高中数学 考前归纳总结 圆锥曲线与向量的综合性问题
高中数学圆锥曲线知识点总结(合集5篇)
高中数学圆锥曲线知识点总结(合集5篇)第一篇:高中数学圆锥曲线知识点总结高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:;注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:3、双曲线:(1)轨迹定义:(θ为参数);①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形各性质(除切线外)均可在这个图中找到。
则椭圆的3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段也可认为是椭圆在e=1时的特例。
高考圆锥曲线知识点、题型全总结
圆锥曲线全总结及全题型解析1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常,且此常数一定要大于,当常数等时,轨迹是线段 F F ,当常数小时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数,且此常数一定要小于F |,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F |,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(A B C≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上=1,焦点在轴上=1()。
方表示双曲线的充要条件是什么?(ABC≠0,且A,B 异号)。
(3)抛物线:开口向右时,开口向左,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由, 分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由, 项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
提醒:在椭圆中,最大,在双曲线中,最大。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为,短轴长为;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2 ,虚轴长为,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线在椭圆外, 越小,开口越小, 越大,开口越大;⑥两条渐近线。
高中数学圆锥曲线知识点总结5篇
高中数学圆锥曲线知识点总结5篇高中数学圆锥曲线知识点总结5篇教育的现代化和大众化是推进知识普及和人才培养的重要策略。
科学科研的公正性和透明度是科研活动的重要保障。
下面就让小编给大家带来高中数学圆锥曲线知识点总结,希望大家喜欢!高中数学圆锥曲线知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
高中数学圆锥曲线综合问题梳理归纳
高中数学圆锥曲线综合问题梳理归纳圆锥曲线综合问题—1. 定点问题圆锥曲线中的定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.难度较大.定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点、一个值,就是要求的定点、定值.化解这类问题难点的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量. 一、定点问题定点的探索与证明问题的主要方法有: (1)探索直线过定点时,可设出直线方程为y kx m =+,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关. 1. 已知动圆C 与圆1)1(:221=++y x C 相外切,与圆9)1(:222=+-y x C 相内切,设动圆圆心C的轨迹为T ,且轨迹T 与x 轴右半轴的交点为A .(I )求轨迹T 的方程; (Ⅱ)已知直线l :y kx m =+与轨迹为T 相交于,M N 两点(,M N 不在x 轴上).若以MN 为直径的圆过点A ,求证:直线l 过定点,并求出该定点的坐标.答案:(I )22143x y +=(Ⅱ)2(,0)72. 在平面直角坐标系xOy 中,直线l 与抛物线24y x =相交于不同的两点A ,B .(I )如果直线l 过抛物线的焦点,求OA OB ⋅u u u r u u u r 的值;(II )如果4OA OB ⋅=-u u u r u u u r,证明直线l 必过一定点,并求出该定点坐标.答案:(I )-3 (II )(2,0)3. 已知左焦点为(1,0)F -的椭圆过点(1,3E .过点(1,1)P 分别作斜率为12,k k 的椭圆的动弦,AB CD ,设,M N 分别为线段,AB CD 的中点.(1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求1k ; (3)若121k k +=,求证直线MN 恒过定点,并求出定点坐标.答案:(1)12322=+y x (2)123k =- (3)2(0,)3-4. (本小题满分14分)设抛物线C 的方程为24xy =,()00,M x y 为直线l :(0)y m m =->上任意一点,过点M 作抛物线C 的两条切线MA ,MB ,切点分别为A ,B .(1)当M 的坐标为(0,1)-时,求过,,M A B 三点的圆的方程,并判断直线l 与此圆的位置关系;(2)求证:直线AB 恒过定点(0,)m ;答案:(1)此圆与直线:1l y =-相切;5. 已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切,过点P (4,0)且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点.(1)求椭圆C 的方程;(2)求OB OA ⋅的取值范围;(3)若B 点关于x 轴的对称点是E ,证明:直线AE 与x 轴相交于定点.答案:(1)22143x y +=(2)13[4,)4-(3)(1,0)6. . 已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形.(Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E ,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. 答案:(Ⅰ)24y x =(Ⅱ)(ⅰ)(1,0)(ⅱ)167. 已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程; (Ⅱ) 已知点B (-1,0), 设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P , Q , 若x 轴是PBQ ∠的角平分线, 证明直线l 过定点. 答案:(1)28y x =(2),直线PQ 过定点(1,0)圆锥曲线综合问题—2.定值问题定值问题是解析几何中的一种常见问题,基本的求解思想是:先用变量表示所需证明的不变量,然后通过推导和已知条件,消去变量,得到定值,即解决定值问题首先是求解非定值问题,即变量问题,最后才是定值问题.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.1. 已知椭圆()222210x y a b a b+=>>的离心率为3e =,直线2y x =+与以原点为圆心、椭圆C 的短半轴长为半径的圆O 相切.(1)求椭圆C 的方程;答案:2214x y +=(2)如下图,A 、B 、D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,求证:2m k -为定值. 答案:答案:(1)2214x y += (2)122. 已知椭圆的中心为原点O ,长轴长为7y =(Ⅰ)求该椭圆的标准方程;(Ⅱ)射线x y 22=()0x ≥与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于,A B 两点(,A B 两点异于M ).求证:直线AB 的斜率为定值.答案:(Ⅰ) 2218yx +=(Ⅱ)3. (本题满分14分)已知椭圆()2222:10x y C a b a b+=>>的两个焦点12,F F 和上下两个顶点12,B B 是一个边长为2且∠F 1B 1F 2为60o的菱形的四个顶点.(1)求椭圆C 的方程;(2)过右焦点F 2 ,斜率为k(0k ≠)的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线AE 、AF 分别交直线3x =于点M 、N ,线段MN 的中点为P ,记直线2PF 的斜率为k '.求证:k k '⋅为定值.答案:(1)22143x y +=(2)34-4. 已知点M 是椭圆C :2222x y a b+=1(a >b >0)上一点,F 1、F 2分别为C 的左、右焦点,|F 1F 2|=4,∠F 1MF 2 =60o ,∠F 1 MF 2的面积为3(I )求椭圆C 的方程; (II )设N (0,2),过点p (-1,-2)作直线l ,交椭圆C 异于N 的A 、B 两点,直线NA 、NB 的斜率分别为k 1、k 2,证明:k 1+k 2为定值.答案:(I )22184x y += (II ) 45. 已知,椭圆C 过点A ⎝⎛⎭⎪⎫1,32,两个焦点为(-1,0),(1,0). (1)求椭圆C 的方程; (2)E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值. 答案:(1) x 24+y 23=1 (2)12-6. 如图,已知双曲线C :2221x y a-=(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点). (1)求双曲线C 的方程; (2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l 1:0021x xy y a -=与直线AF 相交于点M ,与直线32x =相交于点N ,证明:当点P 在C 上移动时,||||MF NF 恒为定值,并求此定值.答案: (1)2213x y -= (27.如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上; (2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.答案: (1)D 点在定直线y =-2上(x ≠0) (2)8圆锥曲线综合问题—3.定直线问题1. 已知双曲线()222:104x y E a a -=>的中心为原点O ,左、右焦点分别为1F 、2F ,,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF ⋅=u u u u r u u u u r.(1)求实数a 的值;(2)证明:直线PQ 与直线OQ 的斜率之积是定值;(3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同的两点M 、N ,在线段MN 上去异于点M 、N 的点H ,满足PM MH PNHN=,证明点H 恒在一条定直线上.答案:(1 (2)45(3)点H 恒在定直线43120x y --=上2. 设椭圆2222:11x y E a a +=-的焦点在x 轴上 (Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程; (Ⅱ)设12,F F 分别是椭圆的左、右焦点,P 为椭圆E 上的第一象限内的点,直线2F P 交y 轴与点Q ,并且11F P F Q ⊥,证明:当a 变化时,点p 在某定直线上.【答案】 (Ⅰ) 2288153x x +=(Ⅱ) 点p 在定直线01=-+y x 上2. (本小题满分15分).已知1F 、2F 分别为椭圆1C :)0(12222>>=+b a bx a y 的上、下焦点,其中1F 也是抛物线2C :y x 42=的焦点,点M 是1C 与2C 在第二象限的交点,且351=MF 。
高三圆锥曲线知识点总结
高三圆锥曲线知识点总结高三是学生们备战高考的关键一年,其中数学是许多学生感到困惑和挑战的一门学科。
在数学学习中,圆锥曲线是一个重要的知识点。
本文将对高三圆锥曲线的知识点进行总结和归纳,帮助学生们更好地理解和应用这一部分内容。
一、圆锥曲线的定义和基本性质圆锥曲线是由一个平面与一个圆锥相交而产生的曲线。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
圆锥曲线具有许多重要的性质,例如,椭圆和双曲线是有界的,抛物线是无界的。
此外,每个圆锥曲线都有两个对称轴,并且具有焦点和准线等重要特征。
二、椭圆的性质和方程椭圆是圆锥曲线中最常见的形式之一。
椭圆的定义是平面上到两个给定点(焦点)的距离之和等于常数的点的集合。
椭圆有许多有趣的性质,例如,长轴和短轴的长度相等,焦点到曲线上任意一点的距离之和等于常数,以及椭圆对称于两个轴等。
椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心,a和b分别是长轴和短轴的长度。
三、双曲线的性质和方程双曲线是圆锥曲线中另一种常见的形式。
与椭圆不同,双曲线的定义是平面上到两个给定点(焦点)的距离之差等于常数的点的集合。
双曲线也具有许多有趣的性质,例如,焦点到曲线上任意一点的距离之差等于常数,以及双曲线有两条渐近线等。
双曲线的标准方程为(x-h)²/a² - (y-k)²/b² = 1或(x-h)²/a² - (y-k)²/b² = -1,其中(h,k)是双曲线的中心,a和b分别是距离差和水平距离的一半。
四、抛物线的性质和方程抛物线是圆锥曲线中另一种重要的形式。
抛物线的定义是平面上到一个给定点(焦点)和一条给定直线(准线)的距离相等的点的集合。
抛物线具有许多有趣的性质,如对称性、焦距等于准线到抛物线顶点的垂直距离的两倍,并且焦点到曲线上任意一点的距离等于焦准距的一半。
【高中数学】高中数学知识点:圆锥曲线综合
【高中数学】高中数学知识点:圆锥曲线综合圆锥曲线的综合问题:1.圆锥曲线范围有两种常用方法:(1)寻找合理的不等式,常见有△>0和弦的中点在曲线内部;(2)所需的量可以表示为另一个变量的函数,以找到函数的值范围。
2、圆锥曲线的最值、定值及过定点等难点问题。
直线和二次曲线之间的位置关系:(1)从几何角度来看,直线和圆锥曲线有三种位置关系:相离、相切和相交,相离是直线和圆锥曲线没有公共点,相切是直线和圆锥曲线有唯一公共点,相交是直线与圆锥曲线有两个不同的公共点,并特别注意直线与双曲线、抛物线有唯一公共点时,并不一定是相切,如直线与双曲线的渐近线平行时,与双曲线有唯一公共点,但这时直线与双曲线相交;直线平行(重合)于抛物线的对称轴时,与抛物线有唯一公共点,但这时直线与抛物线相交,故直线与双曲线、抛物线有唯一公共点时可能是相切,也可能是相交,直线与这两种曲线相交,可能有两个交点,也可能有一个交点,从而不要以公共点的个数来判断直线与曲线的位置关系,但由位置关系可以确定公共点的个数.(2)从代数的观点来看,位置关系可以根据由直线方程和圆锥方程组成的方程的解的个数来确定。
将l线方程与二次曲线方程结合,得到ax2+bx+c=0。
①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行或重合.② 如果当δ>0时,直线和圆锥曲线相交于不同两点,相交.当δ=0时,直线和圆锥曲线在一点相切当δ<0时,直线和圆锥曲线没有公共点,相离.直线与二次曲线相交的弦长公式:若直线l与圆锥曲线f(x,y)=0相交于a,b两点,求弦ab的长可用下列两种方法:(1)求交点法:将直线方程和圆锥曲线方程结合起来求解a点和B点的坐标,然后利用两点之间的距离公式得到弦AB的长度。
一般来说,这种方法比较麻烦(2)韦达定理法:如果直线L的方程式用y=KX+m或x=n表示。
(完整版)高三圆锥曲线知识点总结
第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
高考数学总复习(基础知识+高频考点+解题训练)圆锥曲线的综合问题
圆锥曲线的综合问题(文视情况)[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有:Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或 1+1k 2|y 1-y 2|.[小题能否全取]1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.答案:635.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=2x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.直线与圆锥曲线的位置关系典题导入[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y=k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则 y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=1+k2[x 1+x 22-4x 1x 2]=21+k 24+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为 S =12|MN |· d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1. 由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +2⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1.最值与范围问题典题导入[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得 ⎩⎪⎨⎪⎧2+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·m -4212-m2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.定点定值问题典题导入[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).② 由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pa b时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b .答案:⎝⎛⎭⎪⎫a ,2pa b1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA u u u r ,·2PF u u u r,的最小值为( )A .-2B .-8116C .1D .0解析:选A 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA u u u r ,·2PF u u u r ,=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,1PA u u u r ,·2PF u u u r ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2012·南昌联考)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM u u u u r ,=4MN u u u u r,,则双曲线的离心率为( )A.54 B.53 C.35D.45解析:选B 由题意知F (c,0),则易得M ,N 的纵坐标分别为b 2a ,bc a ,由FM u u u u r ,=4MN u u u u r ,得b 2a =4·⎝ ⎛⎭⎪⎫bc a -b 2a ,即b c =45.又c 2=a 2+b 2,则e =c a =53. 4.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,2 2 ].答案:[2,2 2 ]6.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x 22+y 2=1,得3x 2=2,∴x =±63, ∴A ⎝⎛⎭⎪⎫63,63,B ⎝ ⎛⎭⎪⎫-63,-63, ∴|AB |=433.设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪≤32,∴S △ABC =12|AB |·d ≤12×433×32= 2.答案: 27.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b21+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=41-b 21+b 22-41-2b21+b2=8b 41+b22,解得b =22. 8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =ca =22a +c =2+1,∴⎩⎨⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k22k 2+1,-k 2k 2+1.∵|AC |=|BC |,∴CM ⊥AB ,即k CM ·k AB =-1,∴k2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m . ∴当0≤m <12时,k =±m1-2m,即存在满足题意的直线l ; 当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.(2012·江西模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝ ⎛⎭⎪⎫16,0,求实数k 的取值范围.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝ ⎛⎭⎪⎫x 03,y 03. 又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| ,∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km 3+4k 2,则y 1+y 2=6m 3+4k2,∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.又线段AB 的垂直平分线l ′的方程为y =-1k ⎝ ⎛⎭⎪⎫x -16,点P 在直线l ′上,∴3m 3+4k 2=-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k (4k 2+3),∴4k 2+3236k2<4k 2+3,∴k 2>332,解得k >68或k <-68,∴k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-68∪⎝ ⎛⎭⎪⎫68,+∞.1.(2012·长春模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM u u u u r|,·|BM u u u u r |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM u u u u r |,+|BM u u u u r|,的值,并写出曲线C 的方程;(2)求△APQ 的面积的最大值.解:(1)设M (x ,y ),在△MAB 中,|AB u u u r |,=2,∠AMB =2θ,根据余弦定理得|AM u u u u r |,2+|BM u u u u r |,2-2|AM u u u u r |,·|BM u u u u r |,cos 2θ=|AB u u u r |,2=4,即(|AM u u u u r |,+|BM u u u u r |,)2-2|AM u u u u r |,·|BM u u u u r|,·(1+cos 2θ)=4,所以(|AM u u u u r |,+|BM u u u u r |,)2-4|AM u u u u r |,| BM u u u u r |,·cos 2θ=4.因为|AM u u u u r |,·|BM u u u u r |,cos 2θ=3,所以(|AM u u u u r |,+|BM u u u u r |,)2-4×3=4,所以|AM u u u u r |,+|BM u u u u r|,=4.又|AM u u u u r |,+|BM |,=4>2=|AB u u u r |,因此点M 的轨迹是以A ,B 为焦点的椭圆(点M 在x 轴上也符合题意),设椭圆的方程为x 2a 2+y 2b2=1(a >b>0),则a =2,c =1,所以b 2=a 2-c 2=3. 所以曲线C 的方程为x 24+y 23=1.(2)设直线PQ 的方程为x =my +1.由⎩⎪⎨⎪⎧x =my +1x 24+y23=1,消去x ,整理得(3m 2+4)y 2+6my -9=0.①显然方程①的判别式Δ=36m 2+36(3m 2+4)>0, 设P (x 1,y 1),Q (x 2,y 2),则△APQ 的面积S △APQ =12×2×|y 1-y 2|=|y 1-y 2|.由根与系数的关系得y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,所以(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=48×3m 2+33m 2+42.令t =3m 2+3,则t ≥3,(y 1-y 2)2=48t +1t+2, 由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3,所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1.2.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e >12的椭圆E :x2a2+y 2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点. (1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0, 若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1= 5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=3+42+12+3-42+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4y 1+y 22-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y得(x -1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多1个B .2个C .1个D .0个解析:选B 由题意得4m 2+n2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.3.(2012·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM u u u r ,·TN u u u r,的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.解:(1)依题意,得a =2,e =c a =32, ∴c =3,b =a 2-c 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C 上,∴y 21=1-x 214.(*)由已知T (-2,0),则TM u u u r ,=(x 1+2,y 1),TN u u u r,=(x 1+2,-y 1), ∴TM u u u r ,·TN u u u r ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝ ⎛⎭⎪⎫1-x 214=54x 21+4x 1+3=54⎝⎛⎭⎪⎫x 1+852-15.由于-2<x 1<2,故当x 1=-85时,TM u u u r ,·TN u u u r ,取得最小值-15.把x 1=-85代入(*)式,得y 1=35,故M ⎝ ⎛⎭⎪⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325.故圆T 的方程为(x +2)2+y 2=1325.(3)设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0), 令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21), 代入(**)式, 得x R ·x S =41-y 21y 20-41-y 20y 21y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1. 2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32D.23解析:选B 设P (x P,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13. 3.(2012·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB |=[1--1]2+-1-12=22,∴圆的方程为x 2+y 2=2.4.(2012·福建高考)已知双曲线x 24-y 2b2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2 C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x , ∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪52×31+54= 5.5.(2012·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98B.53C.324D.54解析:选B 依题意得,c +b 2=77+3×2c ,即b =45c (其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53. 6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|PA |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点.7.圆x 2+y 2-4x =0在点P (1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33. 所以切线方程为y -3=33(x -1),即x -3y +2=0. 8.(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2 B .2 2 C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2012·潍坊适应性训练)已知双曲线C :x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为C 的右支上一点,且|PF 2|=|F 1F 2|,则|P F 2|=|F 1F 2|,则1PF u u u r ,·2PF u u u r,等于( )A .24B .48C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF u u u r ,·2PF u u u r ,=10×6×56=50.10.(2012·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y 2100=1 B.x 2100-y 275=1 C.x 29-y 216=1D.x 216-y 29=1 解析:选D ∵sin ∠BAC =BC 2R =5314,∴cos ∠BAC =1114,|AC |=2R sin ∠ABC =2×1433×32=14,sin ∠ACB =sin(60°-∠BAC )=sin 60°cos∠BAC -cos 60°sin∠BAC =32×1114-12×5314=3314, ∴|AB |=2R sin ∠ACB =2×1433×3314=6,∴2a =||AC |-|AB ||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y 29=1.11.(2012·乌鲁木齐模拟)已知抛物线y 2=2px (p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2± 3B .2+ 3 C.3±1D.3-1解析:选A 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p2=y 222p +p 2,所以y 21=y 22,所以y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2± 3.12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m ≠n 且m ,n >0),与直线方程x +3y +4=0联立, 消去x 得(3m +n )y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m=16,①又c =2,即1m -1n=±4,②由①②联立得⎩⎪⎨⎪⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15,故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2012·青岛模拟)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z ).所以当θ=k π(k ∈Z )时,l 1⊥l 2.答案:k π(k ∈Z )14.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a ,故直线OP 的斜率为-b a ,直线OP 的方程为y =-b ax .与椭圆方程联立得x 2a 2+x 2a 2=1,解得x =±22a .根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c .又|F 1A |=a+c =10+5,故 2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y 25=1.答案:x 210+y 25=115.(2012·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p=1,所以x 2=-2y .当y =-3时,x 2=6,即x =±6,所以水面宽为2 6.答案:2 616.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝ ⎛⎭⎪⎫1m ,0,B ⎝ ⎛⎭⎪⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3. 答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k (x -1)(由题可知k 存在),即kx -y +2-k =0, ∵P (0,4)到直线距离为2,∴2=|-2-k |1+k 2, 解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2012·南昌模拟)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k x -1,x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y Ax B -x A=-k x B -1-kx A -1x B -x A=2k -k x B +x Ax B -x A=1=k OP ,所以,直线AB 和OP 一定平行.19.(12分)(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝ ⎛⎭⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 2b 2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0, 得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 2+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =± 5.20.(12分)(2012·河南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B .(1)若|AB |=4269,求k 的值;(2)求证:不论k 取何值,以AB 为直径的圆恒过点M . 解:(1)由题意知c a =22,b =1. 由a 2=b 2+c 2可得c =b =1,a =2, ∴椭圆的方程为x 22+y 2=1.由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1得(2k 2+1)x 2-43kx -169=0.Δ=169k 2-4(2k 2+1)×⎝ ⎛⎭⎪⎫-169=16k 2+649>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k32k 2+1,x 1x 2=-1692k 2+1. ∴|AB |=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=41+k 29k 2+432k 2+1=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0, 解得k =±1.(2)∵MA u u u r ,=(x 1,y 1-1),MB u u u r,=(x 2,y 2-1), ∴MA u u u r ,·MB u u u r,=x 1x 2+(y 1-1)(y 2-1),=(1+k 2)x 1x 2-43k (x 1+x 2)+169=-161+k292k 2+1-16k 292k 2+1+169=0.∴不论k 取何值,以AB 为直径的圆恒过点M .21. (2012·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若1OF u u u r ,+21AF u u u u r,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE u u u r ,·PF u u u r,的最大值.解:(1)由题设知,A ⎝ ⎛⎭⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF u u u r ,+21AF u u u u r ,=0,得a 2-2=2⎝ ⎛⎭⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为x 26+y 22=1.(2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE u u u r ,·PF u u u r ,=(NE u u u r ,-NP u u u r ,)·(NF u u u r ,-NP u u u r ,)=(-NF u u u r ,-NP u u u r ,)·(NF u u u r ,-NP u u u r ,) =NP u u u r ,2-NF u u u r ,2 =NP u u u r ,2-1.从而将求PE u u u r ,·PF u u u r ,的最大值转化为求NP ―→,2的最大值.因为P 是椭圆M 上的任意一点,设P (x 0,y 0), 所以x 206+y 202=1,即x 20=6-3y 20.因为点N (0,2),所以NP u u u r ,2=x 20+(y 0-2)2=-2(y 0+1)2+12.因为y 0∈[-2, 2],所以当y 0=-1时,NP u u u r ,2取得最大值12.所以PE u u u r ,·PF u u u r,的最大值为11.22. (2012·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52. (1)求曲线C 1和C 2的方程;(2)设点C 是C 2上一点,若|CF 1|= 2|CF 2|,求△CF 1F 2的面积.解:(1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则2a =|AF 1|+|AF 2|=72+52=6,得a =3.设A (x ,y ),F 1(-c,0),F 2(c,0),则(x +c )2+y 2=⎝ ⎛⎭⎪⎫722,(x -c )2+y 2=⎝ ⎛⎭⎪⎫522,两式相减得xc =32.由抛物线的定义可知|AF 2|=x +c =52,则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22,所以曲线C 1的方程为x 29+y 28=1⎝ ⎛⎭⎪⎫-3≤x ≤32,曲线C 2的方程为y 2=4x ⎝ ⎛⎭⎪⎫0≤x ≤32.(2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|= 2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°, 所以∠CF 1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2. 由余弦定理得22+(2r )2-2×2×2r cos 45°=r 2, 解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
高三高考数学总复习《圆锥曲线》题型归纳与汇总
高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
圆锥曲线常考七大题型汇总,一文全学透!
圆锥曲线常考七大题型汇总,一文全学透!都说数学中的圆锥曲线高考难题排名第二名,大部分同学抱怨无从下手,计算能力跟不上,算错一次没有勇气从头再来,今天小浙老师教大家如何学好!1、牢记核心知识点核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
4、题型总结圆锥曲线中常见题型总结1、直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
2、圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
高考数学中的圆锥曲线与向量计算
高考数学中的圆锥曲线与向量计算数学,是人类文明的重要组成部分之一。
在科技发展和社会进步中,数学的应用起到了不可替代的作用。
而在一系列的数学学科中,高考数学更是占据着重要位置。
其中,圆锥曲线和向量计算是许多学生常常遇到的难点。
一、圆锥曲线圆锥曲线,既是高中数学的重点,也是高考数学的难点之一。
该部分内容涉及椭圆、双曲线、抛物线等多个知识点,其中椭圆和双曲线的参数方程式更是令许多学生觉得难以消化。
然而,圆锥曲线实际上是我们日常生活和科技领域中的一个重要应用。
比如:超声波成像、卫星制导和轨道设计等等。
在圆锥曲线的掌握上,可以多借助于一些实际问题去理解概念。
例如:在坐标系中给出一个点P(x,y),且到两点F1,F2的距离之和为定值,这时这个点P就位于一个椭圆上。
如果将F1,F2合并成为一个点,那么椭圆将变为抛物线;如果将F1,F2两点向无限远处移动,那么椭圆将变为双曲线。
其实,掌握圆锥曲线的技能并不难,它只需要我们在学习的过程中保持耐心和坚持,同时也要注意灵活运用。
有了这个技能,我们不仅能够完成高考,更能够在未来的职业生涯和日常生活中,更好地理解和应用数学。
二、向量计算向量计算是高中数学中比较重要和实用的一部分。
通过学习向量的知识,我们可以更好地理解和解决求线段长度、作图、平面运动、物理学等多方面的问题。
而在高考数学中,向量的坐标表示和向量的数量积等概念常常被考到。
在向量计算的学习中,需要掌握的最重要的技能之一是向量的坐标表示。
向量可以用坐标来表示,也可以用位置向量表示。
实际上,坐标表示法是向量计算的一种简便方法,它能够更好地帮助我们理解和计算向量的坐标。
同时,如果能够结合图形和几何概念,则能够更好地帮助我们理解和计算向量的长度和方向。
除了向量的坐标表示,向量的数量积也是向量计算的另一个重点。
在数量积的理解与计算过程中,需要了解数量积的性质和计算方法。
利用勾股定理可以更好地理解数量积。
更为重要的是,要学会运用数量积的公式和性质,完成诸如证明、向量夹角、使用向量计算解平面几何问题等多方面应用。
高考数学圆锥曲线知识点归纳总结
高考数学圆锥曲线知识点归纳总结在高考数学中,圆锥曲线是一个重要的知识点,准确理解和掌握圆锥曲线的相关概念和性质对于解题至关重要。
本文将对圆锥曲线的知识进行归纳总结,帮助同学们更好地复习和应对高考数学考试。
一、圆锥曲线的基本概念在正式介绍圆锥曲线的各个具体曲线之前,我们首先需要了解圆锥曲线的基本概念。
圆锥曲线是由一个平面与一个圆锥相交而形成的曲线。
相交的平面可以与圆锥的两个交点、一条交线或者圆锥的某一侧相切,由此得到不同类型的圆锥曲线。
二、椭圆椭圆是圆锥曲线中最基础的一类曲线。
椭圆是一个闭合的曲线,其定义可以通过焦点和离心率进行描绘。
离心率小于1的椭圆称为狭椭圆,离心率等于1的椭圆称为圆形,离心率大于1的椭圆称为宽椭圆。
椭圆的一些性质和公式:1. 椭圆的离心率e满足0<e<1。
2. 椭圆的焦点到直径的距离之和等于常数2a,即F1F2 = 2a。
3. 椭圆的长半轴长度为a,短半轴长度为b,焦距为c。
满足a^2 =b^2 + c^2。
4. 椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1。
三、双曲线双曲线是圆锥曲线中的另一类曲线。
与椭圆不同,双曲线是开放的曲线,其两个分支无限延伸。
同样可以通过焦点和离心率来定义双曲线。
双曲线的一些性质和公式:1. 双曲线的离心率e满足e大于1。
2. 双曲线的焦点到直归的距离之差等于常数2a,即F1F2 = 2a。
3. 双曲线的长轴长度为2a,短轴长度为2b,焦距为c。
满足a^2 =b^2 + c^2。
4. 双曲线的标准方程为(x^2/a^2) - (y^2/b^2) = 1。
四、抛物线抛物线也是圆锥曲线的一种,与椭圆和双曲线不同,抛物线是开放的曲线,其只有一个分支。
抛物线的形状类似于开口向上或向下的弓。
抛物线的一些性质和公式:1. 抛物线的离心率e等于1。
2. 抛物线的焦点与直线的距离相等,即F1F2 = PF。
3. 抛物线的焦点与顶点的距离为a,焦点的坐标为(a,0)。
圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】
圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】圆锥曲线与向量的结合——圆锥曲线题型总结一、AP=λPB解题方法总结如下:设直线AB与圆锥曲线C相交于点A、B,P为直线AB上的任意一点,A(x1,y1),B(x2,y2),则可以得到AP=λPB。
利用这个条件,可以构造两根之和与两根之积,消去x2,然后利用XXX定理求解。
例如,对于题目“设双曲线C:2-x^2/a^2=y^2/b^2(a>b)与直线l:x+y=1相交于两个不同的点A、B.设直线l与y轴的交点为P,且PA=5PB.求a的值.”,可以按照上述方法解题。
首先联立方程组,得到两个交点的坐标。
然后利用构造两根之和与两根之积的方法,消去x2,得到一个关于a的方程。
最后利用XXX定理求解,得到a的值。
二、PR/PQ的取值范围对于题目“已知x-1>0(x>1),设直线y=-2x+m与y轴交于点P,与双曲线C相交于点Q、R,且|PQ|<3/2|PR|,求PR/PQ的取值范围.”,可以采用向量的方法解题。
设向量PQ 为a,向量PR为b,则PR/PQ=|b|/|a|。
根据向量的定义,可以得到a和b的表达式。
然后根据题目中的条件,可以列出一个关于m的不等式。
最后,通过分析不等式的解集,可以得到PR/PQ的取值范围。
已知直线 $C:x-1=0$($x\neq 1$ 且 $x\neq -1$),设直线$y=x+m$($m>0$)与 $y$ 轴交于点 $P$,与轨迹 $C$ 相交于点 $Q$、$R$,且 $|PQ|<|PR|$,求 $m$ 的取值范围。
解法一:设 $Q(x_1,y_1)$,$R(x_2,y_2)$,联立$\begin{cases} 4x^2-y^2-4=PRx \\ 3x-2mx-m-4=0 \end{cases}$。
则可设 $x_2=-\lambda x_1$($\lambda>1$),即 $-x_1x_2=\lambda x_2^2$,此时$y_P=x_P+m$,$y_Q=x_Q+m$。
高考数学圆锥曲线考点及解题思想
高考数学圆锥曲线考点及解题思想圆锥曲线部分对于计算能力不好的同学,是相当不友好的。
高考考察的项目之一就是计算能力。
对于平时懒得动笔,一看就会,一做就错的同学来讲,这部分很难拿到满分。
可以这样讲,高考考的就是学习定力,做一道题会一道题的定力,做一类进行总结归纳会一个模块的能力。
高三二轮复习时,就要打通自己的各个督脉,达到知识体系的融汇贯通。
高考数学考不到140+都很难。
高考数学圆锥曲线的考点直线与圆锥曲线的位置关系:包括直线与圆锥曲线相交、相切、相离等位置关系的判断和求解。
圆锥曲线与圆的位置关系:包括圆与圆锥曲线相交、相切、相离等位置关系的判断和求解。
圆锥曲线的参数方程:包括椭圆、双曲线和抛物线的参数方程,以及如何利用参数方程进行圆锥曲线的作图和性质求解。
极坐标与参数方程:包括极坐标系的基本概念、极坐标方程的表示方法、极坐标系与直角坐标系之间的转换,以及极坐标方程与参数方程之间的转换。
圆锥曲线中的最值问题:包括在给定条件下求圆锥曲线的最值,如最短弦、最大面积等。
圆锥曲线与其他知识点的综合:包括圆锥曲线与函数、数列、不等式、向量(法向量)、导数等知识点的综合考察是一个大趋势。
这些知识点本身要求逻辑思维较强,正好弥补圆锥曲线逻辑思维弱,计算量大的缺点。
圆锥曲线部分解题思想和思路圆锥曲线解题关键:寻找等量关系,联立方程组求解。
韦达定理法:适用解决直线和曲线的相交问题,对交点设而不求,通过韦达定理实现转化。
设而不求法:常用于解决直线与圆锥曲线的相交问题,通过设直线方程,将问题转化为韦达定理,从而求出中点坐标、弦长等。
设而不求的本质是将点转化成二次方程系数的关系。
点差法:适用解决弦中点问题,对端点设而不求,通过点差法实现转化。
齐次方程法:适用解决离心率、渐近线、夹角等比值问题,通过比值关系建立方程。
距离转化法:适用将斜线上的长度问题、比例问题、向量问题转化为直线上的问题。
利用函数关系求最值:通过找出求最大时的形式,化简函数求最值。
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
高考数学知识点复习-向量与圆锥曲线综合
向量与圆锥曲线综合1.平面直角坐标系中,O 为坐标原点,已知A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α,β∈R ,且α+β=1,则点C 的轨迹方程为( )A . 3x +2y -11=0B .(x -1)2+(y -2)2=5C . 2x-y =0D . x +2y -5=02.若F 1、F 2为双曲线12222=-by a x 的左、右焦点,O 为坐标原点,点P 在双曲线的左支上,点M 在双曲线的右准线上,且满足:,1OM OF F +==λ)0(>λ,则该双曲线的离心率为( )A .2B .3C .2D .33.过抛物线y =ax 2(a >0)的焦点F 用一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别是p 、q ,则qp 11+等于( )A.2a B.a 21C.4a D .a44.已知A 、B 为抛物线x 2=2py (p>0)上两点,直线AB 过焦点F ,A 、B 在准线上的射影分别为C 、D ,则①y 轴上恒存在一点K ,使得0=∙;②0=∙;③存在实数λ使得 λ=;④若线段AB 中点P 在在准线上的射影为T ,有0=∙AB FT 。
中说法正确的为___________5.如图,A 为椭圆12222=+by a x (0)a b >>上的一个动点,弦AB 、AC 分别过焦点F 1、F 2.当AC 垂直于x 轴 时,恰好|AF 1|:|AF 2=3:1(I )求该椭圆的离心率; (II )设F 111λ=,F AF 222λ=,试判断λ1+λ2是否为定值?若是,则求出该定 值;若不是,请说明理由.6.如图,已知(10)F ,,直线:1l x =-,PQ ,且QP QF FP FQ =.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l (1)已知1MA AF λ=,2MB BF λ=,求12λλ+(2)求MA MB 的最小值.7.设,A B 分别为椭圆22221(,0)x y a b a b+=>的左、右顶点,椭圆长半轴的长等于焦距,且4x =为它的右准线。
圆锥曲线与向量的综合性问题
圆锥曲线与向量的综合性问题一、常见基本题型:在向量与圆锥曲线相结合的题目中,主要是利用向量的相等、平行、垂直去寻找坐标之间的数量关系,往往要和根与系数的关系结合运用。
(1) 问题的条件以向量的形式呈现,间接的考查向量几何性质、运算性质,例1、设(1,0)F ,M 点在x 轴的负半轴上,点P 在y 轴上,且,MP PN PM PF =⊥.当点P 在y 轴上运动时,求点N 的轨迹C 的方程;解:(解法一)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> 又(1,0)F ,(,),(1,)22y y PM x PF ∴=--=- 又PM PF ⊥,204y PM PF x ∴⋅=-+= 所以,点N 的轨迹C 的方程为24(0)y x x =>(解法二)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> - 又由,MP PN PM PF =⊥,故FN FM =,可得22FN FM =由(1,0)F ,则有222(1)(1)x y x -+=--,化简得:24(0)y x x =>所以,点N 的轨迹C 的方程为24(0)y x x => 例2、已知椭圆的方程为22221(0)x y a b a b+=>>,它的一个焦点与抛物线28y x =的焦点重合,离心率5e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆 于A 、B 两点.(1)求椭圆的标准方程;(2)设点(1,0)M ,且()MA MB AB +⊥,求直线l 的方程;解:(Ⅰ)设椭圆的右焦点为(,0)c ,因为28y x =的焦点坐标为(2,0),所以2c =因为c e a ==25a =,21b = 故椭圆方程为:2215x y += (Ⅱ)由(I )得(2,0)F ,设l 的方程为(2)y k x =-(0k ≠) 代入2215x y +=,得, 设1122(,),(,),A x y B x y 则2212122220205,5151k k x x x x k k -+==++, 12121212(4),()y y k x x y y k x x ∴+=+--=-112212122121(1,)(1,)(2,),(,)MA MB x y x y x x y y AB x x y y ∴+=-+-=+-+=--12212112()0,(2)()()()0MA MB AB x x x x y y y y +⋅=∴+--+-+=2222220420,310,5151k k k k k k ∴--=∴-==++ 所以直线l的方程为2020x x -=-=或(2)所求问题以向量的形式呈现例3、已知椭圆E的长轴的一个端点是抛物线2y =(1)求椭圆E 的方程;(2)过点C (—1,0),斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上 是否存在点M ,使⋅为常数若存在,求出点M 的坐标;若不存在,请 说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线与向量的综合性问题一、常见基本题型:在向量与圆锥曲线相结合的题目中,主要是利用向量的相等、平行、垂直去寻找坐标之间的数量关系,往往要和根与系数的关系结合运用。
(1) 问题的条件以向量的形式呈现,间接的考查向量几何性质、运算性质,例1、设(1,0)F ,M 点在x 轴的负半轴上,点P 在y 轴上,且,MP PN PM PF =⊥.当点P 在y 轴上运动时,求点N 的轨迹C 的方程;解:(解法一)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> 又(1,0)F ,(,),(1,)22y y PM x PF ∴=--=- 又PM PF ⊥,204y PM PF x ∴⋅=-+= 所以,点N 的轨迹C 的方程为24(0)y x x =>(解法二)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> - 又由,MP PN PM PF =⊥,故FN FM =,可得22FN FM =由(1,0)F ,则有222(1)(1)x y x -+=--,化简得:24(0)y x x =>所以,点N 的轨迹C 的方程为24(0)y x x => 例2、已知椭圆的方程为22221(0)x y a b a b+=>>,它的一个焦点与抛物线28y x =的焦点重合,离心率e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆 于A 、B 两点.(1)求椭圆的标准方程;(2)设点(1,0)M ,且()MA MB AB +⊥,求直线l 的方程;解:(Ⅰ)设椭圆的右焦点为(,0)c ,因为28y x =的焦点坐标为(2,0),所以2c =因为c e a ==25a =,21b =故椭圆方程为:2215x y += (Ⅱ)由(I )得(2,0)F ,设l 的方程为(2)y k x =-(0k ≠) 代入2215x y +=,得, 设1122(,),(,),A x y B x y 则2212122220205,5151k k x x x x k k -+==++, 12121212(4),()y y k x x y y k x x ∴+=+--=-112212122121(1,)(1,)(2,),(,)MA MB x y x y x x y y AB x x y y ∴+=-+-=+-+=--12212112()0,(2)()()()0MA MB AB x x x x y y y y +⋅=∴+--+-+=2222220420,310,5151k k k k k k ∴--=∴-==±++ 所以直线l的方程为2020x x -=-=或(2)所求问题以向量的形式呈现例3、已知椭圆E的长轴的一个端点是抛物线2y =的焦点,离心率是3(1)求椭圆E 的方程;(2)过点C (—1,0),斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上 是否存在点M ,使⋅为常数?若存在,求出点M 的坐标;若不存在,请 说明理由。
解:(1)根据条件可知椭圆的焦点在x 轴,且33a c ea ====又b =故== 故所求方程为221,553x y +=即5322=+y x , (2)假设存在点M 符合题意,设AB :),1(+=x k y 代入53:22=+y x E得:0536)13(2222=-+++k x k x k)0,(),,(),,(2211m M y x B y x A 设则1353,136********+-=+-=+k k x x k k x x 22221211(1)()()MA MB k x x k m x x k m ⋅=++-+++ 221614233(31)m m m k +=+--+ 要使上式与k 无关,则有6140,m +=解得73m =-,存在点)0,37(-M 满足题意。
例4、线段AB 过y 轴上一点()0,N m ,AB 所在直线的斜率为()0k k ≠,两端点A 、B 到y 轴的距离之差为4k .(Ⅰ)求出以y 轴为对称轴,过A 、O 、B 三点的抛物线方程;(Ⅱ)过该抛物线的焦点F 作动弦CD ,过C 、D 两点分别作抛物线的切线,设 其交点为M ,求点M 的轨迹方程,并求出2FC FDFM ⋅的值.解:(Ⅰ)设AB 所在直线方程为m kx y +=,抛物线方程为py x 22=,且()11,y x A , ()22,y x B ,不妨设01>x ,02<x∴k x x 421=- 即k x x 421=+把m kx y +=代入py x 22=得0222=--pm pkx x∴pk x x 221=+,∴k pk 42=∴2=p 故所求抛物线方程为y x 42= (Ⅱ)设⎪⎭⎫ ⎝⎛23341,x x C ,⎪⎭⎫ ⎝⎛24441,x x D 则过抛物线上C 、D 两点的切线方程分别是 2334121x x x y -=,2444121x x x y -= ∴两条切线的交点M 的坐标为⎪⎭⎫ ⎝⎛+4,24343x x x x 设CD 的直线方程为1+=nx y ,代入y x 42=得0442=--nx x ∴443-=x x 故M 的坐标为⎪⎭⎫ ⎝⎛-+1,243x x 点M 的轨迹为1-=y⎪⎭⎫ ⎝⎛-=→--141,233x x FC ⎪⎭⎫ ⎝⎛-=→--141,244x x FD ∴()14141412423242343++-⋅+=⋅→--→--x x x x x x FD FC ()1411242343++-+=x x x x ()2412423-+-=x x 而()224321102--+⎪⎭⎫ ⎝⎛-+=→--x x FM ()2414422423432423++=+++=x x x x x x 故12-=⋅→--→--→--FM FBFA(3)问题的条件及待求的问题均已向量的形式呈现例5、在直角坐标系xOy 中,1的线段的两端点C 、D 分别在x 轴、y 轴上 滑动,2CP PD =.记点P 的轨迹为曲线E .(I )求曲线E 的方程;(II )经过点(0,1)作直线l 与曲线E 相交于A 、B 两点,,OM OA OB =+当点M 在曲线E 上时,求cos ,OA OB <>的值.解:(Ⅰ)设C (m ,0),D (0,n ),P (x ,y ).由CP →=2PD →,得(x -m ,y )=2(-x ,n -y ),∴⎩⎪⎨⎪⎧x -m =-2x ,y =2(n -y ),得⎩⎪⎨⎪⎧m =(2+1)x ,n =2+12y , 由|CD →|=2+1,得m 2+n 2=(2+1)2, ∴(2+1)2x 2+(2+1)22y 2=(2+1)2, 整理,得曲线E 的方程为x 2+y 22=1.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),由OM →=OA →+OB →,知点M 坐标为(x 1+x 2,y 1+y 2).设直线l 的方程为y =kx +1,代入曲线E 方程,得(k 2+2)x 2+2kx -1=0,则x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2.y 1+y 2=k (x 1+x 2)+2=4k 2+2,由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1, 即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2.这时x 1x 2+y 1y 2=x 1x 2+(kx 1+1)(kx 2+1)=(1+k 2)x 1x 2+k (x 2+x 2)+1=- 3 4, (x 21+y 21)(x 22+y 22)=(2-x 21)(2-x 22)=4-2(x 21+x 22)+(x 1x 2)2 =4-2[(x 1+x 2)2-2x 1x 2]+(x 1x 2)2=3316, cos 〈OA →,OB →〉=x 1x 2+y 1y 2(x 21+y 21)(x22+y 22)=-3311.二、针对性练习1. 已知圆M :22(36x y +=及定点N ,点P 是圆M 上的动点,点Q 在NP 上,点G 在MP 上,且满足.0,2=⋅=NP GQ NQ NP(1)求点G 的轨迹C 的方程;(2)过点K (2,0)作直线,l 与曲线C 交于A 、B 两点, O 是坐标原点,设OS OA OB =+ ,是否存在这样的直线,l 使四边形OASB 的对角 线相等?若存在,求出直线,l 的方程; 若不存在,说明理由.解:(1)由Q NP GQ ⇒⎪⎩⎪⎨⎧=⋅=02为PN 的中点,且GQ PN GQ ⇒⊥是PN 的中垂线, PG GN ∴=, ∴6PM GM GP GM GN =+=+=>.52 ∴点G 的轨迹是以M 、N 为焦点的椭圆,又.25,3=⇒==b c a∴.14922=+y x (2) ∵.⇒+=OB OA OS 四边形OASB 为平行四边行,假设存在直线1,使⇒=AB OS 四边形OASB 为矩形.OB OA ⊥⇒ 若1的斜率不存在,则1的方程为,2=x由2222169943x x OA OB x y y ==⎧⎧⎪⎪⇒⇒⋅=⎨⎨+=±⎪⎪⎩⎩>0. 这与0=⋅OB OA 相矛盾, ∴1的斜率存在.设直线1的方程()()()11222,,,,.y k x A x y B x y =-()⎪⎩⎪⎨⎧=+-=149222y x x k y ,化简得:()().013636492222=-+-+k x k x k ∴(),49136,493622212221+-=+=+k k x x k k x x ∴()()()[]4920422.222212122121+-=++-=--=k k x x x x k x k x k y y 由121200OA OB x x y y ⋅=⇒+=∴().2304920491362222±=⇒=+-+-k k k k k ∴存在直线1:0623=--y x 或0623=-+y x 满足条件.二、针对性练习1.已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于12(,)A x y , ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值. 解:(1)直线AB的方程是)2p y x =-,与22y px =联立, 消去y ,得22450x px p -+=,所以4521p x x =+, 由抛物线定义得:921=++=p x x AB ,所以p=4, 抛物线方程为:x y 82=(2)由p=4,,05x 422=+-p px 化简得0452=+-x x , 从而,4,121==x x 24,2221=-=y y ,从而A(1,22-),B(4,24)设)24,4()22,1()(3,3λ+-==→y x OC =)2422,41(λλ+-+,又因为3238x y =,即()[]=-21222λ8(41+λ), 即14)12(2+=-λλ,解得2,0==λλ或2、在平面直角坐标系内已知两点(1,0)A -、(1,0)B ,若将动点(,)P x y 的横坐标保持不变,倍后得到点()Q x ,且满足1AQ BQ ⋅=.(Ⅰ)求动点P 所在曲线C 的方程;(Ⅱ)过点B作斜率为的直线l 交曲线C 于M 、N 两点,且0OM ON OH ++=, 又点H 关于原点O 的对称点为点G ,试问M 、G 、N 、H 四点是否共圆?若共 圆,求出圆心坐标和半径;若不共圆,请说明理由. 解(Ⅰ)设点P 的坐标为(,)x y ,则点Q的坐标为()x ,依据题意,有(1,2),().AQ x y BQ x =+=- 221,12 1.AQ BQ x y ⋅=∴-+=∴动点P 所在曲线C 的方程是221.2x y += (Ⅱ)因直线l 过点B,且斜率为k =:1).l y x =- 联立方程组22121)x y y x ⎧+=⎪⎪⎨⎪=-⎪⎩,消去y ,得22210.x x --= 设11(,)M x y 、22(,)N x y ,可得1212112xx x x +=⎧⎪⎨=-⎪⎩,于是12121x x y y +=⎧⎪⎨+=⎪⎩. 又0OM ON OH ++=,得1212(,),OH x x y y =----即(1,H - 而点G 与点H 关于原点对称,于是,可得点2G 若线段MN 、GH 的中垂线分别为1l 和2l,GH k =121:),:.2l y x l y --=联立方程组1)2y x y ⎧=-⎪⎨⎪=⎩,解得1l 和2l的交点为11(,8O因此,可算得1||O H =1||O M = 所以M 、G 、N 、H四点共圆,且圆心坐标为11(,8O。