电磁感应和电磁场理论的基本概念
经典电磁场理论
经典电磁场理论经典电磁场理论是物理学中的一个重要分支,它研究的是电磁场的产生、传播和作用的规律。
它的研究成果不仅为电磁科学的发展做出了重要贡献,而且在物理学的其他分支也有着重要的作用,例如量子力学和相对论。
下面将简要介绍经典电磁场理论的几个重要概念:一、电磁感应定律:电磁感应定律是经典电磁场理论中最基础的定律,它指出,在一个电磁场中,电流通过一个线圈时,会产生磁感应,线圈中电流的变化会引起磁感应的变化,磁感应与电流之间的关系可以用定律来表示。
二、电磁场的本源:电磁场的本源是电荷,即电荷的运动会产生电磁场。
因此,电磁场的产生可以归结为电荷的运动。
三、电磁场的传播:电磁场的传播是指电磁场从一个物体传播到另一个物体的过程。
电磁场的传播是由电磁波实现的,电磁波是电磁场传播的媒介,其速度为光速。
四、电磁力:电磁力是指电磁场中两个电荷之间的作用力,电磁力的大小取决于两个电荷之间的距离,其可以用电磁力定律来表示。
五、电磁变换:电磁变换是指电磁场中电荷的变化,它是实现电磁场传播的基础,也是电磁感应的过程。
六、电磁吸引:电磁吸引是指电磁场中电荷之间的吸引作用,其强度取决于电荷之间的距离,可以用电磁力定律来表示。
七、电磁屏蔽:电磁屏蔽是指电磁场传播时由于某种原因而受到阻碍的过程,它是实现电磁场阻挡和隔离的重要方法。
八、电磁护盾:电磁护盾是指利用电磁屏蔽原理,在特定的空间内形成一个电磁屏蔽场,从而产生护盾效果的过程。
九、电磁共振:电磁共振是指电磁场中电荷的振动频率,当电荷受到外界的电磁场的共振时,它会发生振动,从而产生电磁共振。
十、电磁涡旋:电磁涡旋是指在电磁场中,电荷受到外界电磁场的影响,产生涡旋运动的过程,涡旋运动可以把电磁场转化成动能。
电磁场理论基础
电磁场理论基础磁现象和电现象本质上是紧密联系在一起的,自然界一切电磁现象都起源于物质具有电荷属性,电现象起源于电荷,磁现象起源于电荷的运动。
变化的磁场能够激发电场,变化的电场也能够激发磁场。
所以,要学习电磁流体力学必须熟悉电磁场理论。
1. 电场基本理论(1) 电荷守恒定律在任何物理过程中,各个物体的电荷可以改变,但参于这一物理过程的所有物体电荷的代数总和是守恒的,也就是说:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。
例如中性物体互相摩擦而带电时,两物体带电量的代数和仍然是零。
这就是电荷守恒定律。
电荷守恒定律表明:孤立系统中由于某个原因产生(或湮 没)某种符号的电荷,那么必有等量异号的电荷伴随产生(或湮没),孤立系统总电荷量增加(或减小),必有等量电荷进入(或离开)该系统。
(2) 库仑定律1221202112ˆ4r δπε+=r q q f (N) 库伦经过实验发现,真空中两个静止点电荷(q 1, q 2)之间的作用力与他们所带电荷的电量成正比,与他们之间的距离r 平方成反比,作用的方向沿他们之间的连线,同性电荷为斥力,异性电荷为引力。
ε0为真空介电常数,一般取其近似值ε0=8.85⨯10-12C •N -1•m -2。
ε0的值随试验检测手段的进步不断精确,目前精确到小数点后9位(估计值为11位)。
库仑反比定律也由越来越精确的实验得到验证。
目前δ<10-16。
库仑反比定律的适用范围(10-15m(原子核大小的数量级)~103m)。
Charles Augustin de Coulomb 1736-1806 France(3) 电场强度 00)()(qr F r E =(V ·m -1)真空中电荷与电荷之间相互以电场相互发生作用。
若试探电荷q 0在电场r 处受电场力为F 0(r ), 则电 场强度为E (r )。
(4) 静电场的高斯定理 ∑⎰⎰=⋅)(01S in Sq d εS E由于静电场的电力线起始于正电荷,终止于负电荷, 不会相交也不会形成封闭曲线,这就决定通过静电场内 某一封闭曲面S 的电通量为此封闭曲面所包围的电荷的01ε倍。
大学物理电磁学
大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。
电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。
本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。
一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。
电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。
2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。
电场的强度用电场强度E表示,单位是牛/库仑。
3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。
磁场的强度用磁感应强度B表示,单位是特斯拉。
4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。
电磁波在真空传播速度与光速一样,速度为30万千米/秒。
二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。
2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。
磁场方向垂直于电流方向和通过点的平面。
3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。
感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。
4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。
三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。
当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。
哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9
设单位长度电缆的自感为L,则单位长度电缆储存的磁能也可 设单位长度电缆的自感为 , 表示为
由方程
µ0I 2 1 R 1 2 2 LI = + ln R 2 4 4 π 1
µ0 1 R 2 可得出 L = + ln 从能量出发,求解自感系数 2 4 R π 1
10cm
或
dϕ 2 dB ei = = πr = π ×(10×10−2 )2 ×0.1 dt dt
= π ×10−3 = 3.14×10−3V
(3) 根据欧姆定律,圆环中的感应电流为 根据欧姆定律, ei π −3 −3
Ii = R = 2 ×10 =1.57×10 A
× × × × × × × × × × × ×
电场的电力线是同心圆, 且为顺时针绕向。 因此, 电场的电力线是同心圆 , 且为顺时针绕向 。 因此 , 圆环上 任一点的感生电场,沿环的切线方向且指向顺时针一边。 任一点的感生电场 , 沿环的切线方向且指向顺时针一边 。 其大小为
1 dB 1 E旋= r = ×10×10−2 ×0.1 2 dt 2
3、 在图示虚线圆内的所有点上,磁感 、 在图示虚线圆内的所有点上, 应强度B为 应强度 为 0.5T,方向垂直于纸面向里 , , 方向垂直于纸面向里, 且每秒钟减少0.1T。虚线圆内有一半径 且每秒钟减少 。 的同心导电圆环, 为 10 cm 的同心导电圆环,求: (1)圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向 (2)整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小
在圆柱与圆筒之间的空间距轴线r处 取一半径为 、厚为dr、 在圆柱与圆筒之间的空间距轴线 处,取一半径为r、厚为 、 单位长度的共轴薄壁圆柱壳、 单位长度的共轴薄壁圆柱壳、薄壁圆柱壳内磁能密度
程守洙-普通物理学第七版-第9章--电磁感应电磁场理论
dΦ dt
(2)非闭合回路
a. Ei 已知 c
εi a Ei dl
b. Ei 未知,设法构成回路
物理之舟
εi
dΦ dt
返回 退出
若既有动生电动势,又有感生电动势
b b
εi
(v B) dl
a
a Ei dl
或
dΦ εi N dt
物理之舟
返回 退出
例9-4 半径为R 的无限长螺线管内部的磁场B随时间 作线性变化(dB/dt =常量)。 求管内外的感生电场。
Ei 2πr
Ei
R2 2r
感应电场分布为
dB dt
Ei
R22rr2ddddBtBt
物理之舟
rR
rR
返回 退出
例9-5 半径为R 的圆柱形体积内充满磁感应强度B(t) 的均匀磁场,有一长为 l 的金属棒放在其中,设 dB/dt 已知,求棒两端的感生电动势。
解: 利用前面的结果
r dB Ei 2 dt
导体棒匀速向右运动,外力( F F )的功率为
P F v IilBv Pe
外力做正功输入机械能,安培力做负功吸收它,
同时感应电动势(非静电场力)在回路中做正功又以电
能形式输出这个份额的能量。
——发电机
物理之舟
返回 退出
动生电动势的计算
(1)对于导体 回路
a. ε (v B) dl
闭合曲线
返回 退出
感应电场和感生电动势的计算
1. 感应电场的计算
对具有对称性的磁场分布,磁场变化时产生的
感应电场可由
L Ei dl
B
dS
S t
计算,方法类似于运用安培环路定理计算磁场,关 键是选取适当的闭合回路L。
高中物理知识点电磁场问题
高中物理知识点电磁场问题在高中物理中,电磁场是一个重要的知识点。
电磁场是由电荷在空间中产生的作用力而形成的一种理论模型。
它描述了带电粒子周围的电场和磁场的相互作用,是电磁学的基础。
本文将从电磁场的基本概念、磁场的特性、电流产生的磁场、电磁感应和电磁波等方面进行讲解。
一、电磁场的基本概念电磁场是指空间中存在的电场和磁场。
电场是由电荷体系周围存在的一种力场,可以描述电荷体系对周围电荷的作用力。
磁场则是由运动电荷所产生,它的特点是具有方向性和旋转性。
在电磁场中,电荷体系通过它所引发的电场和磁场相互作用。
二、磁场的特性磁场是运动电荷所产生的场,是由电流所产生的磁荷形成的。
磁场具有方向性和旋转性。
磁感线是表示磁场的线,磁场的强度可以通过磁感线密度表示。
在磁场中,磁场的力是与磁场的磁通量密度和电流成正比的,与导线长度成反比的。
三、电流产生的磁场当电流通过通电线圈时,会形成一个磁场,这就是电流产生的磁场。
电流产生的磁场的强度与电流的大小、导线的长度和线圈的匝数有关,可以通过安培定律来描述。
磁场的方向与电流的方向相垂直,在通电线圈中形成环状的磁感线。
四、电磁感应电磁感应是指时间变化的磁场能够诱发通过导体中的电流。
电磁感应是电磁场的一个重要应用,它是产生电动势的基础。
最著名的电磁感应效应是法拉第电磁感应定律,它描述了磁场的变化导致的感应电动势大小与磁场的变化率成正比。
五、电磁波电磁场的重要表现形式是电磁波。
电磁波是指电场与磁场的振荡所产生的波动,是光学、通信和雷达等现代科学技术的基础。
电磁波的特点是可以传播,它的速度是真空中的光速。
综上所述,电磁场是一个重要的物理概念,涉及到电场、磁场、电流产生的磁场、电磁感应和电磁波等方面。
理解电磁场理论是在物理学中学习和研究电磁学、电学等其他知识的基础。
大学物理-第九章 电磁感应 电磁场理论
2.电场强度沿任意闭合曲线的线积分等于以该曲线
为边界的任意曲面的磁通量的变化率的负值。 3.通过任意闭合曲面的磁通量恒等于零。
4.磁场强度沿任意闭合曲线的线积分等于穿过以该 曲线为边界的曲面的全电流。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
麦克斯韦方程组(物理含义)
(1) SDdSq (2)
例1 有一圆形平板电容器 R , 现对其充电,使电路上
的传导电流为 I ,若略去边缘效应, 求两极板间离开轴
线的距离为 r(r R) 的区域的(1)位移电流;
(2)磁感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的
电位移通量为
I
R P*r
I
ห้องสมุดไป่ตู้
D D(πr2)
D
Edl BdS
L
s t
(3) SBdS0
(4) LHdl IsD t dS
1.电荷是产生电场的源。
2.变化的磁场也是产生电场的源。
3.自然界没有单一的“磁荷”存在。
4.电流是产生磁场的源,变化的电场也是产生磁场的源。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
解:∵
B只分布在R 1
r
R 2
区
域内且
wm
B2 2
8
I2 2r 2
B I 2 r
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
RR11 RR22
⊙⊙BB II
rr ⊕⊕BB
r dr
所以取体积元为 dVl2rdr
W m VwmdVR R1 28μπ2Ir22l2πrdr
电学基础必会知识点总结
电学基础必会知识点总结一、电路理论1. 电路基本概念电路是由电流源、电阻、电感和电容等元件组成的。
其中,电流源是提供电路中电流的源泉,电阻是阻碍电流通过的元件,电感是存储电能的元件,电容是存储电荷的元件。
电路中的元件通过导线互相连接构成电路的拓扑结构。
2. 电压、电流、电阻和功率电压是电路中的电势差,是指单位电荷在电路中的两点之间所具有的电势能。
电流是电荷在电路中的流动,是单位时间内通过电路横截面的电荷量。
电阻是电路中阻碍电流通过的元件,是电压和电流的比值。
功率是描述电路中能量转换效率的物理量,是电压和电流的乘积。
3. Ohm定律Ohm定律是描述电路中电压、电流和电阻之间关系的基本定律。
它可以表示为V=IR,其中V表示电压,I表示电流,R表示电阻。
根据Ohm定律,电压和电流成正比,电压和电阻成正比,电流和电阻成反比。
4. 串联电路和并联电路在电路中,电阻、电感和电容等元件可以通过串联和并联的方式组成不同的电路结构。
串联电路是指多个元件依次连接在一起,电流只有一条路径可走;并联电路是指多个元件同时连接在一起,电流可以选择不同的路径流动。
在串联电路中,电阻和电压分别求和;在并联电路中,电阻和电流分别求和。
5. 电路的戴维南定理和诺顿定理戴维南定理和诺顿定理是描述线性电路等效变换的定理。
根据这两个定理,任意一个线性电路都可以用一个等效的电压源和电阻网络或电流源和电阻网络来代替。
这两个定理在电路分析中有着重要的应用。
6. 交流电路和直流电路交流电路和直流电路是电路中两种不同的电压类型。
交流电路中,电压随时间呈正弦变化;直流电路中,电压是恒定不变的。
交流电路和直流电路在电路分析中有着不同的特点和分析方法。
7. 电路的平衡和不平衡在电路分析中,平衡和不平衡是两种重要的电路状态。
对于线性电路,在平衡状态下,电路中的各个元件的参数不随时间变化;在不平衡状态下,电路中的各个元件的参数随时间变化。
平衡和不平衡是电路分析中需要重点关注的问题。
电磁感应的科学原理是什么
电磁感应的科学原理是什么电磁感应的科学原理是什么电磁感应是无理数上常见的内容,但是很多的人都不知道电磁感应的原理。
下面是店铺为你精心推荐的电磁感应的科学原理是什么,希望对您有所帮助。
电磁感应科学原理电磁感应的本质可以追塑到麦克斯韦电磁场理论:变化的磁场在周围空间产生电场,当导体处在此电场中时,导体中的自由电子在电场力作用下作定向移动而产生电流即感应电流;如果不是闭合回路,则导体中自由电子的定向移动使断开处两端积累正、负电荷而产生电势差----感应电动势。
电磁感应的概念电磁感应(Electromagnetic induction) 现象是指放在变化磁通量中的导体,会产生电动势。
此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流(感生电流) 迈克尔·法拉第是一般被认定为于1831年发现了电磁感应的人,虽然Francesco Zantedeschi1829年的工作可能对此有所预见。
电磁感应是指因为磁通量变化产生感应电动势的现象。
电磁感应现象的发现,是电磁学领域中最伟大的成就之一。
它不仅揭示了电与磁之间的内在联系,而且为电与磁之间的相互转化奠定了实验基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。
电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。
事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。
若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb(韦伯) ,Δt为发生变化所用时间,单位为s.ε 为产生的感应电动势,单位为V( 伏特,简称伏)。
电磁感应俗称磁生电,多应用于发电机。
电磁感应的知识一是电磁感应现象的'规律。
电磁感应研究的是其电磁感应他形式能转化为电能的特点电磁感应和规律,其核心是法拉第电磁感应定律和楞次定律。
第7章 电磁感应与电磁场
一、 动生电动势
动生电动势的非静电力——洛仑兹力 洛仑兹力 动生电动势的非静电力 取导线长dl 导体中载流子速度为u 取导线长 , 导体中载流子速度为
υ Fm
11
Fk = Fm = eυ × B Fm Ek = =υ × B e
d ε 动 = (υ × B ) ⋅ d l
ε = ∫ (υ × B ) ⋅ dl
1 ε i = − BωL2 2
15
二、感生电动势
由于磁场发生变化而激发的电动势
电磁感应
动生电动势 非静电力 洛仑兹力 感生电动势 非静电力 ?
实验表明,非静电力只能是磁场变化引起。 实验表明,非静电力只能是磁场变化引起。 磁场变化引起 而这种非静电力能对静止电荷 静止电荷有作用 而这种非静电力能对静止电荷有作用 因此,应是一种与电场力类似的力。 力,因此,应是一种与电场力类似的力。
1833年,楞次总结出: 年 楞次总结出: 闭合回路中感应电流的方向, 闭合回路中感应电流的方向,总是使得它所 激发的磁场来阻止或补偿引起感应电流的磁通量 的变化. 的变化 产生 感应电流 磁通量变化 a × × × × × 阻碍 产 生
× × × ×
f
× ×
×
× ×
×
×
×
υ
×
导线运动
感应电流
×
×
b
l
r
l
Er
∫ E涡 ⋅ dl = −∫
l
E涡dl cos 00 = −∫ ∫
∂B dS cos1800 S ∂t
∂B ⋅ dS S ∂t
∂B 2 E涡2πr = πr ∂t r ∂B E涡 = 2 ∂t
∂B ∵ >0 ∂t
∴ E涡与 l积分方向切向同向 积分方向切向同向
大学物理 电磁学
大学物理:电磁学电磁学是物理学的一个分支,主要研究电磁现象、电磁辐射、电磁场以及它们与物质之间的相互作用。
在本文中,我们将探讨电磁学的基本概念、历史背景、研究领域以及在现实生活中的应用。
一、基本概念1、电荷与电荷密度电荷是物质的一种属性,它可以产生电场。
电荷分为正电荷和负电荷。
电荷的分布可以用电荷密度来描述,它表示单位体积内所包含的电荷数量。
2、电场与电场强度电场是空间中由电荷产生的力线所形成的场。
电场强度是描述电场强弱的物理量,它与电荷密度有关。
3、磁场与磁感应强度磁场是由电流或磁体产生的场。
磁感应强度是描述磁场强弱的物理量,它与电流密度和磁场中的电荷有关。
4、电磁波电磁波是由电磁场产生的波动现象,它包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
二、历史背景电磁学的研究可以追溯到17世纪和18世纪,当时科学家们开始研究静电和静磁现象。
19世纪初,英国物理学家迈克尔·法拉第发现了电磁感应定律,即变化的磁场可以产生电流。
1864年,英国物理学家詹姆斯·克拉克·麦克斯韦将法拉第的发现与自己的研究结合起来,提出了著名的麦克斯韦方程组,预言了电磁波的存在。
三、研究领域1、静电学:研究静止电荷所产生的电场、电势、电容、电导等性质。
2、静磁学:研究静止磁场以及磁体和电流所产生的磁场和磁场分布。
3、电磁感应:研究变化的磁场和电场以及它们之间的相互作用和变化规律。
4、电磁波:研究电磁波的产生、传播、散射、反射和吸收等性质以及在各种介质中的行为。
四、应用电磁学在现实生活中有着广泛的应用,如:1、电力工业:利用电磁感应原理发电、输电和用电。
2、通信工程:利用电磁波传递信息,包括无线电通信、微波通信、光纤通信等。
3、电子技术:利用电磁学原理制造电子设备,如电视机、计算机、雷达等。
4、磁悬浮技术:利用磁力使物体悬浮,减少摩擦和能耗。
5、医学成像:利用电磁波和磁场进行医学诊断和治疗。
电磁感应与电磁场理论
电磁感应与电磁场理论电磁感应是电磁学中的一个重要概念,它描述了导体中自由电子受到磁场作用而产生电流的现象。
与此同时,电磁场理论探讨了电荷和电流产生的电磁场如何相互作用,相互影响。
本文将深入探讨电磁感应与电磁场理论相关的原理和应用。
一、电磁感应电磁感应是指当导体在磁场中运动,或磁场发生变化时,导体中的自由电子会受到力的作用而产生电流。
这一现象遵循法拉第电磁感应定律,即磁通量的变化率与感应电动势成正比。
这个定律可以用以下公式表示:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,t代表时间。
负号表示感应电动势的方向与磁通量变化的方向相反。
电磁感应广泛应用于发电机、变压器等电器设备中。
发电机通过旋转导体在磁场中切割磁力线,产生感应电动势和电流,进而转化为电能。
而变压器则利用电磁感应原理来改变交流电的电压大小。
二、电磁场理论电磁场理论是电磁学的基础理论之一。
根据麦克斯韦方程组,电磁场由电场和磁场组成,并且它们彼此相互依存、相互作用。
电场由带电粒子产生,而磁场则由电流产生。
电磁场理论的核心方程为麦克斯韦方程组,其中包括:1. 麦克斯韦第一和第二方程组成的电场方程:∇·E = ρ/ε0∇×E = -∂B/∂t其中,∇表示梯度运算符,E表示电场强度,ρ表示电荷密度,ε0表示真空介电常数,B表示磁感应强度,t表示时间。
2. 麦克斯韦第三和第四方程组成的磁场方程:∇·B = 0∇×B = μ0J + μ0ε0∂E/∂t其中,∇表示梯度运算符,B表示磁感应强度,J表示电流密度,μ0表示真空磁导率。
通过运用麦克斯韦方程组,我们可以推导出电磁波的性质,进一步探索电磁场的行为规律。
电磁场理论的应用非常广泛。
例如,电磁场理论在通信领域中的应用,我们利用电磁波传输信号,实现了无线通信。
此外,电磁场理论在电子技术、雷达、微波炉等方面也有许多重要的应用。
三、电磁感应与电磁场理论的联系电磁感应与电磁场理论密切相关。
大学物理 第九章 电磁感应 电磁场理论的基本概念
选择绕行方向如右图所示:
b v
o 0 I x bdr 2r 0 Ib x a dr 0 Ib x a x r 2 ln x 2
x
0 Ivab d m d m dx 方向 动 dt dx dt 2x( x a )
v
19
V a I d a d ω b c b cV
三、法拉第电磁感应定律的使用方法 1、规定任一绕行方向为回路的正方向。由右手螺旋 法则确定回路的正法线方向 en 。 d 正法线方向 2、计算 SB dS 及 dt en 3、由 d 之值确定 i 的方向 dt S d L
i
d dt 0, i 0, i的方向与绕行方向相同 d 0, 0, 的方向与绕行方向相反 i i dt
L
解二: 构成扇形闭合回路
AOCA
B
L
A
1 2 m B dS BS AOCA B L 2
o
C
d m 1 1 2 d BL BL2 dt 2 dt 2
沿OACO
由楞次定律:
A
o
17
例2. 如图所示,一矩形导线框在无限长载流导线I 的场中向右运 动,t时刻如图所示,求其动生电动势。
E涡 dl 0
法拉第电磁感应定律推广为
d E涡 dl L 22 dt
静电荷激发电场 E dl 0 保守力场(无旋场) 电场 d 变化磁场激发电场 E涡 dl dt
d 产生的原因不同。 E涡 dl 涡旋电场 dt 静电场 的区别 电力线不同。 E dl 0 环流不同
电磁场的基本理论
电磁场的基本理论电磁场理论是描述电场和磁场相互作用的基本理论,它是现代物理学的核心之一。
在日常生活中,我们经常接触到电磁现象,如电视、电磁炉、手机、电脑等设备都是利用电磁场产生的。
因此,了解电磁场的基本理论是很有必要的。
1. 电磁场的起源电磁场的起源可以追溯到19世纪初,当时科学家们发现电流会在磁场中运动。
这个现象被称为电动势,意味着磁场和电场之间存在着某种关系。
于是,人们开始深入研究这种现象,并发现电场和磁场之间存在着密切的关系,它们互相影响、互相作用。
2. 麦克斯韦方程组电磁场理论的核心是麦克斯韦方程组。
麦克斯韦方程组描述了电磁场的本质和性质,包括电场和磁场如何相互作用以及它们的运动规律。
麦克斯韦方程组分为四个方程:高斯定律、安培定律、法拉第电磁感应定律和电磁感应自我感应定律。
高斯定律描述了电场如何受到电荷分布的影响,安培定律描述了磁场如何受到电流的影响,法拉第电磁感应定律描述了磁场如何生成电场,电磁感应自我感应定律描述了电流如何在磁场中运动。
这些定律互相关联,共同描述了电磁场的本质和性质。
3. 电磁波的产生和传播电磁波是电磁场的一种表现形式,是由电场和磁场相互作用产生的。
电磁波可以传播并携带能量,具有很高的穿透力和广泛的应用价值。
电磁波的产生和传播取决于电磁波方程,这是麦克斯韦方程组的一部分。
电磁波方程描述了电场和磁场的偏导数之间的关系,说明了电磁波如何在自由空间中传播。
由于电磁波的传播速度达到了光速,因此电磁波也被称为光波。
电磁波可以被分为很多不同的频率,包括无线电波、微波、红外线、可见光、紫外线、 X射线和γ射线。
4. 应用领域电磁场理论在现代科学和工程中扮演着重要的角色。
它广泛应用于电子技术、通信技术、能源和材料科学、医学、生物学等领域。
例如,在电子技术中,电磁场理论被用来设计电路和电子设备。
在通讯领域,电磁场理论被用来设计无线电设备和卫星通信系统。
在医学和生物学中,电磁场理论被用来诊断疾病和治疗病人。
电气工程基础
电气工程基础电气工程基础是电气工程专业学习的第一门入门课程,是学习电气工程的基础知识的重要组成部分。
电气工程基础主要涉及电路基本知识、电磁场理论和传感器等方面的内容。
本文将从电路、电磁场和传感器三个方面来介绍电气工程基础的相关内容。
一、电路基本知识电路基本知识是电气工程的基础,它包括电流、电压、电阻的概念和关系,以及直流回路和交流回路的分析等内容。
电流是指电荷的流动,是电气信号传输的基础。
电压是电场力量的表现,是驱动电流流动的动力。
电阻是指电流在电路中受阻碍的程度。
直流回路是指电流方向不变的电路,交流回路是指电流方向周期性改变的电路。
在电路分析中,我们可以利用基尔霍夫定律和欧姆定律来解决各种电路分析问题。
基尔霍夫定律包括基尔霍夫电流定律和基尔霍夫电压定律,它们是电路分析中重要的基本定律。
基尔霍夫电流定律指出,在电路中,流入某个节点的电流等于流出该节点的电流的代数和。
基尔霍夫电压定律指出,在电路中,沿着闭合回路的各个电压代数和为零。
欧姆定律指出,电流和电压之间存在线性关系,电阻是电流和电压之间的比值。
二、电磁场理论电磁场理论是电气工程基础中的重要内容,它研究电荷和电流所产生的电场和磁场的性质和相互作用。
电场是由电荷产生的力场,包括静电场和变化的电场。
静电场是由静止电荷产生的电场,它的性质由库仑定律描述。
变化的电场是由电流和变化的电荷所产生的电场,它遵循麦克斯韦方程组。
磁场是由电流所产生的力场,在电气工程中主要涉及恒定磁场和电磁感应。
恒定磁场是由恒定电流所产生的磁场,它的性质由安培定律描述。
电磁感应是由变化的磁场所产生的感应电场,根据法拉第电磁感应定律,磁场的变化会导致感应电动势的产生。
电磁场理论为电气工程中的电磁设备和电机的设计和分析提供了理论基础。
三、传感器传感器是电气工程中的重要设备,它能将非电信号转化为电信号,并对环境中的各种物理量、化学量和生物量进行检测和控制。
常见的传感器包括温度传感器、压力传感器、湿度传感器、光照传感器等。
物理电磁学理论
物理电磁学理论物理学是研究自然界各种现象和规律的科学。
而电磁学作为物理学的一支重要分支,研究的是电和磁现象的原理和规律。
本文将探讨电磁学理论的基本概念、电磁场、电磁波以及电磁辐射等内容。
一、电磁学理论基本概念电磁学理论的基础概念包括电荷、电场、电势、磁场、磁感应强度和磁标量势等。
1. 电荷是电磁学研究的基础,分为正电荷和负电荷。
同性电荷相斥,异性电荷相吸。
2. 电场是指电荷周围存在的电力作用区域。
电场主要由电荷产生,并采用电场力线表示,力线越密集表示电场越强。
3. 电势是描述电场强弱的物理量,通常表示为V。
电势差是指在两点之间单位正电荷所具有的电势能差。
4. 磁场是指磁体周围的磁力作用区域。
磁场主要由磁荷(磁单极子)和电流产生。
5. 磁感应强度是描述磁场强弱的物理量,通常表示为B。
磁感应强度的方向与磁场力线的方向相同。
6. 磁标量势是指描述磁场分布的物理量,通常表示为φ。
二、电磁场电磁场是指电场与磁场同时存在的区域,是电磁学理论的基础概念之一。
1. 电场与磁场的相互作用是电磁场产生的基础。
当电流通过导线时,会产生磁场;而变化的磁场则会产生感应电场。
2. 麦克斯韦方程组是电磁场理论的核心内容,描述了电场与磁场之间的相互关系和运动规律。
3. 电磁力是电磁场中的物体所受到的力,可以通过洛伦兹力计算,包括库仑力和洛伦兹力。
4. 电磁感应是指改变磁场强度或者磁通量时,所产生的感应电动势和感应电流。
三、电磁波电磁波是电磁场的一种表现形式,具有电场和磁场的振荡。
电磁波的传播速度等于真空中的光速。
1. 电磁波的生成是由振动带动电场和磁场的产生,振动的源头可以是电荷的振动或者电流的变化。
2. 电磁波分为空间上的平面波和球面波两种形式。
平面波特点是波阵面平行,球面波特点是波阵面呈球面膨胀。
3. 电磁波的频率和波长呈倒数关系,频率越高,波长越短。
电磁波的频率范围广泛,包括无线电波、微波、红外线、可见光、紫外线、X 射线和γ射线等。
电磁场的基本理论
电磁场的基本理论电磁场是指存在于空间中的电场和磁场相互作用的物理现象。
其基本理论由麦克斯韦方程组所描述,这是一组描述电磁现象的偏微分方程。
本文将介绍电磁场的基本概念、电磁波的传播以及麦克斯韦方程组的基本原理。
一、电磁场的基本概念电磁场是由电荷和电流引起的物理现象,其中电荷产生电场,电流产生磁场。
电场和磁场在空间中具有能量、动量和角动量,它们的相互作用可以相互转化。
电磁场的基本特性包括场强、场线和场矢量。
1. 场强:电场和磁场在空间中具有场强,用于描述场的强弱。
电场的场强由电荷数和距离决定,磁场的场强由电流和距离决定。
2. 场线:电磁场可以用场线表示,场线是指在空间中描绘场强分布的曲线。
电场的场线是由正电荷指向负电荷,磁场的场线则是环绕电流的闭合曲线。
3. 场矢量:电场和磁场都可以用矢量表示,电场矢量用E表示,磁场矢量用B表示。
场矢量的方向与场强方向相同。
二、电磁波的传播电磁波是由电场和磁场相互耦合形成的波动现象。
根据麦克斯韦方程组的解析解,电磁波以光速$c$传播,且在真空中传播时的速度为$c$。
电磁波在介质中的传播速度取决于介质的折射率。
1. 电磁波的性质:电磁波具有双重性质,既表现出波动性,也表现出粒子性。
根据波粒二象性的原理,电磁波可以用粒子模型的光子来描述。
2. 频率和波长:电磁波由频率和波长来描述,频率用$\nu$表示,波长用$\lambda$表示。
频率和波长之间的关系由$c=\lambda\nu$给出。
3. 光的谱线:电磁波在不同频率范围内对应着不同的光谱线。
可见光波长范围在400纳米到700纳米之间,红光、橙光、黄光、绿光、蓝光和紫光分别对应着不同的频率。
三、麦克斯韦方程组的基本原理麦克斯韦方程组是描述电磁场的基本方程,包括两条电场方程和两条磁场方程。
1. 麦克斯韦第一和第二方程:这两条方程描述了电场和磁场的生成和变化。
麦克斯韦第一方程,也称为高斯定律,表示电场线可以从正电荷发出或进入负电荷。
电磁场与电磁波的基本理论和工程应用
电磁场与电磁波的基本理论和工程应用电磁场和电磁波是电磁学的基础概念,其理论和应用在现代科技社会中起着重要作用。
本文将详细介绍电磁场和电磁波的基本理论以及其在工程应用中的具体情况。
一、电磁场的基本理论1.1 电磁场的概念电磁场是一种存在于空间中的物理现象,描绘了电荷和电流的相互作用过程。
它由电场和磁场两部分组成,具有方向强度和传播速度等特性。
1.2 电磁场的数学表达电磁场的数学表达主要是通过麦克斯韦方程组来描述。
麦克斯韦方程组包括四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应第二定律。
1.3 电磁场的特性电磁场有许多特性,其中包括:- 有源性:电磁场的产生需要带电粒子或电流作为能量源。
- 传播性:电磁场可以在空间中传播,并以光速的速度传递信息。
- 叠加性:多个电磁场可以叠加形成新的电磁场。
- 势能性:电磁场可以与电荷相互转化,从而进行能量的传递。
二、电磁波的基本理论2.1 电磁波的概念电磁波是由电磁场在空间中传播形成的一种波动现象。
它由电场和磁场的相互作用引起,具有电磁场的传播速度和特性。
2.2 电磁波的产生和传播电磁波的产生主要是通过加速带电粒子或振荡电流来实现的。
一旦电磁波产生后,它会以电磁场的形式在空间中传播,直到被吸收或衰减。
2.3 电磁波的分类根据波长和频率的不同,电磁波可以分为不同的分类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。
三、电磁场和电磁波的工程应用3.1 通信技术电磁场和电磁波在通信技术中起着关键作用。
无线电波和微波被广泛应用于无线通信和卫星通讯领域,可实现远距离的信息传输。
3.2 雷达技术雷达技术利用电磁波进行探测和测距,广泛应用于航空、军事等领域。
雷达可实现对目标的探测、定位和跟踪,具有重要意义。
3.3 高频加热技术高频加热技术是利用电磁场的能量将物体加热到所需温度。
它在工业生产中广泛应用于熔融金属、加热塑料等领域。
3.4 医学诊断技术电磁波在医学诊断技术中也有重要应用。
电磁场基础
电磁场基础
电磁场基础概念是物理学的一个重要分支,也是工程中最常用的物理原理之一,它涉及到许多关于电磁能的相关理论、数学和应用。
电磁场基础的内容涉及到电磁波的传播、生成和控制,以及电路、电磁设备和电力系统的设计、实现和测试。
电磁场基础包括电磁学基础、电磁学方程、电磁波传播、电磁设备和电力系统等内容。
电磁学基础是指研究电磁场、电流和电荷的基本原理,电磁学方程是指电磁力学的基本方程,电磁波传播是指电磁波在物体之间的传播,电磁设备是指用于产生、控制和检测电磁场的设备,而电力系统是指利用电磁能进行电力传输和分配的系统。
在物理学中,电磁场基础主要涉及三个基本概念:电磁场、电磁辐射和电磁辐射器。
电磁场是一种由电荷或电流产生的物理场,电磁辐射是指电磁场沿着空间传播所形成的能量,而电磁辐射器是指用于产生、控制和检测电磁场的装置或设备。
电磁场基础中还涉及到其他一些概念,例如电磁感应、电磁耦合、电磁谐振、电磁干扰和电磁兼容性等。
电磁感应是指电磁场作用于电荷或电流时引起的力,电磁耦合是指两个或多个电磁设备之间的能量转移,电磁谐振是
指电磁场在特定频率下产生振动,电磁干扰是指电磁场干扰电路中信号的传输,而电磁兼容性则是指电磁设备能够抵御外部电磁干扰的能力。
电磁场基础是物理学和电子技术领域最重要的基础知识,它不仅仅是前进物理学和电子技术研究的基础,而且在工业生产、通信、电力系统和电子技术的应用中,也有着重要的作用。
因此,学习和掌握电磁场基础是每个物理学家和电子工程师都不可缺少的知识。
电气工程中的电磁场理论与应用
电气工程中的电磁场理论与应用电气工程是一门研究电力的产生、传输和应用的学科,电磁场理论是电气工程中的重要基础。
本文将从电磁场理论的概念、原理以及在电气工程中的应用等方面进行阐述。
一、电磁场理论概述电磁场理论是描述电荷和电流如何相互作用的物理学理论。
根据麦克斯韦方程组,电磁场的变化会产生相应的电场和磁场,并且它们之间互相耦合。
在电磁场理论中,电场和磁场是电磁波的媒介,它们通过相互作用传播能量和信息。
根据电荷的分布和运动情况,可以确定电磁场的大小和方向。
二、电磁场的基本原理1.电场电场是由电荷所产生的力场。
根据库仑定律,两个电荷之间的相互作用力与它们之间的距离成反比,与电荷的大小成正比。
电场用于描述电荷对其他电荷的作用。
2.磁场磁场是由电流所产生的力场。
根据安培定律,电流元周围产生的磁场与电流元和观察点之间的位置有关,磁场的大小和方向受到电流大小和方向的影响。
磁场用于描述电流对其他电荷和电流的作用。
3.电磁波当电场和磁场发生变化时,它们会相互耦合,形成电磁波。
电磁波是一种通过电磁场传播的能量和信息,其特点是无需介质传播,可以在真空中传播。
电磁波在电信号传输、无线通信等方面有广泛的应用。
三、电磁场理论在电气工程中的应用1.电磁场计算在电气工程中,根据电路结构和工作条件,可以利用电磁场理论计算电场和磁场的分布情况。
通过计算分析,可以确定电磁场的强度和方向,为电气设备的设计和优化提供依据。
2.电磁场屏蔽电气设备中常常涉及到电磁场的屏蔽问题。
通过合理设计设备结构和选择合适的材料,可以有效地屏蔽电磁场的干扰,提高设备的工作性能和稳定性。
3.电磁兼容电气设备在工作时会产生电磁辐射,可能对其他设备和系统造成干扰。
电磁兼容技术通过合理布线、屏蔽措施和滤波器等手段,减小电磁辐射和抗干扰能力,保证不同设备之间的正常工作。
4.电磁感应根据电磁感应定律,电磁场的变化会引发电动势和电流的变化。
利用电磁感应原理,可以实现电气设备中的传感、测量和控制等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
B
v
a
d
结论:当穿过闭合回路的磁通量发生变化时,不管 这种变化是由什么原因引起的,回路中有电流产生。 这一现象称为电磁感应现象。
电磁感应现象中产生的电流称为感应电流,相应的电 动势称为感应电动势。
3
8.1.2 楞次定律
楞次定律:闭合回路 中感应电流的方向, 总是企图使感应电流 本身所产生的通过回 路面积的磁通量,去 抵消或者补偿引起感 应电流的磁通量的改 变。
N
来 者 拒 之
N
去 者 留 之
楞次定律是能量 守恒定律的一种表现
机械能 焦耳热
I
( a)
I
( b)
用愣次定律判断感应电流 I 方向
4
8.1.3 法拉第电磁感应定律及其应用
法拉第电磁感应定律:不论任何原因使通过闭合 回路所围面积的磁通量发生变化时,回路中产生的感 应电动势与磁通量对时间的变化率的负值成正比。
ω o
i
R
E 0 为电流振幅 I0 R
8
例2.一长直导线通以电流 I0为常数)。旁 i I 0 sin (t 边有一个边长分别为l1和l2的矩形线圈abcd与长直电流 共面,ab边距长直电流 r。求线圈中的感应电动势。 解:建立坐标系Ox如图 l1 c b r l1 i
Φm B dS
在国际单位制中,其数学表达式为:
d m Ei dt
反映感应电动势的 方向,楞次定律的 数学表示
若线圈是N匝串联而成 , 则 :
d m d Ei N dt dt 式中, m=N m
m : 穿过整个线圈的磁通匝
链数---磁链, ( Wb 韦伯 )
1 V= 1 Wbs-1
en 与 B
t Nm NBS cos t
同向 , 则
d Ei NBS sin t dt 令 E 0 NBS 称为电动势的振幅
则 E i E 0 sin t 为交变电动势 Ei E0 i= sin t I 0 sin t R R
10
8.2.1 动生电动势
如图,直导线ab在运动时,导线内每个自由电子 + + + + + + + 受洛伦兹力 b
Fm (e)v B
使电子向下运动到a端, b “+” 结果 a “-” 平衡时 Fm Fe eE
(2)
B ++ + + F+ + e
+
+
+ +
5
Ei 的单位:伏特(V)
d m 法拉第电磁感应定律: E i dt
若闭合回路的电阻为R,则回路中的感应电流: 确定 m 、E i 和Ii 方向的方法: 1.对回路L任取一绕行方向作为正方向。 2.当回路中的磁感线方向与回路的绕行方向成右手 螺旋关系时,磁通量为 m 0 m 0 正(+),如图(a);反之 为负(-),如图(b) 。 Ei Ei 3.回路中的感应电动势方 向凡与绕行方向一致时 (a) (b) 为正(+),反之为负(-)。 绕行方向
S
0
r
π π cos t 0 当 0 t 时, cos t 0 当 t π 时, 2 2 E Eii 0 为顺时针转向 i 0 0 为逆时针转向
r l1 sin t ln a d r 2π r O x x d 0l2 I 0 r l1 dx Ei ln cos t dt 2π r
b
Ei E
l
(2)
dl
Ii - v Fm a
S N
8.1.1 电磁感应现象
G
实验二: 以通电线圈代替条形磁铁。
1. 当线圈B相对于线圈A运动时, 线圈A回路内有电流产生;反之亦即。 2. 当线圈B相对于线圈A静止时, 如果改变线圈B的电流,则线圈A G 回路中也会产生电流。
B
A
2
实验三: 将闭合回路 (abcd) 置 于 恒 定 磁 场 中 ,c 当导体棒在导体轨道上 滑行时,回路内出现了 电流。
图(b), (d)中的感 应电动势的方向与L的 绕行方向相反。 图(a), (c)中的感 应电动势的方向与L 的绕行方向相同。
7
d m (d) m 0, 0, E i (或I i ) <0 dt
例1 在匀强磁场中, 置有面积为 S 的可绕轴转动 的N 匝线圈. 若线圈以角速度 作匀速转动. 求线圈 中的感应电动势. o' 解 en 设 t 0 时, N B
第8章 电磁感应和电磁场 理论的基本概念
—— “电”、“磁”相互激发的现象, 揭示了电与磁之间的内在联系 电与磁之间存在着某种对称性
本章研究电场、磁场随 时间变化时相互激发的规律, 以及它们之间的相互依存关 系。
1
8.1 电磁感应及其基本规律
实验一: 当条形磁铁插入或拔出线圈回路时,在 线圈回路中会产生电流;而当磁铁与线圈 保持相对静止时,回路中不存在电流。
1 d m Ii R dt
6
Ei (a) (b)
Ei (c)
Ei
(d)
Ei
d m (a) m 0, 0, E i (或I i ) >0 dt d m (b) m 0, 0, E i (或I i ) <0 dt d m (c) m 0, 0, E i (或I i ) >0 dt
0 I 0 l2
2π x
l2dx
i
l2
9
8.2 动生电动势
磁通量: Φm
B dS B cos dS
S S
引起磁通量m变化的原因有: 1)S、 不变,B的大小变化(各种原因) 感生电动势 2)B不变, S 、 变化 动生电动势
3)B、S 和 都在变化,
同时产生上述两种感应电动势
+ + + -+ +
+ + + a+ + b
+ + + Fm - -
+ v
; +
ab 具有一定电势差Vab ab相当电源
Ei
a
ab ~ 电源,反抗 F 做功,将+q由负极正极,维持 e Vab的非静电力 — 洛仑兹力 F
m
11
8.2.2 动生电动势的表达式
根据电动势的定义: