 平行于长直导线作匀速运动. (1) 金属棒AB 两端的电势U A U B (填 、、). (2) 若将电流I 反向,AB 两端的电势U A U B (填 、r r 图v B A 图、). (3) 若将金属棒与导线平行放置,AB 两端的电势U A U B (填 、、).3. 半径为R 的金属圆板在均匀磁场中以角速度绕中心轴旋转,均匀磁场的方向平行于转轴,如图14.7所示.这时板中由中心至同一边缘点的不同曲线上总感应电动势的大小为 ,方向 . 4. 如图15.4所示. 匀强磁场局限于半径为R 的圆柱形空间区域, B 垂直于纸面向里,磁感应强度B 以d B /d t =常量的速率增加. D 点在柱形空间内, 离轴线的距离为r 1, C 点在圆柱形空间外, 离轴线上的距离为r 2 . 将一电子(质量为m ,电量为-e )置于D 点,则电子的加速度为a D = ,方向向 ;置于C 点时,电子的加速度为aC = ,方向向 . 5. 半径为a 的长为l (l >>a )密绕螺线管,单位长度上的匝数为n , 则此螺线管的自感系数为 ;当通以电流I=I m sin t 时,则在管外的同轴圆形导体回路(半径为r >a )上的感生电动势大小为 .6. 一闭合导线被弯成圆心在O 点半径为R 的三段首尾相接的圆弧线圈:弧ab , 弧bc , 弧ca . 弧ab 位于xOy 平面内,弧bc 位于yOz 平面内,弧ca 位于zOx 平面内. 如图15.5所示.均匀磁场B 沿x 轴正向,设磁感应强度B 随时间的变化率为d B /d t =k (k >0),则闭合回路中的感应电动势为 ,圆弧bc 中感应电流的方向为7. 如图16.2所示,有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO 上,则直导线与矩形线圈间的互感系数为 . 8.边长为a 和2a 的两正方形线圈A 、B,如图16.3所示地同轴放置,通有相同的电流I ,线圈A 的电流所产生的磁场通过线圈O O B 图ax by c z O B R 图B r D R O 图× × r a 2a O O图B 的磁通量用BA 表示,线圈B 的电流所产生的磁场通过线圈A 的磁通量用AB表示,则二者大小相比较的关系式为 .9. 半径为R 的无线长圆柱形导体,大小为I 的电流均匀地流过导体截面.则长为L 的一段导线内的磁场能量W = .10. 反映电磁场基本性质和规律的麦克斯韦方程组的积分形式为:试判断下列结论是包含或等效于哪一个麦克斯韦方程式的. 将你确定的方程式用代号填在相应结论后的空白处.(1) 变化的磁场一定伴随有电场: ;(2) 磁感应线是无头无尾的: ;(3) 电荷总伴随有电场: .三、计算题1. 如图14.8所示,长直导线AC 中的电流I 沿导线向上,并以d I /d t = 2 A/s 的变化率均匀增长. 导线附近放一个与之同面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求此线框中产生的感应电动势的大小和方向.2. 一很长的长方形的U 形导轨,与水平面成 角,裸导线可在导轨上无摩擦地下滑,导轨位于磁感强度B 垂直向上的均匀磁场中,如图14.9所示. 设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计, abcd 形成电路. t=0时,v=0. 求:(1) 导线ab 下滑的速度v 与时间t 的函数关系; (2) 导线ab 的v m .3 在半径为R 的圆柱形空间中存在着均匀磁场B ,B 的方向与.有一长为2R 的金属棒MN 放在磁场外且与圆柱形均匀磁20c 105c C A I 图b B l d a 图× × O R B a 2az场相切,切点为金属棒的中点,金属棒与磁场B的轴线垂直.如图15.6所示.设B随时间的变化率d B/d t为大于零的常量.求:棒上感应电动势的大小,并指出哪一个端点的电势高.(分别用对感生电场的积分εi=l E i·d l和法拉第电磁感应定律εi=-d/d t两种方法解).4. 电量Q均匀分布在半径为a,长为L(L>>a)的绝缘薄壁长圆筒表面上,圆筒以角速度绕中心轴旋转.一半径为2a,电阻为R总匝数为N的圆线圈套在圆筒上,如图15.7所示.若圆筒转速按=0(1t/t0)的规律(0,t0为已知常数)随时间线性地减小,求圆线圈中感应电流的大小和流向.5 两半径为a的长直导线平行放置,相距为d,组成同一回路,求其单位长度导线的自感系数L0.6.如图所示,金属圆环半径为R,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增加,求空间涡旋电场的分布.
解:取绕行正方向为顺时针方向,作为感生电动势和涡旋电场的标定正方向,磁
通量的标定正方向则垂直纸面向里.
在 r<R 的区域,作半径为 r 的圆形回路,由
i
L Ei dl
S
B
dS
t
O R
B
5
并考虑到在圆形回路的各点上, Ei 的大小相等,方向沿圆周的切线.而在圆形回路内是匀强磁场,且 B 与 dS
为
,内部的磁能密度为
。
答案:µ0nI
0n2I 2 / 2
6-T 自感磁能 6、自感系数 L =0.3 H 的螺线管中通以 I =8 A 的电流时,螺线管存储的磁场能量 W = . 答案:9.6J
6-T 动生电动势势 二、选择题
6-X 电磁感应现象
1
1、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是( )
6-S 磁场能量 自感
5、一无限长同轴电缆是由两个半径分别为 R1 和 R2 的同轴圆筒状导体构成的,其间充满磁导率为μ的磁 介质,在内、外圆筒通有方向相反的电流 I.求单位长度电缆的磁场能量和自感系数.
解:对于这样的同轴电缆,磁场只存在于两圆筒状导体之间的磁介质内,由安培环路定理可求得磁场强
度的大小为
A IA r
L, .R
B IB r
R
(A) 两线圈的轴线互相平行。
(B)两线圈的轴线成 45°角。
K
(C) 两线圈的轴线互相垂直。
(D)两线圈的轴线成 30°角。
答案:C
6-X 感生电场
10、在感生电场中,电磁感应定律可写成 E K
L
dl
d dt
,式中 EK
为感生电场的电场强度.此式
表明:( )
S 1 2S
2
的磁通用12 表示,则21 和12 的大小关系为:( )
(A) 21 =212.
(B) 21 >12.
(C) 21 =12.
(D) 21 = 1 12. 2
答案: B
6-X 互感系数 9、两个相距不太远的平面圆线圈,怎样放置可使其互感系数近似为零?设其
中一线圈的轴线恰过另一线圈的圆心。( )
(A) 线圈绕自身直径轴转动,轴与磁场方向平行.
(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.
(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.
(D) 线圈平面平行于磁场并沿垂直磁场方向平移.
答案:B
6-X 电磁感应定律
2、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则( )
一、填空题
第六章 电磁感应和电磁场
6-T 电磁感应
1、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈.直导线中的电流
由下向上,当线圈平行于导线向下运动时,线圈中的感应电动势 ;当线圈以垂直于导线的速度靠近
导线时,线圈中的感应电动势 .(填>0,<0 或=0) (设顺时针方向的感应电动势为正).
条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流( ) (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.
(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同.
答案:B
6-X 电磁感应定律
B
4、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场 B 中,另
一半位于磁场之外,如图所示.磁场 B 的方向垂直指向纸内.欲使圆线环中
产生逆时针方向的感应电流,应使( C )
(A) 线环向右平移.
(B) 线环向上平移.
(C) 线环向左平移.
(D) 磁场强度减弱.
答案:C
6-X 电磁感应定律
I
B
5、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下
B
M db
向右平移时,cd ( )
(A) 不动. 答案:D 6-X 互感磁通
(B) 转动.
(C) 向左移动.
(D) 向右移动.
N
c
a
8、面积为 S 和 2 S 的两圆线圈 1、2 如图放置,通有相同的电流 I.线圈 1 的
I
I
电流所产生的通过线圈 2 的磁通用21 表示,线圈 2 的电流所产生的通过线圈 1
解:在图(a)中:
B
dl
BL
0i 2a
L
5 2 107 100 0.2 2.0 103V 0.01
在图(b)中:
B
dl
Bdr
0I 2
La a
1 r
dr
0I 2
ln
a
a
L
3.04 104V
6-S 感生电动势 涡旋电场
3、匀强磁场局限在半径为 R 的柱形区域内,磁场方向如图所示.磁感应强度 B 的大小正以速率 dB/dt 在
长的直导线旁边并与之共面,试求线圈与长直导线之间的互感系数。
解:设长直导线载电流为 I,其磁场在矩形线圈中的磁通及磁链分别为:
2b 0 I adr 0 Ia ln 2 ,ln 2
据互感定义得:
M
I
0 Na 2
ln 2
2 107
100 0.2 ln 2
2.8106 H
于
,它的电动势为
,产生此电动势的非静电力是
。
答案:一个电源 BvL 洛仑兹力
6-T 动生电动势势及其非静电力场强
4、一根直导线在磁感强度为
B
的均匀磁场中以速度
v
运动切割磁力线.导线中对应于非静电力的场
强(称作非静电场场强) Ek
.
答案:
v
B
6-T 磁场能量密度
5、无限长密绕直螺线管通以电流 I,内部为真空.管上单位长度绕有 n 匝导线,则管内部的磁感强度
4
用细线密绕并充以磁导率较大的磁介质。 四、计算题
6-S 电磁感应定律
1、如图所示,无限长载流直导线旁有一矩形回路。当直长导线通以交变电流 I I 0 sin t 时,求回
路中感应电动势。
解:如右图, 建立 X 轴,取微元 dS= L dx ,穿过 dS 的磁通:
d
BdS
0 ILdx 2x
穿过整个回路的磁通:
d2 d1
0 ILdx 2x
0 IL 2
ln
d2 d1
I
L
d 1
d
X
2
O
取顺时针绕向为感应电动势的正方向,由法拉第电磁感应定律,回路中感应电动势
d dt
0L 2
ln
d2 d1
dI dt
0L 2
ln
d2 d1
I0 cost
负号代表感应电动势的方向与电动势正方向相反,即逆时针方向。
6-S 动生电动势
6
A 列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反.( )
(A) 滑线变阻器的触点 A 向左滑动. (B) 滑线变阻器的触点 A 向右滑动.
2
(C) 螺线管上接点 B 向左移动(忽略长螺线管的电阻).
(D) 把铁芯从螺线管中抽出. 答案:A 6-X 动生电动势
l
b
a
v
B
6、如图,长度为
答案:=0 <0
6-T 电磁感应
2、已知在一个面积为 S 的平面闭合线圈的范围内,有一随时间变化的均匀磁场 B(t) ,则此闭合线圈
内的感应电动势=
.
答案:
d
(B S )
dt
6-T 动生电动势及其非静电力
3、在磁感强度为 B 的磁场中,以速率 v 垂直切割磁感应线运动的一长度为 L 的金属杆,相当
(A) 闭合曲线 L 上 EK 处处相等.
(B) 感生电场是保守力场.
(C) 感生电场的电场线不是闭合曲线.
(D) 在感生电场中不能像对静电场那样引入电势的概念. 答案:D
3
6-X 磁能密度
11、真空中一根无限长直细导线上通电流 I,则距导线垂直距离为 a 的空间某点处的磁能密度为 ( )
(A)
1 2
(A) 铜环中有感应电动势,木环中无感应电动势
(B) 铜环中感应电动势大,木环中感应电动势小
(C) 铜环中感应电动势小,木环中感应电动势大 (D) 两环中感应电动势相等 答案: A 6-X 电磁感应定律
I
c Ⅰ b c Ⅱ bc Ⅲ b
v
d v ad
v ad
a
3、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两
2、如图(a)表示一根长度为 L 的铜棒平行于一载有电流 i 的长直导线,从距离电流为 a 处开始以速度 υ向下运动。求铜棒所产生的感应电动势。已知υ= 5m·s-1 , i=100A,L= 20cm ,a =1cm。又如图(b) 所示若铜线运动的方向υ与电流方向平行。设铜棒的上端距电流为 a,问此时铜棒的感应电动势又为多少。
6-J 电磁感应定律
2、简述电磁感应定律,并写出其数学表达式,其中负号的物理意义是什么?
答案:无论什么原因,使通过回路的磁通量发生变化时,回路中均有感应电动势产生,其大小与通过该回
路的磁通量随时间的变化率成正比。其数学表达式为 i
d dt
其负号是考虑εi 与 的标定正方向满足右手螺旋关系所引入的,它是楞次定律的反映。
H
I 2
r
在 r<R1 和 r>R2 的空间,磁场强度为零,所以磁场能量只储存在两圆筒导体之间的磁介质中.
Wm
R2
wm dV
R1
R2 1 H 2 dV 2 R1
R2
R1 8 2
I2 r2