(课件)9.2 一元一次不等式定义
9.2 一元一次不等式 第2课时 新人教版七年级数学下册教学课件
探究新知
素养考点 2 一元一次不等式解答货币问题 例2 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本 2.2元,她买了2个笔记本.请你帮她算一算,她还可能买几支笔?
解:设她还可能买n支笔,根据题意得 3n+2.2×2≤21,
解得 n≤ . 因为在这个问题中n只能取正整数,所以小颖还可能买1支、2支、 3支、4支或5支笔.
例1 去年广州空气质量良好(二级以上)的天数与全年 天数(365天)之比达到60%,如果到明年(365天)这样 的比值要超过70%,那么明年空气质量良好的天数要比 去年至少增加多少?
分析:题目蕴含的不等关系为 明年这样的比值要超70% ,
转 化 为 不 等 式,即 明年空气明质年量天良数好的天数>70%
连接中考
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15 D.16
课堂检测
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B)
A. 六折 B. 七折
C. 八折
答:明年要比去年空气质量良好的天数至少增加 37天,
才能使这一年空气质量良好的天数超过全年天数的70% .
巩固练习
在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一 题扣5分,不答得0分,小玲有一道题没有答,成绩仍然不低于 60分,她至少答对几道题?
解:设小玲答对的题数是x,则答错的题数是9-x, 根据题意,得10x-5(9-x)≥60, 解这个不等式,得x≥7. 答:她至少答对7道题.
D. 九折
2. 某次知识竞赛共20道题,每一题答对得10分,答错或不答
七重要年级人教版教学课件9.2_一元一次不等式3
3、这次我们班举行的数学有奖比赛活动,评出一等奖7人,二等 奖9人,三等奖12人,老师给获奖的同学每人发一件奖品,同一等 次的奖品相同,并且只能从下表所列物品中选取一件: 品名 足球 排球 羽毛球拍 文具盒 相册 钢笔 圆规 圆珠笔 单价 32 20 16 10 8 5 4 2 (1)如果获奖等次越高,奖品 的单价就越高,那么老师最少 要花多少钱买奖品?
0.9x+10< 0.95x+2.5
7.5 <0.05x 150<x 即 x>150
所以,当累计购物超过150元时,则在甲商店购物花费小。
问题 :甲、乙两个商店以同样的价格出售同样的商品,并且各自推出不同的优 惠方案:在甲商店累计购物超过100元后,超过100元的部分按90%收费;在乙 商店累计购物超过50元后,超过50元的部分按95%收费.顾客在哪家商场购物 花费少?
解(1)设购进甲种机器x台, 则设购进乙种机器(6-x)台,
根据题意得: 7x+5(6-x) ≤34 解得:x≤2
因为x是非负整数,所以x的值为0、1、2,因此有三种方案。 (2)根据题意得: 100x+60(6-x) ≥380 根据题意,当x=1时符合要求 解得x≥1/2
例3、苹果的进价是每千克1.5元,销售中估计有5%的苹
购物款 0 x 50
甲商场
乙商场
问题 :甲、乙两个商店以同样的价格出售同样的商品,并且各自推出不同的优 惠方案:在甲商店累计购物超过100元后,超过100元的部分按90%收费;在乙 商店累计购物超过50元后,超过50元的部分按95%收费.顾客在哪家商场购物 花费少?
分析:如果累计购物超过l00元,那么在甲店购物花费一定小吗? 设累计购物金额x元,当x>100时, 在甲店花费需 100+0.9(x-100) 元,即 (0.9x+10)元; 在乙店花费需 50+0.95(x-50) 元,即 元, (0.95x+2.5) 又有三种情况: (1)若在甲商店购物花费小,则
人教版数学七年级下册-9-2一元一次不等式-课件(3)
字母的不等式,再利用解集的唯一性列方程求字母的
值.解题过程体现了方程思想.
随堂练习
(1)不等式
3x 2
x的解集是(A )
2
A.x<-2 B.x≤-1 C.x<0 D.x>2
(2)已知不等式x-1≥0,此不等式的解集在数 轴上表示为(C )
0
1
A
0
1
B
0
1
C
0
1
D
课堂小结
通过本课时的学习,需要我们掌握: 1.一元一次不等式的概念; 2.一元一次不等式的解法与一元一次方 程的解法类似, (1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1
合并同类项得 5 x
合并同类项得 x 5
即
x 5
系数化为1得 x 5
这个不等式的解集在数轴上表示如图: 这个不等式的解集在数轴上表示如图:
0
2
-5
0
实战演练 解下列不等式,并在数轴上表示解集:
x x 1 1 32
解:去分母得 2x 3(x 1) 6
去括号得 2x 3x 3 6 移项得 2x 3x 6 3 合并同类项得 x 9 系数化为1得 x 9
3.已知不等式 1 (x m) 3 m.(m是常数)的解集是
x>1,则 m= 3 .
解:因为
1 (x m) 3 m. 3
,
去括号得
1 x 1 m 3 m. 33
,
移项得 1 x 3 2 m. ,
3
3
系数化为1得 x>9-2m
因为其解集为x>1,所以 9 2m 1 解得 m=4. 方法总结:已知解集求字母系数的值,通常是先解含有
一元一次不等式(公开课优秀课件)
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
9.2 一元一次不等式应用课件 (新人教版七年级下册)
应用一元一次不等式解实际问题的步 骤有哪些?
请背诵不等式的性质及 解不等式的步骤。
通过本课时的学习,需要我们掌握: 应用一元一次不等式解实际问题的步骤: 实际问题 结合实际确 定答案 设未知数 解不等式 找出不等关系 列不等式
3.(广州·中考)某商店5月1日举行促销优惠活动,当天 到该商店购买商品有两种方案,方案一:用168元购买会 员卡成为会员后,凭会员卡购买商店内任何商品,一律按
元,一本笔记本3元,如果她钢笔和笔记本共买了8件,
每一种至少买一件,则她有多少种购买方案? 【解析】设她买了x支钢笔,则笔记本为(8-x)本,由题意, 得 4.5x+3(8-x)≤30 解得 x≤4 所以x=4或3或2或1. 因为x为正整数,
答:小兰有4种购买方案, ①4支钢笔和4本笔记本, ②3支 钢笔和5本笔记本,③2支钢笔和6本笔记本, ④1支钢笔和 7本笔记本.
甲商店优惠方案的起点为购物款 乙商店优惠方案的起点为购物款 分类讨论:源自100 50元后 元后
1.如果累计购物不超过50元,则在两店购物花费有区
别吗? (消费一样)
2.如果累计购物超过50元而不超过100元,则在哪家商 店购物花费小? (购买同样商品在乙店购物省钱)
3.如果累计购物超过100元,则在甲店购物花费小吗? 设累计购物x元,如果在甲店购物花费小,则
⑵列:根据所设未知数和找到的等量关系列方程 . 法”. ⑶解:解方程,求未知数的值.
⑷答:检验所求解,写出答案.
甲、乙两商店以同样价格出售同样的商品,并且又
各自推出不同的优惠方案:在甲店累计购买100元商品 后,再购买的商品按原价的90%收费;在乙店累计购买 50元商品后,再购买的商品按原价的95%收费,顾客怎 样选择商店购物能获得更大优惠?
《一元一次不等式》PPT课件(第1课时)
第1课时
-.
1.通过分析实际问题中数量之间的不等关系, 抽象出不等式。 2.能在数轴上正确表示出不等式的解集。
观察与思考
(1)什么数的2倍与3的和小于11?你能用不等式表示出 这个问题中的不等关系吗? (2)观察你列出的不等式,你发现它与不等式-2<3, 1+ 2>2,ac<bc等有什么不同?
这个不等式的解集是х<4。这个解集 可以用数轴上表示数4的点的左边部分来表 示。
01
2
3
4
不等式2x+3≤11的意义是“x的2倍与3的 和不大于11”,它的解集是x≤4。这个解集可 以用数轴上表示4的点及其左边的部分表示。
0
1
2
3
4
解集x<4不包括4,在数轴上 表示4的点处画空心圆圈。解集x≤ 4包括4,在数轴上表示4的点处画 实心圆圈。
(3)不等式 2x+3<11中含有未知数 x,x
可以取哪些实数呢?你能通过“估算-检验”的方法,说
出几个使 2x 3 11成立的未知数x的值吗?
如果不等式中含有未知数,能使这个不等式成立的 未知数的值,叫做这个不等式的解。
一般地,一个含有未知数的不等式的所有解的集合, 叫做这个不等式的解集。
例如:2x 3 11
例:在数轴上分别表示出下列不等式的解集,并写 出它的所有负整数解。
(1)x>5;(2)x≥-5。
解 (1)不等式x> -5的解集在数轴上的表示如下图所示,
它的负整数解集有4个,分别是-4、-3、-2、-1。
-5 -4 -3 -2 -1 0
(2)不等式x≥-5的解集在数轴上的表示如图 2所示,它在负整数解有5个,分别是-5、-4、 -3、-2、-1。
初中数学 人教版七年级下册 9.2一元一次不等式 课件
⑤
两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的字母写在不等号的左边。
练习反馈
4.解下列不等式,并在数轴上表示解集.
(1) -5x ≤10 ;
x ≥ -2
(2)4x-3 < 10x+7 .
x
>
-
5 3
(3) 3x -1 > 2(2-5x) ;
5
x > 13
(4) x 32≥2x23
合并同类项,得 系数化为1,得
2x 1 x 1
2
移项,得 合并同类项,得 系数化为1,得
3x 4x 2 6, x 8,
x 8.
归纳总结 归纳解不等式的一般步骤,并指出每个步骤的根据,完成下表.
步骤
根据
①
去分母
不等式的基本性质2,3
②
去括号
去括号法则
③
移项
不等式的基本性质1
④
合并同类项
合并同类项法则
-5x >-10
x=2
系数化为1
x<2
总结归纳
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
相同之处:
议
基本步骤相同:去分母,去括号,移项,合并同类项,
一 议
系数它化们为的1依这.据些不步相骤同中. ,要特别注意的是:
解一元一不次等方式程两的边依都乘(或除以)同一个 据是等式负的数性,质必,须解改变不等号的方向.这是 一元一次与不解等一式元的一依次方程不同的地方.
✓ (2)5x+3<5(x-y) ✓
✕ (4)x(x–1)< x2 -2x ✓
✕ (6) x2-3x-5<6
9.2 一元一次不等式(1).doc
9.2 一元一次不等式第1课时 一元一次不等式活动一. 知识点1.含有________个未知数,未知数的次数是________的不等式,叫做一元一次不等式.2.类比一元一次方程的解法步骤,掌握一元一次不等式的解法步骤:(1)去分母;(2)______;(3)移项;(4)合并同类项;(5)____________.活动二. 典例精讲知识点1:一元一次不等式的定义例1.下列不等式中哪一个不是一元一次不等式( )A .x >3B .-y +1>y C.1x>2 D .2x >1 知识点2:一元一次不等式的定义和其解法例2.若(m +1)x |m |+2>0是关于x 的一元一次不等式,则m 的取值是________,此不等式的解集为________.知识点3:解一元一次不等式例3.解不等式:(1) 3x -1>5+x . (2)3(x -1)>2x +2.练习:1.下列不等式中哪一个不是一元一次不等式( )A .3x -2>4B .2y >4C .2x<5 D .2<3x +17 2.若(m -2)x 2m +1-1>5是关于x 的一元一次不等式,则该不等式的解集为________.活动三 . 基础巩固1.下列不等式是一元一次不等式的是( )A .2(1-y )+y >4y +2B .x 2-2x -1<0C .12+13>16D .x +1<x +2 2.不等式2x <4的解集是( )A .x >2B .x <2C .x >-2D .x <-23.不等式12x +1<3的正整数解有( ) A .1个 B .2个 C .3个 D .4个4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.解不等式:(1)5x +3<3(2+x ). (2)2(x +1)-1≥3x +2.(3)5x +15>4x -1. (4)-2x +2<x +17.活动四. 课堂反馈6.不等式13(x -m )>2-m 的解集为x >2,则m 的值为( ) A .4 B .2 C .32 D .127.若12x 2m -1-8>5是关于x 的一元一次不等式,则m =________.8.不等式5x -12≤2(4x -3)的负整数解是____________.9.已知不等式12x -3≥2x 与不等式3x -a ≤0解集相同,则a =________.10.关于x 的方程ax =3x -5有负数解,则a 的取值范围是________.培优训练11.已知x =12是方程6(2x +m )=3m -6的解,求关于x 的不等式mx +2>m (1-2x )的解集.。
第九章不等式与不等式组课件9.2一元一次不等式
在数轴上表示:
并把它的解集在数轴上表示出来。
y 1 y3
一罐饮料净重约300克,罐上注 有“蛋白质含量≥0.6%”,其中蛋白质
的含量为多少克?
解: 设蛋白质的含量为 x 克, 由题意得: x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 克.
同乘最简 公分母12, 方向不变
合并同类项得: -7x≥-56 把系数化为1得: x≤8
-1 0 1 2 3 4 5 6 7 8
同除以-7, 方向改变
解:去分母,得:2x < 30 3 – 5(3 – x) +5x 去括号,得:2x < 30 – 15 – x 移项,得: 2x –5x < 30 –15 合并同类项,得: –3x < 15 系数化为1,得:x < > –5
亏本?
根据“去掉损耗后的售价≥进价”
列出不等式即可求解.
解:设商家把售价应该定为每千克 x 元, 由题意得:
( 1 - 5% ) x ≥ 1.9
x≥2 答:商家把售价应该至少定为
每千克2元.
小颖家每月水费都不少于15 元,自来水公司的收费标准如下: 若每户每月用水不超过5吨,则每 吨收费1.8元;若每户每月用水超 过5吨,则超出部分每吨收费2元, 小颖家每月用水量至少是多少吨?
根据实际情况,把计算的结果作出调整。 ∵ x 是正整数
∴符合条件的最小正整数 x =37
答:明年要比去年空气质量 良好的天数至少增加37,才 能使这一年空气质量良好的 天数超过全年天数的70%.
一、课前复习
1.某商品的单价是 a 元,买50件总商品 的费用不超过342元,则
9.2一元一次不等式第2课时一元一次不等式的应用课件人教版七年级下册
D.60
B
)
体会解不等式过程中的化归思想与类比思想,体会分类讨论思想在用不等式解决实际问题中的应用。
A.18 B.19 C.20 D.21 依题意,得10×3+6m≥62.
为了不迟到,小李后来的速度至少是多少?
解:设安排x人种甲种蔬菜,则种乙蔬菜的人数为(10-x)人,
5A万.元16,个则8最B.多.只17有能个安1排多0少名人种菜甲种农蔬菜,? 每人可种甲种蔬菜3亩或乙种蔬菜2亩.已知甲种蔬菜每亩
15.(2020·长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害, 人民的生活受到了极大的影响.“一方有难,八方支援”, 某市筹集了大量的生活物资,用A,B两种型号的货车, 分两批运往受灾严重的地区.具体运输情况如下:
A型货车的辆数(单位:辆) B型货车的辆数(单位:辆) 累计运输物资的吨数(单位:吨)
4.某车工计划在15天内至少加工零件408个,前3天每天加工零件24个.该 车工若在规定的时间内完成任务,此后平均每天需要加工零件( A )
A.最少28个 B.最少29个 C.最多28个 D.最多29个
5.一种导火线的燃烧速度是0.7 cm/s, 一名爆破员点燃导火线后以5 m/s的速度跑到距爆破点130 m以外的安全 地带,则导火线的长度至少应超过__1_8_.2_c_m__.
备注:第一批、第二批每辆货车均满载
第一批 1 3 28
第二批 2 5 50
(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资?
(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车. 2 km 后,计划发生变化,准备至少提前 2 天完成修路任务,以后几天内平均每天至少要修路多少?
7.在一次“新冠肺炎疫情防护”知识竞赛中,竞赛题共25道,
一元一次不等式知识点
一元一次不等式知识点1. 一元一次不等式的定义一元一次不等式是指包含一个未知数,且未知数的最高次数为一的不等式。
其一般形式为 ax + b > c 或 ax + b < c,其中 a, b, c 是实数,a ≠ 0。
2. 基本性质一元一次不等式具有以下基本性质:- 不等式两边加(或减)同一个数(或式子),不等号的方向不变。
- 不等式两边乘(或除以)同一个正数,不等号的方向不变。
- 不等式两边乘(或除以)同一个负数,不等号的方向改变。
- 0 特殊性:0 不小于任何负数,不大于任何正数。
3. 解一元一次不等式的步骤- 移项:将含有未知数的项移到不等号的一边,常数项移到另一边。
- 合并同类项:将含有未知数的项系数化为1,同时将常数项相加减。
- 求解:根据系数化为1后的不等式,直接求出解集。
4. 特殊注意事项- 当系数化为1时,如果系数的分母为负数,需要改变不等号的方向。
- 解一元一次不等式时,需要注意不等式两边的运算顺序和运算规则。
5. 常见题型及解法- 直接求解:直接根据一元一次不等式的解法步骤求解。
- 应用题:将实际问题转化为一元一次不等式,然后求解。
- 系统求解:多个一元一次不等式组成的不等式组,需要找到满足所有不等式的解集。
6. 不等式组的解集- 同大取大:两个不等式都是大于号,取较大的那个数。
- 同小取小:两个不等式都是小于号,取较小的那个数。
- 大大小小中间找:一个不等式是大于号,另一个是小于号,取中间的数。
- 无解:一个不等式要求大于某个数,另一个要求小于同一个数,这种情况下无解。
7. 练习题- 解不等式 2x - 3 > 5,并表示在数轴上。
- 一个数的两倍减去5不小于10,求这个数的取值范围。
- 有两个房间,第一个房间的温度比第二个房间的温度高至少5度,如果第二个房间的温度是18度,求第一个房间的温度范围。
8. 总结一元一次不等式是初中数学的重要知识点,掌握其性质和解法对于解决实际问题和进一步学习数学都具有重要意义。
9.2 一元一次不等式 课件(人教版七年级下)
答案:设购买电器的金额为x元.那么按 优惠方案,
甲商场的实收金额为y甲=1000+(x- 答案:设这个月生产x件服装. 由题意,得80x-60x-5000≥20000, 1000)×0.9, 解得x≥1250. 乙商场的实收金额为y乙=500+(x- 这个月至少要生产这种服装1250件. 500)×0.95.
度为x km/h, 根据题意,得 解得x≥6. 所以他行走剩下的一半路程的速度 至少为6 km/h.
12 x≥2.4-1.2, 60
例3. 某服装厂这个月计划生产一 种服装,每件成本60元,售价是 80元,该厂生产这种服装,每月 除成本外的其他开支共5000元, 如果想使生产这种服装的月获利不 低于20000元,那么这个月至少要 生产这种服装多少件?
3.我国沪深股市交易中,如果买、 卖一次股票均需付交易金额的0.5% 作费用.张先生以每股5元的价格买 入“西昌电力”股票1000股,若他 期望获利不低于1000元,问他至少 要等到该股票涨到每股多少元时才能 卖出? (精确到0.01元) 本题考查了一元一次不等式及其简单
4.有人问一位老师,他所教的班有 多少学生,老师说:“一半学生在学 数学,四分之一的学生在学音乐,七 分之一的学生在学外语,还剩不足6 位同学在操场上踢足球”,试问:这 个班共有多少学生? 列不等式解应用题关键是找数量关系,
例2. 小华家距离学校2.4km.某 一天小华从家中去上学恰好行走到 一半的路程时,发现离到校时间只 有12分钟了.如果小华能按时赶 到学校,那么他行走剩下的一半路 程的平均速度至少要达到多少?
解析:本题是一道比较简单的实际 问题.小华要在12分钟内到达学校, 则他在12分钟走的路程不能小于 (2.4-1.2)km.由此可列不等式 解决. 答案: 设他行走剩下的一半路程的速
一元一次不等式
一元一次不等式在数学中,代数方程是我们经常遇到的问题之一。
而一元一次方程则是代数方程中最简单的一种形式。
同样,一元一次不等式也是数学中的重要概念,尤其在解决实际问题时具有广泛的应用。
本文将介绍一元一次不等式的基本概念、解法以及实际应用。
一、一元一次不等式的基本概念一元一次不等式是指只包含一个未知数,并且其次数为1的不等式。
一般形式可以表示为ax + b > 0,其中a和b是已知的实数,x代表未知数。
与一元一次方程类似,一元一次不等式的解是使不等式成立的所有实数。
为了更好地理解和解决一元一次不等式,我们需要掌握一些基本的解法技巧。
二、一元一次不等式的解法解一元一次不等式的基本思路是将未知数的系数化简为1,然后确定其符号,最终求解出未知数的取值范围。
接下来将介绍两种常用的解法方法。
1. 图像法图像法是一种直观且易于理解的解法方法。
我们可以将一元一次不等式绘制在坐标系上,然后根据提供的不等式关系,标记出可行解的范围。
具体步骤如下:(1)将一元一次不等式转换为等价的方程形式。
(2)绘制方程对应的直线。
(3)根据不等式的关系,标记出满足不等式条件的区域。
(4)确定可行解的范围。
2. 代数法除了图像法,我们还可以使用代数法来解决一元一次不等式。
代数法的基本思路是通过一些基本的代数运算和性质来推导出未知数的范围。
具体步骤如下:(1)将一元一次不等式化简为标准形式,即x > a(或者x < a)。
(2)确定符号,对于大于(或小于)号,选择相应的不等式关系(大于等于或小于等于)。
(3)通过简单的代数运算,求解出未知数的取值范围。
三、一元一次不等式的实际应用一元一次不等式在实际问题中具有广泛的应用。
下面以一个具体的例子来说明。
例子:某银行的理财产品年化收益率为5%,小明拥有10000元,他想通过理财产品来增加资金的收益。
小明要求理财产品的年化收益不得低于2000元,请问小明应该购买多少金额的理财产品?解析:设小明购买理财产品的金额为x元,则可以建立以下一元一次不等式:0.05x ≥ 2000通过解一元一次不等式,可以得到:x ≥ 40000所以小明至少需要购买40000元的理财产品,才能满足年化收益不低于2000元的要求。
人教初中数学七下 9.2.3 一元一次不等式复习课件 【经典初中数学课件】
思考四:你能给它下一个定义吗?
a+b=10 x+y=7 2x-y=11
1、含有两个未知数 2、未知数项的次数都是一次 3、整式方程
这三个方程有 什么特点?
• 含有两个未知数, 且含有未知数的项的次 数都是一次的整式方程叫做二元一次方程。
你能举出几个二元一次方程吗?
相信自己,我能行!
判断下列方程是否是二元一次方程
4、某班到毕业时共结余经费1800元,班委会决 定拿出不少于270元但不超过300元的资金为老 师购买纪念品,其余资金用于在毕业晚会上给 50位同学每人购买一件文化衫或一本相册作为 纪念品.已知每件文化衫比每本相册贵9元,用 200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多 少元? (2)有几购买文化衫和相册的方案?哪种方案 用于购买老师纪念品的资金更充足?
答案:所以,当人数为16人时,甲、乙两家旅行社的收费 相同;当人数为17~25人时,选择甲旅行社费用较少; 当人数为10~15人时,选择乙旅行社费用较少。
3 不等式组的解法
若 x>3
X>7
0 1 2 3 45 6 7 8 9
则x>7
大大取大
ห้องสมุดไป่ตู้
若 x<3 X<-1
-3 -2 -1 0 1 2 3 4 5
。
6.已知不等式3x-m ≤0有4个正整数解,
则m的取值范围是
。
9.
已知不等式组
2x m 8 3x2 9m1
无解,则m的取值范围是________。
1、一群女生住若干间宿舍,每间住4人, 剩19人无房住;每间住6人,有一间宿舍 住不满, 1.设有x间宿舍,请写出x应满足的不等式组; 2.可能有多少间宿舍,多少名 学生?
初中七年级数学下册,第九章第2节,《一元一次不等式》,课件
(2)在不等式3x<2x+1的两边同时减去2x得 x<1 ;
归纳:不等式两边同时加减一个数或式子,相当 于将其改变符号后移到另一边.性质1相当于移项。
2 2 x > 50 (3)在不等式 的两边同时除以 3 得 3
3. 列不等式
解不等式的基本方法
【再接再厉】
问题 :甲、乙两个商店以同样的价格出售同 样的商品,同时又各自推出不同的优惠方案:在 甲商店累计购买100元商品后,再买的商品按原 价的90%收费;在乙商店累计购买50元商品后, 再买的商品按原价的95%收费.顾客到哪个商店 购物花费少?
好复杂的感觉!
【必须掌握】
1 2 3 4
5 6
【学以致用】
有些实际问题中存在,用不等式来表示这样的关系,能将实际 问题转化为数学问题,从而通过解不等式得到实际问题的答案。
例: 去年某市空气质量良好(二级以上)的天数与全年 天数(365天)之比达到60%,如果到明年(365天)这 样的比值要超过70%,那么明年空气质量良好的天数要 比去年至少增加多少? 分析:题目蕴含的不等关系为 明年这样的比值要超70% ,
1/2
2 x 2x 1 (2) 2 3
解:去分母,得 3(2+x)≥2(2x-1), 去括号,得 6+3x≥4x-2, 移项,得 3x-4x≥-2-6, 合并同类项,得 -x≥-8, 系数化为1,得 x≤8.
1 x< . 2
用数轴表示为: O 8
必须掌握
去分母 注意不要漏乘、添加括号 去括号 注意括号前面带负号的处理 移 项 注意变符号
合并同类项
化系数为1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它与一元一次方程有类似的 地方吗?
探究法、
思考 观察下面的不等式,它们有哪些共同特征?
(1)x 7 26,(2)3x 2x 1,
(3)2 x 50 (4)4x 3,
3
由此我们得到一元一次不等式的定义: 含有一个未知数,未知数的次数是一
次的不等式,叫做一元一次不等式.
义务教育教科书(RJ)七年级数学下册
第九章 不等式与不等式组
龙岗镇天齐初级中学:菅士美
学习目标:
1.理解一元一次不等式的定义; 2.会利用其定义解决实际问题。
学习重点:
利用一元一次不等式的定义解决实际问题。
我们已经学习过一元一次方 程的定义,大家还记得吗?
只含有一个未知数,未知 数的次数是一次,这样的方 程叫做一元一次方程.
学习过程
2.下列各式
① 2﹤5; ③ 4x-2y≤0 ; ⑤3x2+2>0 ;
② x+3≠0;是 ④ 7n-5≥2;是
⑥ 5m+3=8 。
哪些是一元一次不Байду номын сангаас式?
思考:若3x2m-1+2<4是一元一次不 等式,则m的值为______.
解:因为3x2m-1+2<4是一元一次不等
式 所以2m-1=1 解方程得,m=1
学习过程
(1)不等式的两边都是整式; (2)只含有一个未知数; (3)未知数的次数是1次.
下面我们通过几个习题来操练一下一元一次不等式 的定义
1.下列不等式是一元一次不等式吗?
(1)x-7>26; √ (2)3x< 2x+1; √
(3)-4x>3; √
(4)2 x>50;
3
√
(5) 1 >1.
x
(2)5x+3<0 (3)3x+2>x–1 (4) x(x–1)<2x
通过以上学习我们可以得到一元一次不等式 的定义特点:
1 不等式的两边都是整式; 2 只含有一个未知数; 3 未知数的次数是一次.
小结
通过本课时的学习,需要我们掌握:
1. 一元一次不等式的定义;
2. 会应用定义解决实际问题。
布置作业
判断下列不等式是不是一元一次不等式,为什么? (1)1/x+3<5x–1