1.1《一元二次方程》基础练习

合集下载

专题01 一元二次方程(经典基础题7种题型+优选提升题)(原卷版)

专题01  一元二次方程(经典基础题7种题型+优选提升题)(原卷版)

专题01 一元二次方程(经典基础题7种题型+优选提升题)一元二次方程的定义1.(2022秋广东珠海九年级校考期中)下面关于x 的方程中:①ax 2+bx +c =0;②3(x ﹣9)2﹣(x+1)2=1;③x 2+1x +5=0;④x 2+5x 3﹣6=0;⑤3x 2=3(x ﹣2)2;⑥12x ﹣10=0,是一元二次方程个数是( )A .1B .2C .3D .4 2.(2022秋广西柳州九年级统考期中)方程254(1)20m m m x x +---=是关于x 的一元二次方程,则m的值为( )A .1B .6-C .6D .1或6-一元二次方程的解3.(2023春•玄武区期中)若m 是方程x 2+x ﹣1=0的一个根,则代数式2023﹣m 2﹣m 的值为 .4.(2023春•射阳县校级期中)已知a 是方程x 2﹣2020x +4=0的一个解,则的值为( )A.2023 B.2022 C.2021 D.2020一元二次方程的解法5.(2023春•滨海县期中)如果有理数a、b同时满足(a2+b2+3)(a2+b2﹣3)=16,那么a2+b2的值为()A.±5 B.5C.﹣5 D.以上答案都不对6.(2023春•东台市期中)方程x2+2x=0的根是.7.(2023春•江阴市期中)解方程:x2﹣4x+1=0;8.(2023春•无锡期中)解方程:x2﹣2x﹣4=0;9.(2023春•锡山区期中)解方程:x2﹣6x+5=0;10.(2023春•东台市期中)解方程:3x(x﹣4)=x﹣4.根的判别式11.(2023春•东台市校级期中)关于x的一元二次方程x2+2x+k=0有两个相等的实数根,则k的取值范围是()A.k=﹣1 B.k>﹣1 C.k=1 D.k>112.(2023春•射阳县校级期中)若关于x的方程kx2+4x﹣1=0有实数根,则k的取值范围是.13.(2023春•灌云县期中)关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.14.(2023春•海州区校级期中)已知关于x的方程x2﹣4x﹣2k+8=0有两个实数根,则k的取值范围.15.(2023春•清江浦区校级期中)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为.16.(2023春•东台市期中)若关于x的一元二次方程kx2+2x﹣1=0有两个实数根,则实数k的取值范围是.根与系数的关系17.(2023春•鼓楼区期中)设x1,x2是一元二次方程x2﹣5x+4=0的两个实数根,则的值为.18.(2023春•东台市期中)若x1、x2是一元二次方程x2﹣4x﹣3=0的两个根,则x1x2的值是.一元二次方程的实际应用19.(2023春•东台市期中)为了响应全民阅读的号召,某校图书馆利用节假日面向社会开放.据统计,第一个月进馆560人次,进馆人次逐月增加,第三个月进馆830人次.设该校图书馆第二个月、第三个月进馆人次的平均增长率为x,则可列方程为.20.(2023春•东台市期中)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:.21.(2023春•东台市校级期中)某地区加大教育投入,2020年投入教育经费2000万元,以后每年逐步增长,预计2022年,教育经费投入为2420万元,则年平均增长率为.配方法的应用22.(2023春•江都区期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为()A.M≥N B.M>N C.M≤N D.M<N23.(2023春•仪征市期中)若代数式x2﹣4x+a可化为(x﹣b)2﹣1,则a+b是()A.5 B.4 C.3 D.224.(2023春•梁溪区校级期中)在求解代数式2a2﹣12a+22的最值(最大值或最小值)时,老师给出以下解法:解:原式=2(a2﹣6a)+22=2(a2﹣6a+9)﹣18+22=2(a﹣3)2+4,∵无论a取何值,2(a﹣3)2≥0,∴代数式2(a﹣3)2+4≥4,即当a=3时,代数式2a2﹣12a+22有最小值为4.仿照上述思路,则代数式﹣3a2+6a﹣8的最值为()A.最大值﹣5 B.最小值﹣8 C.最大值﹣11 D.最小值﹣5 25.(2023春•高邮市期中)若M=2x2﹣12x+15,N=x2﹣8x+11,则M与N的大小关系为.26.(2023春•江都区期中)将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法.这种方法常常被用到式子的恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一.例如,求代数式x2+2x+3的最小值.解:原式=x2+2x+1+2=(x+1)2+2.∵(x+1)2≥0,∴(x+1)2+2≥2.∴当x=﹣1时,x2+2x+3的最小值是2.(1)在横线上添加一个常数项,使代数式x2+10x+25成为完全平方式;(2)请仿照上面的方法求代数式x2+6x﹣1的最小值;(3)已知△ABC的三边a,b,c满足a2﹣6b=﹣14,b2﹣8c=﹣23,c2﹣4a=8.求△ABC的周长.27.(2023春•赣榆区期中)(1)已知3m=6,3n=2,求32m+n﹣1的值;(2)已知a2+b2+2a﹣6b+10=0,求(a﹣b)﹣3的值.28.(2023春•江阴市期中)【阅读材料】初一上学期我们已学过:由(x+3)2+(y﹣1)2=0知,x+3=0,y﹣1=0,∴x=﹣3,y=1.这不禁让人赞叹:精美的包装(数学模型),总可以给人满意的答案.初一下学期:利用完全平方式对上述式子进行变形:由(x+3)2+(y﹣1)2=0知,(x2+6x+9)+(y2﹣2y+1)=0,即x2+y2+6x﹣2y+10=0.反之,若x2+y2+6x﹣2y+10=0,则有(x2+6x+9)+(y2﹣2y+1)=0,即(x+3)2+(y﹣1)2=0,∴x+3=0,y﹣1=0,∴x=﹣3,y=1.精心挑选,合理搭配,让结果精彩纷呈.【知识应用】(1)若x2+y2﹣4x+6y+13=0,求x y的值;(2)若△ABC的三边为a、b、c,且满足4a2+4b2=4ab+18b﹣27,求最长边c的取值范围.29.(2023春•吴江区期中)我们可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,例如x2+4x﹣5=x2+4x+22﹣22﹣5=(x+2)2﹣9,我们把这样的变形叫做多项式ax2+bx+c (a≠0)的配方法.已知关于a,b的代数式满足a2+b2+2a﹣4b+5=0,请你利用配方法求a+b的值.30.(2023春•吴江区期中)阅读材料:若m2﹣2mn+2n2﹣2n+1=0,求m、n的值.解:∵m2﹣2mn+2n2﹣2n+1=0,∴(m2﹣2mn+n2)+(n2﹣2n+1)=0∴(m﹣n)2+(n﹣1)2=0,∴(m﹣n)2=0,(n﹣1)2=0,∴n=1,m=1.根据你的观察,探究下面的问题:(1)已知x2+2xy+2y2+2y+1=0,求x、y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52,且△ABC是等腰三角形,求c 的值.一.选择题(共2小题)1.(2022秋•建邺区期中)关于x的一元二次方程ax2+bx=c(ac≠0)一个实数根为2022,则方程cx2+bx =a一定有实数根()A.2022 B.C.﹣2022 D.﹣2.(2022秋•宿城区期中)要组织一次排球邀请赛,参赛的每两支球队之间都要进行一场比赛,共要比赛28场,参加比赛的球队有x支,则x的值为()A.8 B.9 C.18 D.10二.填空题(共4小题)3.(2023春•溧阳市期中)已知:x2﹣3x+5=(x﹣2)2+a(x﹣2)+b,则a+b=.4.(2022秋•泗洪县期中)如果x满足一元二次方程(x﹣4)(x+5)=0,则代数式x﹣4的值是.5.(2022秋•泗洪县期中)已知x=﹣1是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是.6.(2022秋•句容市期中)为建设美丽句容,改造老旧小区,我市2020年投入资金1000万元,2022年投入资金1440万元,现假定每年投入资金的增长率相同.求我市改造老旧小区投入资金的年平均增长率.三.解答题(共14小题)7.(2022秋•太仓市期中)某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用40米长的篱笆围成一个矩形花园ABCD(篱笆只围AB,AD两边),设AB=x米.(1)若花园的面积为300米2,求x的值;(2)若在直角墙角内点P处有一棵桂花树,且与墙BC,CD的距离分别是10米,24米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为400米2?若能,求出x的值;若不能,请说明理由.8.(2022秋•梁溪区校级期中)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.9.(2022秋•高邮市期中)某剧院可容纳1200人,经调研在一场文艺演出中,票价定为每张50元时,可以售出800张门票如果票价每降低1元,那么售出的门票就增加40张.要使门票收入达到47560元,票价应降低多少元?10.(2022秋•邗江区期中)2019年12月以来,湖北省武汉市发现一种新型冠状病毒感染引起的急性呼吸道传染病.(1)在“新冠”初期,有1人感染了“新冠”,经过两轮传染后共有144人感染了“新冠”(这两轮感染因为人们不了解病毒而均未被发现未被隔离),则每轮传染中平均一个人传染了几个人?(2)后来举国上下众志成城,全都隔离在家.小玲的爷爷因为种的水果香梨遇到销滞难题而发愁,于是小玲想到了在微信朋友圈里帮爷爷销售香梨.香梨每斤成本为4元/斤,她发现当售价为6元/斤时,每天可以卖80斤.在销售过程中,她还发现一斤香梨每降价0.5元时,则每天可以多卖出10斤.为了最大幅度地增加销售量,而且每天要达到100元的利润,问小玲应该将售价定为多少元?11.(2021秋•邗江区校级期中)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A 开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2cm?(2)在(1)中,△PQB面积能否等于4cm2?请说明理由.12.(2021秋•洪泽区校级期中)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.(1)若现在按每千克60元销售,则月销售量千克,月销售利润元.(2)针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?13.(2021秋•邗江区校级期中)2021年8月,扬州疫情暴发,口罩供不应求,某药店在疫情前恰好新进了一批口罩,若按每个盈利1元销售,每天可售出200个;如果每个口罩的售价每上涨0.5元,则销售量就减少10个.(1)问应将每个口罩涨价多少元,才能让顾客得到实惠的同时每天利润为480元?(2)店主想要获得每天620元的利润,小红同学认为不可能,你同意小红的说法吗?请说明理由.14.(2022春•泗洪县期中)利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC周长的最大值.15.(2022秋•苏州期中)如图,一个边长为8m的正方形花坛由4块全等的小正方形组成.在小正方形ABCD中,点G,E,F分别在CD,AD,AB上,且DG=1m,AE=AF=x,在△AEF,△DEG,五边形EFBCG三个区域上种植不同的花卉,每平方米的种植成本分别是20元、20元、10元.(1)当x=2时,小正方形ABCD种植花卉所需的费用;(2)试用含有x的代数式表示五边形EFBCG的面积;(3)当x为何值时,大正方形花坛种植花卉所需的总费用是715元?16.(2020秋•鼓楼区期中)方程是含有未知数的等式,使等式成立的未知数的值称为方程的“解”.方程的解的个数会有哪些可能呢?(1)根据“任何数的偶数次幂都是非负数”可知:关于x的方程x2+1=0的解的个数为;(2)根据“几个数相乘,若有因数为0,则乘积为0”可知方程(x+1)(x﹣2)(x﹣3)=0的解不止一个,直接写出这个方程的所有解;(3)结合数轴,探索方程|x+1|+|x﹣3|=4的解的个数;(写出结论,并说明理由)(4)进一步可以发现,关于x的方程|x﹣m|+|x﹣3|=2m+1(m为常数)的解的个数随着m的变化而变化…请你继续探索,直接写出方程的解的个数与对应的m的取值情况.17.(2022秋•盱眙县期中)已知关于x的一元二次方程(m﹣1)x2+6x+m2﹣1=0的一个根是0,(1)求m的值.(2)求方程的另一根.18.(2023春•邗江区期中)仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.19.(2020秋•锡山区期中)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?20.(2021春•工业园区校级期中)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知等腰△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC 的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.。

一元二次方程基础题

一元二次方程基础题

一元二次方程基础题一、一元二次方程的定义1. 定义- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx 是一次项,b是一次项系数;c是常数项。

2. 例题1- 下列方程中,是一元二次方程的是()- A.x^2+3x + y = 0- B.x^2+(1)/(x)=1- C.2x^2+1 = 0- D.ax^2+bx + c = 0- 解析- 选项A中含有两个未知数x和y,不是一元二次方程。

- 选项B中(1)/(x)是分式,该方程是分式方程,不是整式方程,所以不是一元二次方程。

- 选项C符合一元二次方程的定义,是一元二次方程。

- 选项D中当a = 0时,方程变为bx + c=0,是一元一次方程,只有当a≠0时才是一元二次方程。

所以答案是C。

二、一元二次方程的解法1. 直接开平方法- 对于方程x^2=k(k≥0),解为x=±√(k)。

- 例题2- 解方程(x - 2)^2=9。

- 解析- 根据直接开平方法,x - 2=±√(9),即x - 2=±3。

- 当x - 2 = 3时,x=3 + 2=5;当x - 2=-3时,x=-3 + 2=-1。

所以方程的解为x_1=5,x_2=-1。

2. 配方法- 步骤:- (1)把方程化为一般形式ax^2+bx + c = 0(a≠0)。

- (2)移项,使方程左边只含有二次项和一次项,即ax^2+bx=-c。

- (3)在方程两边同时加上一次项系数一半的平方,即x^2+(b)/(a)x+((b)/(2a))^2=-(c)/(a)+((b)/(2a))^2。

- (4)将左边写成完全平方式(x +(b)/(2a))^2=frac{b^2-4ac}{4a^2},然后用直接开平方法求解。

- 例题3- 用配方法解方程x^2+4x - 1 = 0。

(完整版)一元二次方程全章测试题(基础卷)

(完整版)一元二次方程全章测试题(基础卷)

一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。

一元二次方程题库(基础)

一元二次方程题库(基础)

基础篇一.解答题(共30小题)1.解方程:(1)2x2﹣4x﹣1=0(配方法)(2)(x+1)2=6x+6.2.解一元二次方程:(x+2)(x﹣2)=3x.3.解下列方程:(1)2x2﹣x=1(2)x2+4x+2=0.4.解方程:(4x﹣2)(x+3)=x2+3x.5.解下列方程:(1)2x2﹣5x+1=0(2)(x+4)2=2(x+4)6.解方程:(1)(4x﹣1)2﹣9=0(2)3(x﹣2)2=2﹣x.7.解下列方程.(1)x(x﹣2)﹣(x﹣2)=0;(2)x2+x=1.8.解方程:(1)3x2﹣7x=0(2)(x﹣2)(2x﹣3)=2(x﹣2)9.选用合适的方法解下列方程:(1)2x2﹣5x=3;(2)(x+3)2=(1﹣3x)2.10.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是什么形状?说明理由.(2)若x2+4y2﹣2xy+12y+12=0,求x y的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a+b+c=.11.用合适的方法解方程(1)x2﹣3x=0(2)(2x﹣1)2=9(3)(x﹣5)(3x﹣2)=10 (4)x2+6x=1(5)(2x﹣3)(x+1)=x+1 (6)6x2﹣x﹣12=0.12.用适当的方法解下列方程:(1)x2=3x(2)2x2﹣x﹣6=0.(3)y2+3=2y;(4)x2+2x﹣120=0.13.用适当的方法解下列方程:(1)(x﹣1)(x+3)=12;(2)9(x﹣2)2=4(x+1)2;(3)2x2﹣6x﹣1=0;(4)(3x﹣7)2=2(3x﹣7).14.试判定当m取何值时,关于x的一元二次方程x2﹣(2m+1)x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?15.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.16.已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于1的整数,求方程的根.17.已知关于x的方程x2+mx+m﹣3=0.(1)若该方程的一个根为1,求m的值及该方程的另一根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.18.已知关于x的方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.19.已知:a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根.(1)求n的取值范围;(2)若等腰三角形三边长分别为a,b,2,求n的值.20.解方程:2x2﹣4x﹣1=0(用配方法)21.用配方法解方程:2x2+3x﹣1=0.22.解方程:y(y﹣4)=﹣1﹣2y.23.解方程:x2﹣6x﹣3=0.24.王洪同学在解方程x2﹣2x﹣1=0时,他是这样做的:解:方程x2﹣2x﹣1=0变形为x2﹣2x=1.…第一步x(x﹣2)=1.…第二步x=1或x﹣2=1.…第三步∴x1=1,x2=3.…第四步王洪的解法从第步开始出现错误.请你选择适当方法,正确解此方程.25.解方程:x2﹣6x+6=0.26.用公式法解方程y(y﹣3)=2+y(1﹣3y).27.用公式法解方程:2x2+3x=1.28.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.29.用公式法解方程:x2+4x﹣2=0.30.解方程:(1)4x(1﹣x)=1 (2)x2+3x+1=0(公式法)参考答案与试题解析一.解答题(共30小题)1.(2017•红桥区模拟)解方程:(1)2x2﹣4x﹣1=0(配方法)(2)(x+1)2=6x+6.【解答】解:(1)x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=±=±,所以x1=1+,x2=1﹣;(2)(x+1)2﹣6(x+1)=0,(x+1)(x+1﹣6)=0,x+1=0或x+1﹣6=0,所以x1=﹣1,x2=5.2.(2017•合肥模拟)解一元二次方程:(x+2)(x﹣2)=3x.【解答】解:方程化为x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x﹣4=0或x+1=0,所以x1=4,x2=﹣1.3.(2017•孝感模拟)解下列方程:(1)2x2﹣x=1(2)x2+4x+2=0.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0或x﹣1=0,(2)△=42﹣4×2=8,x==﹣2±,所以x1=﹣2+,x2=﹣2﹣.4.(2017•东明县一模)解方程:(4x﹣2)(x+3)=x2+3x.【解答】解:方程化为(4x﹣2)(x+3)﹣x(x+3)=0,(x+3)(4x﹣2﹣x)=0,x+4=0或4x﹣2﹣x=0,所以x1=﹣4,x2=.5.(2017•曲靖一模)解下列方程:(1)2x2﹣5x+1=0(2)(x+4)2=2(x+4)【解答】解:(1)∵a=2,b=﹣5,c=1,∴△=25﹣4×2×1=17>0,则x=;(2)∵(x+4)2﹣2(x+4)=0,∴(x+4)(x+2)=0,则x+4=0或x+2=0,解得:x=﹣4或x=﹣2.6.(2017•常州模拟)解方程:(1)(4x﹣1)2﹣9=0(2)3(x﹣2)2=2﹣x.【解答】解:(1)方程变形得:(4x﹣1)2=9,4x﹣1=3,或4x﹣1=﹣3,解得:x1=1,x2=﹣;(2)方程整理得:3(x﹣2)2﹣2+x=0,可得x﹣2=0或3x﹣5=0,解得:x1=2,x2=.7.(2017•和平区模拟)解下列方程.(1)x(x﹣2)﹣(x﹣2)=0;(2)x2+x=1.【解答】解:(1)(x﹣2)(x﹣1)=0,所以x1=2,x2=1;.(2)x2+x﹣1=0,△=12﹣4×1×(﹣1)=5,x=,所以x1=,x2=.8.(2017春•杭州期中)解方程:(1)3x2﹣7x=0(2)(x﹣2)(2x﹣3)=2(x﹣2)【解答】解:(1)x(3x﹣7)=0,x=0或3x﹣7=0,所以x1=0,x2=;(2)(x﹣2)(2x﹣3)﹣2(x﹣2)=0,(x﹣2)(2x﹣3﹣2)=0,x﹣2=0或2x﹣3﹣2=0,所以x1=2,x2=.9.(2017春•莒县期中)选用合适的方法解下列方程:(1)2x2﹣5x=3;(2)(x+3)2=(1﹣3x)2.【解答】解:(1)原方程整理得:2x2﹣5x﹣3=0,∵(x﹣3)(2x+1)=0,解得:x=3或x=﹣0.5;(2)∵(x+3)2=(1﹣3x)2,∴x+3=1﹣3x或x+3=﹣1+3x,解得:x=﹣0.5或x=2.10.(2017春•江阴市期中)先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC是什么形状?说明理由.(2)若x2+4y2﹣2xy+12y+12=0,求x y的值.(3)已知a﹣b=4,ab+c2﹣6c+13=0,则a+b+c=3.【解答】解:(1)△ABC是等边三角形.理由如下:由题意得(a﹣3)2+(b﹣3)2+|3﹣c|=0,∴a=b=c=3,∴△ABC是等边三角形.(2)由题意得(x﹣y)2+3(y+2)2=0…4′∴x=y=﹣2.∴x y=;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a+b+c=2﹣2+3=3.故答案为:3.11.(2017春•嵊州市月考)用合适的方法解方程(1)x2﹣3x=0(2)(2x﹣1)2=9(3)(x﹣5)(3x﹣2)=10(4)x2+6x=1(5)(2x﹣3)(x+1)=x+1(6)6x2﹣x﹣12=0.【解答】解:(1)∵x(x﹣3)=0,∴x=0或x﹣3=0,解得:x=0或x=3;(2)∵2x﹣1=3或2x﹣1=﹣3,解得:x=2或x=﹣1;(3)整理得3x2﹣17x=0,∵x(3x﹣17)=0,∴x=0或3x﹣17=0,解得:x=0或x=;(4)∵x2+6x=1,∴x2+6x+9=1+9,即(x+3)2=10,则x+3=,∴x=﹣3;(5)∵(x+1)(2x﹣3﹣1)=0,即2(x+1)(x﹣2)=0,∴x+1=0或x﹣2=0,解得:x=﹣1或x=2;(6)∵(2x﹣3)(3x+4)=0,∴2x﹣3=0或3x+4=0,解得:x=或x=﹣.12.(2017春•上虞区校级月考)用适当的方法解下列方程:(1)x2=3x(2)2x2﹣x﹣6=0.(3)y2+3=2y;(4)x2+2x﹣120=0.【解答】解:(1)∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3;(2)∵(x﹣2)(2x+3)=0,∴x﹣2=0或2x+3=0,解得:x=2或x=﹣;(3)∵y2﹣2y+3=0,∴(y﹣)2=0,则y=;(4)∵(x﹣10)(x+12)=0,∴x﹣10=0或x+12=0,解得:x=10或x=﹣12.13.(2017春•下城区校级月考)用适当的方法解下列方程:(1)(x﹣1)(x+3)=12;(2)9(x﹣2)2=4(x+1)2;(3)2x2﹣6x﹣1=0;(4)(3x﹣7)2=2(3x﹣7).【解答】解:(1)x2+2x﹣15=0,(x﹣3)(x﹣5)=0,所以x1=3,x2=﹣5;(2)3(x﹣2)=±2(x+1),所以x1=8,x2=;(3)△=(﹣6)2﹣4×2×(﹣1)=44,x=,所以x1=,x2=;(4)(3x﹣7)2﹣2(3x﹣7)=0,(3x﹣7)(3x﹣7﹣2)=0,所以x1=,x2=3.14.(2016•濮阳校级自主招生)试判定当m取何值时,关于x的一元二次方程x2﹣(2m+1)x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?【解答】解:△=[﹣(2m+1)]2﹣4=(2m+1)2﹣4,当方程有两个不相等的实数根时,(2m+1)2﹣4>0,解得m>或m<﹣;当方程有两个相等的实数根时,(2m+1)2﹣4=0,解得m=或m=﹣;当方程没有实数根时,(2m+1)2﹣4<0,解得﹣<m<.15.(2016•蓝山县校级自主招生)已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.【解答】(1)证明:△=(2k+1)2﹣4×4(k﹣)=4k2+4k+1﹣16k+8,=4k2﹣12k+9=(2k﹣3)2,∵(2k﹣3)2≥0,即△≥0,∴无论k取何值,这个方程总有实数根;(2)解:当b=c时,△=(2k﹣3)2=0,解得k=,方程化为x2﹣4x+4=0,解得b=c=2,而2+2=4,故舍去;当a=b=4或a=c=4时,把x=4代入方程得16﹣4(2k+1)+4(k﹣)=0,解得k=,方程化为x2﹣6x+8=0,解得x1=4,x2=2,即a=b=4,c=2或a=c=4,b=2,所以△ABC的周长=4+4+2=10.16.(2016•昌平区二模)已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于1的整数,求方程的根.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根,∴△=b2﹣4ac=22﹣4(k﹣2)>0,即12﹣4k>0,解得:k<3.故k的取值范围为k<3.(2)∵k为大于1的整数,且k<3,∴k=2.将k=2代入原方程得:x2+2x=x(x+2)=0,解得:x1=0,x2=﹣2.故当k为大于1的整数,方程的根为x1=0和x2=﹣2.17.(2016•曲靖一模)已知关于x的方程x2+mx+m﹣3=0.(1)若该方程的一个根为1,求m的值及该方程的另一根;(2)求证:不论m取何实数,该方程都有两个不相等的实数根.【解答】(1)解:把x=1代入方程x2+mx+m﹣3=0得1+m+m﹣3=0,解得:m=1,则原方程为x2+x﹣2=0,解得:x=﹣2,或x=1.因此方程的另一个根为﹣2.(2)证明:△=m2﹣4(m﹣3)=(m﹣2)2+8,∵(m﹣2)2≥0,∴(m﹣2)2+8>0,∴该方程都有两个不相等的实数根.18.(2016•西城区二模)已知关于x的方程x2﹣4mx+4m2﹣9=0.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为x1,x2,其中x1<x2.若2x1=x2+1,求m的值.【解答】解:(1)∵△=(﹣4m)2﹣4(4m2﹣9)=36>0,∴此方程有两个不相等的实数根;(2)∵x==2m±3,∴x1=2m﹣3,x2=2m+3,∵2x1=x2+1,∴2(2m﹣3)=2m+3+1,∴m=5.19.(2016•平谷区二模)已知:a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根.(1)求n的取值范围;(2)若等腰三角形三边长分别为a,b,2,求n的值.【解答】解:(1)由题意,得△=b2﹣4ac=(﹣6)2﹣4(n﹣1)=40﹣4n,∵a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴40﹣4n≥0.∴n≤10.(2))∵三角形是等腰三角形,∴①a=2或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,舍去;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,综上所述,n=10.20.(2016秋•东城区期末)解方程:2x2﹣4x﹣1=0(用配方法)【解答】解:2x2﹣4x﹣1=0x2﹣2x﹣=0x2﹣2x+1=+1(x﹣1)2=∴x1=1+,x2=1﹣.21.(2016春•门头沟区期末)用配方法解方程:2x2+3x﹣1=0.【解答】解:2x2+3x﹣1=0x2+(1分)x2+(3分)(4分)x+(6分)x1=(7分)22.(2016春•海淀区期末)解方程:y(y﹣4)=﹣1﹣2y.【解答】解:y(y﹣4)=﹣1﹣2y,y2﹣2y+1=0,(y﹣1)2=0,y1=y2=1.23.(2016春•顺义区期末)解方程:x2﹣6x﹣3=0.【解答】解:解法一:x2﹣6x=3,x2﹣6x+32=3+32,(x﹣3)2=12,∴,∴.解法二:a=1,b=﹣6,c=﹣3,b2﹣4ac=36﹣4×1×(﹣3)=36+12=48.∴.∴.24.(2016春•怀柔区期末)王洪同学在解方程x2﹣2x﹣1=0时,他是这样做的:解:方程x2﹣2x﹣1=0变形为x2﹣2x=1.…第一步x(x﹣2)=1.…第二步x=1或x﹣2=1.…第三步∴x1=1,x2=3.…第四步王洪的解法从第二步开始出现错误.请你选择适当方法,正确解此方程.【解答】解:王洪的解法从第二步开始出现错误,正确解此方程:x2﹣2x+1=1+1,(x﹣1)2=2,x﹣1=±,x1=1+,x2=1﹣;故答案为二.25.(2016春•丰台区期末)解方程:x2﹣6x+6=0.【解答】解:∵a=1,b=﹣6,c=6,∴△=b2﹣4ac=12,,∴,.26.(2016秋•门头沟区期末)用公式法解方程y(y﹣3)=2+y(1﹣3y).【解答】解:原方程可化为y2﹣3y=2+y﹣3y2,y2+3y2﹣3y﹣y﹣2=0,4y2﹣4y﹣2=0,∵a=4,b=﹣4,c=﹣2,∴b2﹣4ac=(﹣4)2﹣4×4×(﹣2)=48,∴y==所以,原方程的根为.27.(2016秋•潮州期末)用公式法解方程:2x2+3x=1.【解答】解:移项得:2x2+3x﹣1=0,b2﹣4ac=32﹣4×2×(﹣1)=17,x=,x1=,x2=.28.(2016春•南通校级期末)解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.29.(2016秋•九台市期中)用公式法解方程:x2+4x﹣2=0.【解答】解:(1)△=42﹣4×1×(2)=24,x==﹣2±,所以x1=﹣2+,x2=﹣2﹣.30.(2016秋•宜宾县期中)解方程:(1)4x(1﹣x)=1(2)x2+3x+1=0(公式法)【解答】解:(1)4x2﹣4x+1=0,△=(﹣4)2﹣4×4×1=0,x=,所以x1=x2=;(3)△=32﹣4×1×1=5,x=,所以x1=,x2=.。

一元二次方程基础练习50题含详细答案

一元二次方程基础练习50题含详细答案

一元二次方程基础练习50题含详细答案一、单选题1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .42.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( ) A .0B .±1C .1D .1-3.若方程(m 2-1)x 2-mx -x +2=0是关于x 的一元一次方程,则代数式|m -1|的值为( ) A .0B .2C .0或2D .-24.已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A .10B .14C .10或14D .8或105.1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( ) A .2-B .3-C .4D .6-6.若关于x 的一元二次方程(k+2)x 2﹣3x+1=0有实数根,则k 的取值范围是( ) A .k <14且k≠﹣2 B .k≤14C .k≤14且k≠﹣2 D .k≥147.下列方程有实数根的是 A .4x 20+=B 1=-C .2x +2x −1=0D .x 1x 1x 1=-- 8.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.59.已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3B .﹣2C .3D .610.已知x =2是一元二次方程x 2+mx +2=0的一个解,则m 的值是( ) A .﹣3B .3C .0D .0或311.若2x =是关于x 的一元二次方程220180ax bx --=的一个解,则2035-2a +b 的值( ) A .17B .1026C .2018D .405322值( ) A .0B .1或2C .1D .213.把方程x(x+2)=5(x-2)化成一般式,则a 、b 、c 的值分别是( ) A .1,-3,10B .1,7,-10C .1,-5,12D .1, 3,214.关于x 的方程(m+1)21m x ++4x+2=0是一元二次方程,则m 的值为( )A .m 1=﹣1,m 2=1B .m=1C .m=﹣1D .无解15.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( ) A .-1或2B .-1C .2D .016.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为( ) A .1B .2C .-1D .-217.已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A .1B .﹣1C .0D .﹣218.如果﹣1是方程x 2﹣3x+k=0的一个根,则常数k 的值为( ) A .4B .2C .﹣4D .﹣219.下列方程中,关于x 的一元二次方程是( ) A .x 2+2y=1B .211x x+﹣2=0 C .ax 2+bx+c=0 D .x 2+2x=120.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( ) A .1B .﹣1C .0D .无法确定21.如果2是方程x 2-3x +k =0的一个根,则常数k 的值为( ) A .2B .1C .-1D .-222.若关于x 的方程2230mx x -+=有实数根,则m 的取值范围是( ) A .m≤13B .m≤13-C .m≥13D .m≤13,且m≠0 23.方程()24310mm x x m ++++=是关于x 的一元二次方程,则( )A .2m =±B .2m =C .2m =-D .2m ≠±24.若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为( ) A .-2B .2C .4D .-325.下列方程是一元二次方程的是( ) A .21x+x 2=0 B .3x 2﹣2xy=0 C .x 2+x ﹣1=0D .ax 2﹣bx=0A .2B .0C .0或2D .0或﹣227.方程3x 2﹣8x ﹣10=0的二次项系数和一次项系数分别为( ) A .3和8B .3和﹣8C .3和﹣10D .3和1028.已知一元二次方程2x 6x c 0-+=有一个根为2,则另一根为 A .2B .3C .4D .829.若关于x 的方程(a +1)x 2+2x ﹣1=0是一元二次方程,则a 的取值范围是( ) A .a ≠﹣1B .a >﹣1C .a <﹣1D .a ≠030.若关于x 的一元二次方程()2210k x x k -+-=的一个根为1,则k 的值为( ) A .1-B .0或1C .1D .031.下列方程中一定是一元二次方程的是( ) A .5x 2-2x+2=0 B .ax 2+bx+c=0 C .2x+3=6D .(a 2+2)x 2-2x+3=032.若2x =-是关于x 的一元二次方程22502x mx m -+=的一个根,则m 的值为( ) A .1或4 B .-1或-4C .-1或4D .1或-4二、填空题33.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 34.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n =_____. 35.已知m 是关于x 的方程2230x x --=的一个根,则224m m -=______. 36.a 是方程224x x =+的一个根,则代数式242a a -的值是_______.37.已知x=2是关于x 的方程240x x m -+=的一个根,则m =____________. 38.若a 是方程x 2-2x-2015=0的根,则a 3-3a 2-2013a+1=____________. 39.一元二次方程290x 的解是__.40.已知关于x 的方程x 2+3x ﹣m=0的一个解为﹣3,则它的另一个解是_____. 41.若关于x 的一元二次方程(m ﹣1)x 2+x +m 2﹣1=0有一个根为0,则m 的值为_____. 42.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .43.关于x 的方程a(x+m)2+b=0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a(x+m+2)2+b=0 的解是__________.45.若x 1,x 2是方程x 2﹣4x ﹣2020=0的两个实数根,则代数式x 12﹣2x 1+2x 2的值等于_____.46.设m 是一元二次方程x 2﹣x ﹣2019=0的一个根,则m 2﹣m +1的值为___. 47.若a 是方程2320x x --=的根,则2526a a +-=_____.48.若正数a 是一元二次方程x 2﹣5x +m =0的一个根,﹣a 是一元二次方程x 2+5x ﹣m =0的一个根,则a 的值是______.49.已知x=1是一元二次方程x²+ax+b=0的一个根,则代数式a²+b²+2ab 的值是____________.50.关于x 的一元二次方程22(2)620k x x k k ++++-=有一个根是0,则k 的值是_______.参考答案1.B 【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0, 解得k=2. 故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 2.D 【分析】根据一元二次方程的定义,再将0x =代入原式,即可得到答案. 【详解】解:∵关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =, ∴210a -=,10a -≠, 则a 的值为:1a =-. 故选D . 【点睛】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义. 3.A 【解析】试题分析:根据一元一次方程的定义知m 2﹣1=0,且﹣m ﹣1≠0,据此可以求得代数式|m ﹣1|的值.解:由已知方程,得(m 2﹣1)x 2﹣(m+1)x+2=0.∵方程(m 2﹣1)x 2﹣mx ﹣x+2=0是关于x 的一元一次方程, ∴m 2﹣1=0,且﹣m ﹣1≠0, 解得,m=1,则|m ﹣1|=0. 故选A .点评:本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1. 4.B 【解析】试题分析: ∵2是关于x 的方程x 2﹣2mx+3m=0的一个根, ∴22﹣4m+3m=0,m=4, ∴x 2﹣8x+12=0, 解得x 1=2,x 2=6.①当6是腰时,2是底边,此时周长=6+6+2=14; ②当6是底边时,2是腰,2+2<6,不能构成三角形. 所以它的周长是14.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质. 5.A 【分析】先把x=1代入方程220x ax b ++=得a+2b=-1,然后利用整体代入的方法计算2a+4b 的值 【详解】将x =1代入方程x 2+ax +2b =0,得a +2b =-1,2a +4b =2(a +2b )=2×(-1)=-2. 故选A. 【点睛】此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键 6.C 【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(-3)2-4(k+2)•1≥0,求出即可. 【详解】∵关于x 的一元二次方程(k+2)x 2-3x+1=0有实数根,∴k+2≠0且△=(-3)2-4(k+2)•1≥0, 解得:k≤14且k≠-2, 故选C . 【点睛】本题考查了一元二次方程的定义和根的判别式,能得出关于k 的不等式是解此题的关键. 7.C 【解析】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B =−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆ =8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意. 故选C . 8.B 【分析】把0x =代入可得210a -=,根据一元二次方程的定义可得10a -≠,从而可求出a 的值. 【详解】把0x =代入()22110a x x a -++-=,得:210a -=,解得:1a =±,∵()22110a x x a -++-=是关于x 的一元二次方程,∴10a -≠, 即1a ≠, ∴a 的值是1-, 故选:B .本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件10a -≠. 9.A 【解析】试题解析:设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3. 故选A .考点:根与系数的关系. 10.A 【分析】直接把x =2代入已知方程就得到关于m 的方程,再解此方程即可. 【详解】解:∵x =2是一元二次方程x 2+mx +2=0的一个解, ∴4+2m +2=0, ∴m =﹣3. 故选:A . 【点睛】本题考查的是一元二次方程的解,难度系数较低,直接把解代入方程即可. 11.B 【分析】把x=2代入方程得2a-b=1009,再代入 20352a b -+,可求得结果. 【详解】因为x 2=,是关于x 的一元二次方程2ax bx 20180--=的一个解, 所以,4a-2b-2018=0, 所以,2a-b=1009,所以,20352a b -+=2035-(2a-b )=2035-1009=1026. 故选B.本题主要考查一元二次方程的根的意义.12.D【分析】把x=0代入已知方程得到关于m的一元二次方程,通过解方程求得m的值;注意二次项系数不为零,即m-1≠0.【详解】解:根据题意,将x=0代入方程,得:m2-3m+2=0,解得:m=1或m=2,又m-1≠0,即m≠1,∴m=2,故选:D.【点睛】本题考查了一元二次方程的解定义和一元二次方程的定义.注意:本题中所求得的m的值必须满足:m-1≠0这一条件.13.A【分析】方程整理为一般形式,找出常数项即可.【详解】方程整理得:x2−3x+10=0,则a=1,b=−3,c=10.故答案选A.【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的每种形式. 14.B【解析】【分析】根据一元二次方程未知数项的最高次数是2,可得m2+1=2且m+1≠0,计算即可求解. 【详解】因为一元二次方程的最高次数是2,所以m2+1=2,解得m=﹣1或1,又因为m+1≠0,即m≠﹣1,所以m =1,故选B. 【点睛】本题主要考查一元二次方程的概念:只含有一个未知数(一元),且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程,掌握这个概念是解决此题的关键. 15.B 【分析】首先把x=1代入22(2)40m x x m -+-=,解方程可得m 1=2,m 2=-1,再结合一元二次方程定义可得m 的值 【详解】解:把x=1代入22(2)40m x x m -+-=得:2m 2+4m --=0,2m m 20++=-,解得:m 1=2,m 2=﹣1∵22(2)40m x x m -+-=是一元二次方程, ∴m 20-≠ , ∴m 2≠, ∴1m =-, 故选:B . 【点睛】此题主要考查了一元二次方程的解和定义,关键是注意方程二次项的系数不等于0. 16.D 【分析】将n 代入方程,提公因式化简即可. 【详解】解:∵()n n 0≠是关于x 的方程2x mx 2n 0++=的根, ∴2n mn 2n 0++=,即n(n+m+2)=0, ∵n 0,≠∴n+m+2=0,即m+n=-2,故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n是解题关键.17.A【详解】试题分析:∵关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,∴b2﹣ab+b=0,∵﹣b≠0,∴b≠0,方程两边同时除以b,得b﹣a+1=0,∴a﹣b=1.故选A.考点:一元二次方程的解.18.C【分析】把x=-1代入方程可得到关于k的方程,可求得k的值.【详解】∵-1是方程x2-3x+k=0的一个根,∴(-1)2-3×(-1)+k=0,解得k=-4,故选C.【点睛】考查一元二次方程的解,把方程的解代入得到到关于k的方程是解题的关键.19.D【分析】一元二次方程是指含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,根据定义判断即可.【详解】解:A、含有两个未知数,不是一元二次方程,故本选项不符合题意;B、分母中含有未知数,是分式方程,故本选项不符合题意;C、当a=0时不是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项符合题意;故选D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.20.B【解析】解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B21.A【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.【详解】解:∵2是一元二次方程x2-3x+k=0的一个根,∴22-3×2+k=0,解得,k=2.故选:A.【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.22.A【分析】分m=0和m≠0两种情况求解即可. 当m=0时,方程是一元一次方程,一定有实根;当m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.【详解】当m≠0时,∵a=m,b=−2,c=3 且方程有实数根,∴△=b2−4ac=4−12m≥0∴m≤1 3 .当m=0 时,方程为一元一次方程,仍有解,故m的取值范围是m≤1 3 .故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 23.B【分析】根据次数最高项的次数是2,且次数最高项的系数不为0列式求解即可.【详解】由题意得,2m=,且20m+≠,解之得,2m=.故选B.【点睛】本题考查了一元二次方程的定义,方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义解答即可.24.A【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.【详解】设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.考点:根与系数的关系.【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证.【详解】A.不是整式方程,不是一元二次方程;B.含有两个未知数,不是一元二次方程;C.符合一元二次方程的定义,是一元二次方程;D.二次项系数a不知是否为0,不能确定是否是一元二次方程.故选C.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.26.A【解析】试题分析:∵x=2是一元二次方程x2﹣2mx+4=0的一个解,∴4﹣4m+4=0,∴m=2.故选A.考点:一元二次方程的解.27.B【解析】【分析】分别确定2x和x的系数,注意符号不要遗漏.【详解】解:由题意得,二次项系数是3,一次项系数为-8,故选择B.【点睛】遗漏系数的符号是本题的易错点.28.C试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=4.考点:根与系数的关系.29.A【分析】根据一元二次方程的定义可得a +1≠0,即可得出答案.【详解】解:由题意得:a +1≠0,解得:a ≠﹣1.故选A .【点睛】本题考查的是一元二次方程的定义:只有一个未知数,并且未知数的最高次数是2次的整式方程.30.D【分析】把x=1代入()2210k x x k -+-=得以k 为未知数的一元二次方程,解方程求得k 值,再由二次项系数不为0 即可解答.【详解】把x=1代入()2210k x x k -+-=得k-1+1-k 2=0,解得k 1=0,k 2=1, 而k-1≠0,所以k=0.故选D .【点睛】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k 的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.31.D【解析】【分析】根据一元二次方程的定义进行判断即可得.【详解】A. 5x 2-2x+2=0,不是整式方程,故不符合题意; B. 当a=0时,方程ax 2+bx+c=0不是一元二次方程,故不符合题意;C. 2x+3=6是一元一次方程,故不符合题意;D. (a 2+2)x 2-2x+3=0是一元二次方程,故符合题意,故选D.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程是整式方程,含有一个未知数,含有未知数的项的次数最高为2次是解题的关键.32.B【分析】把2x =-代入关于x 的方程22502x mx m -+=,得到2450m m ++=,解关于m 的方程即可.【详解】解:∵2x =-是关于x 的一元二次方程22502x mx m -+=的一个根, ∴2450m m ++=解得121,4m m =-=-故选B .【点睛】本题考查一元二次方程根的定义和一元二次方程的解法,理解方程根的定义得到关于m 的方程是解题关键.33.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.34.﹣2【分析】根据一元二次方程的解的定义把x =2代入x 2+mx +2n =0得到4+2m +2n =0得n +m =−2,然后利用整体代入的方法进行计算.【详解】∵2(n≠0)是关于x 的一元二次方程x 2+mx +2n =0的一个根,∴4+2m +2n =0,∴n +m =−2,故答案为−2.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.35.6.【解析】试题分析:∵m 是关于x 的方程2230x x --=的一个根,∴2230m m --=,∴223m m -=,∴224m m -=6,故答案为6.考点:一元二次方程的解;条件求值.36.8【分析】直接把a 的值代入得出224a a -=,进而将原式变形得出答案.【详解】解:∵a 是方程224x x =+的一个根,∴224a a -=,∴22422(2)248a a a a -=-=⨯=.故答案为8.【点睛】此题主要考查了一元二次方程的解,正确将原式变形是解题关键.37.1【分析】把x =2代入方程得到关于m 的方程,然后解关于m 的方程即可.【详解】解:把x =2+代入方程得2(24(20m -++=,解得m =1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.38.-2014【分析】由题意得:222015,a a -=拆项,运用因式分解方法变形求解.【详解】由题意得:222015,a a -=则:a 3-3a 2-2013a+1=22a(2)20131a a a a ---+()22=20152013121201512014a a a a a --+=--+=-+=-.故答案为-2014.【点睛】考核知识点:因式分解的运用.拆项分组是关键.39.x 1=3,x 2=﹣3.【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x 1=3,x 2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.40.0【解析】【分析】设方程的另一个解是n ,根据根与系数的关系可得出关于n 的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n ,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax 2+bx+c=0(a≠0)的两根之和等于﹣b a 、两根之积等于c a是解题的关键. 41.﹣1.【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m 2-1=0,由此可以求得m 的值.【详解】解:把x =0代入(m ﹣1)x 2+x +m 2﹣1=0得m 2﹣1=0,解得m=±1, 而m ﹣1≠0,所以m =﹣1.故答案为﹣1.【点睛】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.42.15.【详解】解:29180x x -+=,得x 1=3,x 2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形;当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15.故答案是:1543.x=-4,x=-1【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=-2,x2=1,(a,m,b均为常数,a≠0),∴方程a(x+m+2)2+b=0变形为a[(x+2)+m]2+b=0,即此方程中x+2=-2或x+2=1,解得x=-4或x=-1.故方程a(x+m+2)2+b=0的解为x1=-4,x2=-1.故答案为:x1=-4,x2=-1.【点睛】本题考查方程解的定义.注意由两个方程的特点进行简便计算.44.2【解析】试题分析:∵关于x的方程230-+=的一个根是1,∴1﹣3×1+m=0,解得,m=2,x x m故答案为2.考点:一元二次方程的解.45.2028【分析】根据一元二次方程的解的概念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得.【详解】解:∵x1,x2是方程x2﹣4x﹣2020=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2020=0,即x12﹣4x1=2020,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2020+2×4=2028,故答案为:2028.【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a . 46.2020.【分析】把x=m 代入方程计算即可求解.【详解】解:把x =m 代入方程得:m 2﹣m ﹣2019=0,即m 2﹣m =2019,则原式=2019+1=2020,故答案为2020.【点睛】本题考查一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 47.1【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1. 故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.48.5试题解析:∵a 是一元二次方程x 2-5x+m=0的一个根,-a 是一元二次方程x 2+5x-m=0的一个根,∴a 2-5a+m=0①,a 2-5a-m=0②,①+②,得2(a 2-5a )=0,∵a >0,∴a=5.考点:一元二次方程的解.49.1【分析】把x=1代入x 2+ax+b=0得到1+a+b=0,易求a+b=-1,将其整体代入所求的代数式进行求值即可.【详解】∵x=1是一元二次方程x 2+ax+b=0的一个根,∴12+a+b=0,∴a+b=﹣1.∴a 2+b 2+2ab=(a+b )2=(﹣1)2=1.50.1【分析】把方程的根代入原方程得到220k k +-=,解得k 的值,再根据一元二次方程成立满足的条件进行取舍即可.【详解】∵方程22(2)620k x x k k ++++-=是一元二次方程,∴k+2≠0,即k ≠-2;又0是该方程的一个根,∴220k k +-=,解得,11k =,22k =-,由于k ≠-2,所以,k=1.故答案为:1.【点睛】本题考查了一元二次方程的解.解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法.同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方.。

一元二次方程20道题

一元二次方程20道题

一元二次方程20道题一、基础型题目1. 有一个一元二次方程,你能找出这个方程的两个根吗?就像找藏在树洞里的小松鼠一样哦。

2. 方程,这就像一个神秘的小盒子,你得打开它找到里面的答案(也就是方程的根)呢。

3. 对于一元二次方程,先把它化简一下,再求根呀,就像给小宠物梳理毛发一样,先整理好再找问题的关键。

4. 一元二次方程,这个方程看起来很简洁呢,快把它的根找出来,就像从简单的迷宫里找到出口一样容易。

5. 看这个方程,你可以先提取公因式,然后再求解,就像拆礼物一样,一层一层来。

6. 方程,想象你是一个小侦探,要找到让这个方程成立的那些数字(根)哦。

7. 一元二次方程,这个方程就像一个等待被解开的小谜题,你能解开它求出根吗?8. 对于,你得想办法把这个方程破解了,找到那两个能让等式成立的神秘数字(根)呀。

9. 方程,它在向你求救呢,快用你的数学魔法把它的根找出来吧。

10. 一元二次方程,就像走在一条有宝藏(根)的小路上,你要找到那些宝藏哦。

二、稍复杂型题目(含系数不是1的二次项或者配方相关)11. 看这个有点难的一元二次方程,你要像超级英雄一样克服困难求出它的根哦。

12. 方程,这就像一个复杂的拼图,你得把每一块(通过求根的步骤)都放对位置呢。

13. 对于一元二次方程,这个方程可是可以用配方的方法轻松求解的哦,就像给蛋糕做漂亮的装饰(配方)然后再享用(求出根)。

14. 一元二次方程,这个方程看起来有点棘手,不过你要是掌握了配方或者求根公式就没问题啦,就像掌握了魔法咒语一样。

15. 方程,你要想办法把这个方程的根找出来,就像在茂密的森林里找到特定的花朵一样。

16. 对于,先把方程化简一下再求根,就像给杂乱的房间先收拾一下再找东西一样。

17. 一元二次方程,这个方程很适合用配方来求解呢,就像给小机器人调整零件(配方)让它正常运转(求出根)。

18. 方程,你得动动脑筋,是用求根公式还是先化简再求根呢?就像选择走哪条路去远方(求出根)。

《一元二次方程》基础练习含答案(5套)

《一元二次方程》基础练习含答案(5套)

《一元二次方程》基础知识反馈卡·第一份时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则( )A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为( )A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝⎛⎭⎪⎫x -132=1092.一元二次方程x 2+x +14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定二、填空题(每小题4分,共12分)3.方程x 2-4x -12=0的解x 1=________,x 2=________. 4.x 2+2x -5=0配方后的方程为____________. 5.用公式法解方程4x 2-12x =3,得到x =________. 三、解答题(共7分)6.已知关于x 的一元二次方程x 2-mx -2=0.(1)对于任意实数m ,判断此方程根的情况,并说明理由; (2)当m =2时,求方程的根.时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.一元二次方程x 2=3x 的根是( ) A .x =3 B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=-32.方程4(x -3)2+x (x -3)=0的根为( )A .x =3B .x =125C .x 1=-3,x 2=125D .x 1=3,x 2=125二、填空题(每小题4分,共12分)3.方程x 2-16=0的解是____________.4.如果(m +n )(m +n +5)=0,则m +n =______. 5.方程x (x -1)=x 的解是________. 三、解答题(共7分)6.解下列一元二次方程:(1)2x 2-8x =0; (2)x 2-3x -4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是( ) A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是( ) A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?参考答案基础知识反馈卡·21.11.B 2.B 3.2 4.-125.x 2-6x +4=0 x 2 -6 4 6.解:把x =-1代入原方程,得2m -1-3m +5=0,解得m =4. 基础知识反馈卡·21.2.1 1.D 2.B 3.6 -24.(x +1)2=6 5.3±2 326.解:(1)Δ=b 2-4ac =m 2+8, ∵对于任意实数m ,m 2≥0, ∴m 2+8>0.∴对于任意的实数m ,方程总有两个不相等的实数根.(2)当m =2时,原方程变为x 2-2x -2=0, ∵Δ=b 2-4ac =(-2)2-4×1×(-2)=12,∴x =2±122.解得x 1=1+3,x 2=1- 3. 基础知识反馈卡·21.2.2 1.C 2.D3. x =±44.0或-55.0或2 6.(1)x 1=0,x 2=4 (2)x 1=4,x 2=-1基础知识反馈卡·*21.2.3 1.B 2.A3.x 2-7x +12=0(答案不唯一) 4.2 2 5.156.解:∵方程有两个不相等的实数根,∴Δ>0.∴(2m -3)2-4m 2>0.解得m <34.∵1α+1β=1,即α+βαβ=1. ∴α+β=αβ.又α+β=-(2m -3),αβ=m 2. 代入上式,得3-2m =m 2. 解得m 1=-3,m 2=1.∵m 2=1>34,故舍去.∴m =-3.基础知识反馈卡·21.31.C 2.B 3.B 4.96 5.24 6.解:设每千克小型西瓜的售价降低x 元,根据题意,得(3-2-x )·⎝ ⎛⎭⎪⎫200+x0.1×40-24=200,整理,得50x -25x +3=0, 解得x 1=0.2,x 2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.。

苏科版九年级数学上册《1.1一元二次方程》练习题-附答案

苏科版九年级数学上册《1.1一元二次方程》练习题-附答案

苏科版九年级数学上册《1.1一元二次方程》练习题•附答案基础巩固提优1.下列关于X的方程中,一定是一元二次方程的是().A.ax2+bx+c=03宓+1=(x+1)(%一2)2C.3x+1=0D.2x--2X2.为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x个队参赛,根据题意列方程为().A.x(x+l)=15B.x(x—1)=15C.-x^x+1)=15D.-x^x—1)=153.若关于x的一元二次方程2工2+伐+8)工-(2k—3)=0的各项系数之和为5,则k的值为.224.已知方程ax+bx—6=0与方程ax+2bx—15=0有一个公共解是3,求a、b的值.5.如果关于x 的方程 0-3)工他-1|一* + 3 = 0是一元二次方程,求川的值.6.已知关于 x 的方程((m + i )x m2+1 + (m - 3)x -1=0.(1) 当m 取何值时,此方程是一元二次方程?(2) 当m 取何值时,此方程是一元一次方程?思维拓展提优7. 已知2 + V3是关于x 的一元二次方程% -4x+m=0的一个实数根,则实数m 的值是().1231 1A. 3 B. 2 C - D i 3 2A. 0B. 1C. —3D. —18. 已知x -3x -4 = 0,则代数式节七的值是().2x z —%—4实验班提优训练9.若实数x满足x-2V2x-1=0,则x+4=.22210.若9a-3b+c=0且a7^0,则一元二次方程ax+bx+c=0必有一个根是.211.已知美于x的方程(k—I)%+(k+2)%—3=0.(1)当k为何值时,此方程为一元一次方程?并求出此方程的解.(2)若此方程为一元二次方程,求k的取值范围.212.先化简,再求值:岩+0—1—芳),其中a是方程x-x-l=om13.已知关于x的一元二次方程(X—1)(x-2)=m+l(m为常数).(1)若它的一个实数根是关于x的方程-3(x-m)+6=0的根,求m的值;(2)若它的一个实数根是关于x的方程2(x—n)-4=0的根,求证::印--nN-1.14. 如图,某小区规划在一个长为40山、宽为26m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都 为144肝,求甬路的宽度.(根据题意列出方程即可)延伸探究提优15. 教材或资料中会出现这样的题目:把方程= 2化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.现把上面的题目改编为下面的两个小题,请解答.(1) 下列式子中,哪几个是方程|%-% = 2所化的一元二次方程的一般形式?(答案只写序号) circlel^x — x — 2 = 0; circle! — |x + x + 2 = 0; circle3x 一 2x = 4; circled - % + 2% + 4 = 0; circled 22222V3x 2 - 2V3x 一 4扼=0.(2) 方程|x -x = 2化为一元二次方程的一般形式后,它的二次项系数、一次项系数、常数项之间具 有什么关系?216.请阅读下列材料:问题:已知方程注+ *_1 = 0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y 二2x,即x = %把x = §代入已知方程,得G) + j - 1 = 0,化简,得 W + 2y - 4 = 0,故所求方程为y2 + 2y - 4 = 0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):⑴已知方程x 12 + 3x -2 = 0,求一个一元二次方程,使它的根分别为已知方程根的相反数;1. c [解析]A.当。

一元二次方程专题训练卷(基础)

一元二次方程专题训练卷(基础)

一元二次方程专题训练卷(基础)一.选择题(共6小题)1.关于x的一元二次方程(m﹣3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.﹣32.若x1,x2是方程x2﹣2x﹣3=0的两个实数根,则x1•x22的值为()A.3或﹣9B.﹣3或9C.3或﹣6D.﹣3或63.一元二次方程2x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.若关于x的一元二次方程x2﹣ax+6=0的一个根是2,则a的值为()A.2B.3C.4D.55.已知一元二次方程式(x﹣2)2=3的两根为a、b,且a>b,求2a+b之值为何?()A.9B.﹣3C.6+D.﹣6+6.用配方法解方程x2﹣2x=2时,配方后正确的是()A.(x+1)2=3B.(x+1)2=6C.(x﹣1)2=3D.(x﹣1)2=6二.填空题(共7小题)7.若x=1是方程x2﹣2x+a=0的根,则a=.8.方程(x+1)2=9的根是.9.若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.10.设x1与x2为一元二次方程x2+3x+2=0的两根,则(x1﹣x2)2的值为.11.一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,则k的值是.12.一元二次方程(x﹣2)(x+7)=0的根是.13.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.三.解答题(共6小题)14.解方程:(2x+3)2=(3x+2)2.15.(1)解方程:x2﹣2x﹣5=0;(2)解不等式组:.16.(1)解方程:2x(x﹣2)=1;(2)解不等式组:17.解方程:x2﹣2x﹣3=0.18.小敏与小霞两位同学解方程3(x﹣3)=(x﹣3)2的过程如下框:小敏:两边同除以(x﹣3),得3=x﹣3,则x=6.小霞:移项,得3(x﹣3)﹣(x﹣3)2=0,提取公因式,得(x﹣3)(3﹣x﹣3)=0.则x﹣3=0或3﹣x﹣3=0,解得x1=3,x2=0.你认为他们的解法是否正确?若正确请在框内打“√”;若错误请在框内打“×”,并写出你的解答过程.19.已知T=(a+3b)2+(2a+3b)(2a﹣3b)+a2.(1)化简T;(2)若关于x的方程x2+2ax﹣ab+1=0有两个相等的实数根,求T的值.。

一元二次方程基础训练题

一元二次方程基础训练题

一元二次方程基础训练题一、一元二次方程的概念类题目1. 下列方程中,是一元二次方程的是()A. x^2+2x = x^2-1B. ax^2+bx + c = 0C. 3(x + 1)^2=2(x + 1)D. (1)/(x^2)+x - 2 = 0解析:- 对于选项A,将方程x^2+2x = x^2-1化简为2x=-1,这是一元一次方程,不是一元二次方程。

- 选项B,当a = 0时,ax^2+bx + c = 0就不是一元二次方程了,所以该选项不一定是一元二次方程。

- 选项C,将3(x + 1)^2=2(x + 1)展开得到3(x^2+2x + 1)=2x+2,即3x^2+6x+3 = 2x + 2,进一步化简为3x^2+4x+1 = 0,这是一元二次方程。

- 选项D,(1)/(x^2)+x - 2 = 0是分式方程,不是一元二次方程。

所以答案是C。

2. 方程(m - 2)x^2+3mx+1 = 0是关于x的一元二次方程,则m的取值范围是()A. m≠0B. m≠2C. m≠ - 2D. m为任意实数解析:一元二次方程的一般形式是ax^2+bx + c = 0(a≠0),在方程(m - 2)x^2+3mx+1 = 0中,要使其为一元二次方程,则二次项系数m - 2≠0,解得m≠2,所以答案是B。

二、一元二次方程的求解(直接开平方法)1. 解方程(x - 3)^2=16解析:对于方程(x - 3)^2=16,根据直接开平方法,可得x-3=±4。

当x - 3 = 4时,x=4 + 3=7;当x - 3=-4时,x=-4 + 3=-1。

所以方程的解为x_1=7,x_2=-1。

2. 解方程2(x + 1)^2-8 = 0解析:首先对原方程进行化简:2(x + 1)^2-8 = 0,移项得到2(x + 1)^2=8,两边同时除以2得(x + 1)^2=4。

然后根据直接开平方法,x + 1=±2。

初中数学一元二次方程基础练习题(附答案)

初中数学一元二次方程基础练习题(附答案)

初中数学一元二次方程基础练习题一、单选题1.若关于x 的方程21(1)02x m x +++=的一个实数根的倒数恰是它本身,则m 的值是( ) A.52- B.12 C.52-或12 D.12.关于x 的方程||1(1)320a a x x +-⋅-+=是一元二次方程,则( )A.1a ≠±B.1a =C.1a =-D.1a =±3.已知a 是方程2210x x --=的一个根,则代数式2241a a --的值为( )A.1B.-2C.-2或1D.24.下列说法正确的是( )A.方程2870x -=的一次项系数为7-B.20ax bx c ++=是一元二次方程C.当1k =时,方程2231kx x x +-=为一元二次方程D.当m 取所有实数时,关于x 的方程()22130m x mx +--=为一元二次方程5.我们知道方程2230x x +-=的解是121,3x x ==-,现给出另一个方程2(23)2(23)30x x +++-=,它的解是( )A.121,3x x ==B.121,3x x ==-C.121,3x x =-=D.121,3x x =-=-A.1D.不能确定7.一元二次方程22(1)1(1)x m x x x -++=-化成一般形式后二次项的系数为1,一次项的系数为1-,则m 的值为( )A.1-B.1C.2-D.2 二、解答题8.当m 取何值时,方程21(1)230m m xmx +-++=是关于x 的一元二次方程? 9.若2310a b a b x x +--+=是关于x 的一元二次方程,求,a b 的值.下面是两位同学的解法.甲:根据题意,得221a b a b +=⎧⎨-=⎩,解得10a b =⎧⎨=⎩. 乙:根据题意,得221a b a b +=⎧⎨-=⎩或212a b a b +=⎧⎨-=⎩,解得10a b =⎧⎨=⎩或11a b =⎧⎨=-⎩. 你认为上述两位同学的解法是否正确?为什么?如果都不正确,请给出正确的解法.三、填空题10.若关于x 的一元二次方程2(2)2(1)210k x k x k -+++-=的一次项系数为1-,则=k _________.11.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 .12.已知1x =-是方程20(0)ax bx c b ++=≠= . 参考答案1.答案:C解析:一个实数根的倒数恰是它本身,则该实数根为1或1-,将1x =和1x =-分别代入方程求解即可.2.答案:C解析:由题意可知10,1||12,a a a -≠⎧∴=-⎨+=⎩.故选C. 3.答案:A解析:a 是方程2210x x --=的一个根,2210a a ∴--=.整理,得221a a -=,()222412212111a a a a ∴--=--=⨯-=.故选A.4.答案:D解析:A.方程2870x -=的一次项系数为0,故此选项错误;B.20(0)ax bx c a ++=≠是一元二次方程,故此选项错误; C 当10k -≠,即1k ≠时,方程2231kx x x +-=为一元二次方程,故此选项错误;D.当m 取所有实数时,关于x 的方程()22130m x mx +--=为一元二次方程是正确的.故选D. 5.答案:D解析:把方程2(23)2(23)30x x +++-=看作关于23x +的一元二次方程,所以231x +=或233x +=-,所以121,3x x =-=-,故选D.6.答案:A ,0m ≠,方程的两边同时除以7.答案:B解析:整理,得210.x mx -+=一次项的系数为1-,1m ∴-=-,解得1m =,故选B.8.答案:解:当212m +=且10m -≠时,方程21(1)230mm x mx +-++=是关于x 的一元二次方程. 由212m +=,得21m =,所以1m =±.由10m -≠,得1m ≠,所以只能取1m =-.所以当1m =-时,方程21(1)230m m xmx +-++=是关于x 的一元二次方程.解析: 9.答案:解:都不正确,均考虑不全面.正确解法如下: 欲使2310a b a b x x +--+=是关于x 的一元二次方程,则222a b a b +=⎧⎨-=⎩或221a b a b +=⎧⎨-=⎩或220a b a b +=⎧⎨-=⎩或212a b a b +=⎧⎨-=⎩或202a b a b +=⎧⎨-=⎩, 解得4323a b ⎧=⎪⎪⎨⎪=-⎪⎩或10a b =⎧⎨=⎩或2323a b ⎧=⎪⎪⎨⎪=⎪⎩或11a b =⎧⎨=-⎩或2343a b ⎧=⎪⎪⎨⎪=-⎪⎩.解析:10.答案:32- 解析:方程2(2)2(1)210k x k x k -+++-=的一次项系数为1-,2(1)1k ∴+=-且20k -≠,解得32k =-. 11.解析:2(0)n n ≠是关于x 的方程2220x mx n -+=的根,24420n mn n ∴-+=,4420n m ∴-+=,12m n ∴-=. 12.答案:1解析:1x =-是方程20ax bx c ++=的根,0a b c ∴-+=,即,1a c b +==。

专题1.1一元二次方程九大考点精讲精练

专题1.1一元二次方程九大考点精讲精练

2022-2023学年九年级数学上学期复习备考高分秘籍专题1.1一元二次方程九大考点精讲精练(知识梳理+典例剖析+变式训练)【知识梳理】1.一元二次方程的有关概念:(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.(2)一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax²叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(3)一元二次方程的根:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.2.一元二次方程的解法:(1)直接开平方法:形如x2=p或(nx+m)²=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.(2)配方法解一元二次方程的步骤:①把原方程化为20++=(a≠0)的形式;ax bx c②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.(3)公式法:把x b2-4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2-4ac的值(若b2-4ac<0,方程无实数根);③在b2-4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2-4ac≥0.(4)因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.3.一元二次方程根的判别式:利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.一元二次方程a x2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.一元二次方程根与系数的关系:(1)若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+ x2=-p,x1x2=q反过来可得p=-(x1+ x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数.(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程a x2+bx+c=0(a≠0)的两根时,,反过来也成立,x1+ x2=—ba ,x1x2=ca(3)常用根与系数的关系解决以下问题:①不解方程,判断两个数是不是一元二次方程的两个根.②已知方程及方程的一个根,求另一个根及未知数.③不解方程求关于根的式子的值,如求,x12+x22等等.④判断两根的符号.⑤求作新方程.⑥由给出的两根满足的条件,确定字母的取值.这类问题比较综合,解题时除了利用根与系数的关系,同时还要考虑a≠0,△≥0这两个前提条件.【典例剖析】【考点1】一元二次方程的定义【例1】(2022·安徽·滁州市第六中学八年级阶段练习)若(m+3)x|m|−1−(m−3)x−5=0是关于x的一元二次方程,则m的值为( )A.3B.﹣3C.±3D.±2【变式1.1】(2021·天津市晟楷中学九年级阶段练习)下列关于x的方程中,一定是一元二次方程的为()A.a x2+bx+c=0B.x2−4=(x+3)2C.x2+3x−5=0D.3x(x−4)=0【变式1.2】(2022·新疆·和硕县第二中学九年级期末)关于x的方程(a+2)x a2−2−3x−1=0是一元二次方程,则a的值是( )A.a=±2B.a=−2C.a=2D.a为任意实数【变式1.3】(2022·江苏南通·八年级期末)若关于x的方程(a−1)x2+x=0是一元二次方程,则a的范围是()A.a=1B.a>1C.a≠1D.a<1【考点2】一元二次方程的一般形式【例2】(2022·浙江温州·八年级期末)把一元二次方程x(2x−1)=x−3化为一般形式,正确的是()A.2x2+3=0B.2x2−2x−3=0C.2x2−x+2=0D.2x2−2x+3=0【变式2.1】(2022·全国·九年级单元测试)将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是___.【变式2.2】(2022·全国·九年级单元测试)一元二次方程(2+x)(3x−4)=5化为一般形式为______,它的二次项是_______,一次项是_______,常数项是_______.【变式2.3】(2022·山东淄博·八年级期末)关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为__.【考点3】一元二次方程的根【例3】(2022·河北保定师范附属学校九年级期末)若x=﹣1是关于x的一元二次方程ax2+bx﹣1=0的一个根,则2022﹣2a+2b的值为_____.【变式3.1】(2022·广西崇左·八年级期末)已知x=1是一元二次方程x2+ax−2=0的一个根,则a的值为_________.【变式3.2】(2022·浙江绍兴·八年级期末)若a是方程2x2−x−5=0的一个根,则代数式2a−4a2+1的值是_________.【变式3.3】(2022·福建·莆田哲理中学九年级期末)关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为_____.【考点4】一元二次方程的解法—配方法选填题【例4】(2022·西藏·江达县第二初级中学校九年级期末)将一元二次方程x2−6x−6=0配方后可写为________.【变式4.1】(2022·山东烟台·八年级期末)把一元二次方程x2−4x−8=0化成(x−m)2=n的形式,则m+n的值为________.【变式4.2】(2022·四川宜宾·九年级期末)将方程x2−mx+8=0用配方法化为(x−3)2=n,则m+n的值是_______.【变式4.3】(2022·山东威海·八年级期中)对于二次三项式x2+6x+3,若x取值为m,则二次三项式的最小值为n,那么m+n的值为_________.【考点5】一元二次方程的解法—因式分解法选填题【例5】(2022·甘肃·张掖育才中学九年级期末)一元二次方程(2x−3)2=9(x+1)2的根为x1=_____,x2=_____.【变式5.1】(2021·四川·荣县一中九年级阶段练习)x2=2x的根为_____.【变式5.2】(2021·黑龙江哈尔滨·八年级期末)若一个一元二次方程x2−5x+6=0的两个根分别是Rt△ABC的两条直角边长,则Rt△ABC斜边长为___.【变式5.3】(2021·河南·邓州市城区第五初级中学校.九年级阶段练习)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2−(a−b)2.若(m+2)◎(m﹣3)=24,则m=_____.【考点6】一元二次方程的解法—解答题【例6】(2022·山东省泰安南关中学八年级期中)解下列方程(1)2x2−4x+1=0(用配方法);(2)3x2−4x−1=0(公式法);【变式6.1】(2022·山东·泰安市泰山区树人外国语学校八年级期中)按照指定方法解下列方程:(1)x2+4x+1=13(配方法);(2)3x2﹣4x﹣1=0(公式法);(3)(x+1)2=3(x+1)(4)(x﹣3)(x+2)=6【变式6.2】(2022·浙江·吴宁第三中学八年级期中)解方程:(1)2x2+2x=1(2)2x2−3x−5=0【变式6.3】(2022·安徽·滁州市第六中学八年级阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2−3|x|−10=0.解:分两种情况:(1)当x≥0时,原方程化为x2−3x−10=0,解得x1=5,x2=﹣2(舍去);(2)当x<0时,原方程化为x2+3x−10=0,解得x1=﹣5,x2=2(舍去);综上所述,原方程的解是x1=5,x2=﹣5.问题:仿照上面的方法,解方程:x2−2|2x+3|+9=0.【考点7】根的判别式【例7】(2022·江苏扬州·八年级期末)已知关于x的一元二次方程x(x−2)=k.(1)若k=3,求此方程的解;(2)当k≥−1时,试判断方程的根的情况.【变式7.1】(2022·江苏南通·八年级期末)已知关于x的一元二次方程(a−1)x2+(2a+1) x+2=0.(1)求证:此方程一定有两个不相等的实数根;(2)如果这个方程根的判别式的值等于9,求a的值.【变式7.2】(2022·全国·九年级单元测试)已知关于x的方程p x2+(2p+1)x+(p−1)=0有两个不相等的实根,判断关于x的方程x2−3x−2p=0的根的情况.【变式7.3】(2022·江苏扬州·八年级期末)已知关于x的一元二次方程k x2+(3k+1)x+2k+2=0(k≠0).(1)求证:无论x取何值,此方程总有两个实数根;(2)若该方程的两根都是整数,求整数k的值.【考点8】根与系数的关系【例8】(2022·广西玉林·二模)关于x的一元二次方程x2−(k−3)x−2k+2=0.(1)求证:方程总有两个实数根;(2)若方程的两根分为x1、x2,且x2+x22+x1x2=19,求k的值.1【变式8.1】(2022·陕西·西安铁一中分校九年级期末)已知关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两根x1,x2满足x1+x2=12,请求出方程的两根.【变式8.2】(2022·山东淄博·八年级期末)已知关于x的一元二次方程x2−2kx+k−12=0.(1)判断该方程根的情况,并说明理由;(2)若方程的两个实数根之和等于两根之积,求k的值.【变式8.3】(2022·全国·九年级单元测试)已知关于x的一元二次方程x2+(m+2)x+m=0,(1)求证:无论m取何值,原方程总有两个不相等的实数根.(2)若x1,x2是原方程的两根,且1x1+1x2=−2,求m的值.【考点9】配方法的综合应用【例9】(2022·福建·福州十八中八年级期末)请阅读下列材料:我们可以通过以下方法求代数式x2+6x+5的最小值.x2+6x+5=x2+2•x•3+32﹣32+5=(x+3)2﹣4∵(x+3)2≥0∴当x=﹣3时,x2+6x+5有最小值﹣4.请根据上述方法,解答下列问题:(1)x2+5x﹣1=(x+a)2+b,则ab的值是_______.(2)求证:无论x取何值,代数式x2+7的值都是正数;(3)若代数式2x2+kx+7的最小值为2,求k的值.【变式9.1】(2022·广西北海·七年级期中)阅读材料:把代数式x2−6x−7因式分解,可以分解如下:x2−6x−7=x2−6x+9−9−7=(x−3)2−16=(x−3+4)(x−3−4)=(x+1)(x−7)(1)探究:请你仿照上面的方法,把代数式x2−8x+7因式分解.(2)拓展:当代数式x2+2xy−3y2=0时,求xy的值.【变式9.2】(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的x2+2x−3最小值.x2+2x−3=x2+2x⋅1+12−12−3=(x+1)2−4∵(x+1)2≥0∴当x=-1时,x2+2x−3有最小值-4请根据上述方法,解答下列问题:(1)x2+5=x2+2+2+2=(x+a)2+b,则a=__________,b=__________;(2)若代数式x2−2kx+7的最小值为3,求k的值.【变式9.3】(2022·全国·九年级课时练习)先阅读,后解题.已知m2+2m+n2−6n+10=0,求m和n的值.解:将左边分组配方:(m2+2m+1)+(n2−6n+9)=0.即(m+1)2+(n−3)2=0.∵(m+1)2≥0,(n−3)2≥0,且和为0,∴(m+1)2=0且(n−3)2=0,∴m=-1,n=-3.利用以上解法,解下列问题:(1)已知:x2+4x+y2−2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=8a+6b−25且△ABC为直角三角形,求c.。

一元二次方程50道题

一元二次方程50道题

一元二次方程50道题一、基础形式类(1 - 10题)1. 解方程x^2+3x + 2 = 0。

这个方程就像是一个小迷宫,我们得找到让这个等式成立的x的值哦。

2. 求解方程x^2-5x + 6 = 0。

这就好比是给x找一个合适的家,让这个等式舒舒服服的。

3. 解一元二次方程x^2+x - 6 = 0。

这个方程像是一个小谜题,x是那个神秘的答案呢。

4. 求方程x^2-3x - 4 = 0的解。

感觉就像在数字的森林里找宝藏,宝藏就是x的值。

5. 解方程x^2+2x - 3 = 0。

这个方程是一个等待我们破解的小密码,密码就是x 的正确数值。

6. 求解x^2-4x + 3 = 0。

这就像是一场数字的捉迷藏,x躲在某个地方,我们要把它找出来。

7. 解一元二次方程x^2+4x + 3 = 0。

这个方程像是一个数字的小盒子,我们要打开它找到x。

8. 求方程x^2-2x - 8 = 0的解。

就像是在数字的海洋里捞针,针就是x的值。

9. 解方程x^2+5x - 14 = 0。

这个方程是一个数字的小挑战,看我们能不能征服它找到x。

10. 求解x^2-6x + 8 = 0。

这就像给x安排一个合适的位置,让这个等式完美成立。

二、含系数类(11 - 20题)11. 解2x^2+3x - 2 = 0。

这个方程里2就像是x的一个小跟班,我们要一起找到合适的x。

12. 求解3x^2-5x + 2 = 0。

3在这儿可有点小威风,不过我们可不怕,照样能找到x。

13. 解一元二次方程 - x^2+2x + 3 = 0。

这个负号就像个小捣蛋鬼,但我们能搞定它找到x。

14. 求方程4x^2-4x + 1 = 0的解。

4这个家伙让方程看起来有点复杂,不过没关系。

15. 解方程 - 2x^2-3x + 1 = 0。

这个负2就像个小乌云,我们要拨开乌云见x。

16. 求解5x^2+2x - 3 = 0。

5在这里就像个大力士,不过我们要指挥它来找到x。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x 32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程()+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______. 10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________. 14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x 2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________. 三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y 2+1=; (3)(x-a)2=1-2a+a 2(a 是常数)18.(7分)已知关于x 的一元二次方程x 2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x 的解,你能求出m 和n 的值吗? 19.(10分)已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. (1)求证:不论k 为何值,方程总有两不相等实数根. (2)设x 1,x 2是方程的根,且 x 12-2kx 1+2x 1x 2=5,求k 的值. 四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD 二、9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k =四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元二次方程》基础练习
积累●整合
1、下列方程一定是关于x 的一元二次方程的是()
A .ax 2+bx+c=0
B .m 2x+5m+6=0
C .42x 3-33x -1=0
D .(k 2+3)x 2
+2x -3=0
2、一元二次方程x 2-2(3x -2)+(x+1)=0的一般形式是()
A .x 2-5x+5=0
B .x 2+5x -5=0
C .x 2+5x+5=0
D .x 2+5=0
3、方程3x 2-3x+3=0的二次项系数与一次项系数及常数项之积为(

A .3
B .-3
C .3
D .-9
4、下列方程中,不含一次项的是()
A .(2x -1)(1+2x )=0
B .3x 2=4x
C .2x 2=7-6x
D .x (1-x )=0
5、若x=1是方程x 2+nx+m=0的根,则m+n 的值是()
A .1
B .-1
C .2
D .-2
6、下列说法正确的是()
A .方程ax 2+bx+c=0是关于x 的一元二次方程
B .方程3x 2=4的常数项是4
C .若一元二次方程的常数项为0,则0必是它的一个根
D .当一次项系数为0时,一元二次方程总有非零解
7、关于x 的一元二次方程(a -1)x 2+x+a 2-1=0的一个根是0,则a 的值是(
)A .1
B .-1
C .1或-1
D .218、若ax 2-5x+3=0是一元二次方程,则不等式
3a+6>0的解集为()A .a >-2
B .a <-2
C .a >-21
D .a >-2且a ≠0
拓展●应用
9、若一元二次方程2x 2+(k+8)x -(2k -3)=0的二次项系数、一次项系数、常数项之和为5,则k=
10、若方程(m -1)x |m|+1-2x=3是关于x 的一元二次方程,则m=
11、写出一个一元二次方程,使方程有一个根为0,并且二次项系数为1,
12、已知x=-2是方程x 2-mx+2=0的根,则
122m m -269m m = 13、关于x 的方程(k 2-4)x 2+(k -2)x+3k -1=0,当k=
时为一元一次方程;当k 时为一元二次方程。

14、根据题意,列出方程:
(1)一个两位数,两个数字的和为
6,这两个数字的积等于这个两位数的31,设这个两位数的个位数为
x ,可列出关于x 的方程为(2)有一个面积为20cm 2的三角形,它的一条边比这条边上的高长3cm ,设这条边的长度为x ,可列出关于x 的方程为
探索●创新
15、学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:
(1)它的一般形式为ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)
(2)它的二次项系数为5
(3)常数项是二次项系数的倒数的相反数
你能写出一个符合条件的方程吗?
16、已知关于x的方程(m-n)x2+mx+n=0,你认为:(1)当m和n满足什么关系时,该方程是一元二次方程?(2)当m和n满足什么关系时,该方程是一元一次方程?
参考答案
1、答案:D 解析:A要想成为一元二次方程,需加条件a≠0,B需加条件m≠0,
C是一元三次方程,D中不论k为何值,k2+3永远为正,
所以D是一元二次方程,故选D
2、答案:A 解析:去括号,合并同类项即可得到答案A
3、答案:D 解析:二次项系数为3,一次项系数为-3,常数项为3,3×(-3)×3=-9
4、答案:A 解析:(2x-1)(1+2x)=4x2-1,故选A
5、答案:B 解析:将x=1代入x2+nx+m=0,得到1+n+m=0,即m+n=-1,故选B
6、答案:C 解析:A中需加上a≠0才是一元二次方程,B中的常数项为-4,
D中的一元二次方程解可能为0,例如:x2=0,故选C
7、答案:B 解析:将x=0代入方程得到a2-1=0,即a=±1,因为原方程为一
元二次方程,即a-1≠0,所以a≠1,所以a=-1,故选B 8、答案:D 解析:因为ax2-5x+3=0是一元二次方程,所以a≠0,3a+6>0,
即a>-2,所以a>-2且a≠0。

故选D
9、答案:8
解析:2+(k+8)+(-2k+3)=5,所以k=8
10、答案:-1
解析:|m|+1=2,所以m=±1,因为m-1≠0,即m≠1,所以m=-1 11、答案:x2-x=0(答案不唯一)
解析:发挥聪明才智,大胆想象
12、答案:-2
解析:将x=-2代入方程,m=-3,122m m -269m m =2
)1(m -2)3(m =1-m -3+m=-2
13、答案:-2,≠± 2
解析:方程为一元一次方程,k 2-4=0,即k=±2,且k -2≠0,即k ≠2,所以k=-2
方程为一元二次方程,k 2-4≠0,即k ≠±2
14、答案:(1)x (6-x )=31
[10(6-x )+x ]
(2)21
x (x -3)=20
解析:(1)个位数为x ,那么十位数为6-x ,根据题意得x (6-x )=31
[10
(6-x )+x ]
(2)这条边长度为x ,那么这条边上的高为x -3,根据三角形的面积
公式得21
x (x -3)=20
15、答案:这个方程是5x 2-2x -51
=0(答案不唯一)
解析:由(1)知这是一元二次方程,由(2)(3)可确定a 、c ,而b 的值不
唯一确定,可为任意数,熟悉一元二次方程的定义及特征是解答本题
的关键。

16、答案:(1)当m ≠n时,方程是一元二次方程
(2)当m=n 且m ≠0时,方程是一元一次方程
解析:本题主要考查一元二次方程及一元一次方程的定义,一元二次方程中
ax 2中的a 不可能为0,即m -n ≠0;而一元一次方程中ax 中的a 不可
能为0,即m ≠0。

对于一元二次方程ax 2+bx+c=0一定要注意“a ≠0”,
当二次项系数为0,而一次项系数不为0时为一元一次方程。

相关文档
最新文档