(完整版)新人教版八年级下册数学第十七章勾股定理教案

合集下载

人教版数学八年级下册第十七章勾股定理集体备课教学设计

人教版数学八年级下册第十七章勾股定理集体备课教学设计
1.培养学生对勾股定理的兴趣,激发他们学习数学的热情。
2.通过勾股定理的学习,使学生感受到数学的简洁美和统一美,增强他们对数学的热爱。
3.培养学生勇于探索、严谨求实的科学态度,使他们认识到数学在科学技术发展中的重要作用。
4.引导学生学会合作、分享,培养他们的人际沟通能力,增强团队意识。
5.培养学生具备良好的数学素养,使他们能够用数学的眼光观察世界,用数学的思维分析问题,用数学的语言表达观点。
二、学情分析
八年级下册的学生已经在之前的学习中掌握了直角三角形的基本性质,能够识别和运用直角三角形的边长关系。在此基础上,本章勾股定理的学习将是对学生已有知识的拓展和深化。学生在此阶段的认知发展水平逐渐从具体运算向形式运算过渡,他们具备了一定的逻辑推理能力和空间想象能力。因此,本章内容能够引导学生通过观察、思考、探究的方式,发现并理解勾股定理及其应用。
(2)注重培养学生的团队合作意识,引导学生在小组合作中相互学习、共同进步。
(3)关注学生的个体差异,因材施教,使每个学生都能在课堂上得到充分关注。
(4)创设轻松愉快的学习氛围,让学生在愉悦的情感状态下学习,提高学习效率。
5.教学反思:
教学结束后,教师应认真反思教学过程中的优点和不足,针对学生的反馈,调整教学策略,以提高教学效果。同时,关注学生在学习过程中遇到的问题,及时给予指导,帮助他们克服困难,提高自信心。
2.教师对学生的解答进行点评,针对共性问题进行讲解,提高学生的解题能力。
3.鼓励学生运用勾股定理解决实际问题,如计算建筑物的高度、距离等。
4.课堂练习过程中,关注学生的解题思路和方法,及时给予指导和鼓励。
(五)总结归纳
1.教师引导学生回顾本节课的学习内容,总结勾股定理的概念、证明方法和应用。

(完整版)新人教版八年级下册数学第十七章勾股定理教案

(完整版)新人教版八年级下册数学第十七章勾股定理教案

八年级下册数学第十七章勾股定理集体备课(教课设计)17.1 勾股定理(一)一、教课目的1.认识勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培育在实质生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所获得的成就,激发学生的爱国热忱,促其勤劳学习。

二、教课要点、难点1.要点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、讲堂引入当前生界上很多科学家正在试图找寻其余星球的“人”, 为此向宇宙发出了很多信号,如地球上人类的语言、 音乐、各样图形等。

我国数学家华罗庚曾建议,发射一种反应勾股定理的图形, 假如宇宙人是“文明人”, 那么他们必定会辨别这类语言的。

这个事实能够说明勾股定理的重要意义。

特别是在两千年前, 是特别了不起的成就。

让学生画一个直角边为 3cm 和 4cm 的直角△ ABC ,用刻度尺量出 AB 的长。

以上这个事实是我国古代 3000 多年前有一个叫商高的人发现的, 他说:“把一根直尺折成直角,两段连接得向来角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是 3,长的直角边(股)的长是 4,那么斜边(弦)的长是 5。

再画一个两直角边为 5 和 12 的直角△ ABC ,用刻度尺量 AB 的长。

你能否发现 32 +42 与 52 的关系, 52+122 和 132 的关系,即 32+42 =52,52+122=132,那么就有勾 2 +股 2=弦 2 。

关于随意的直角三角形也有这个性质吗?达成 23 页的研究,增补下表,你能发现正方形 A 、B 、C 的关系吗?A 的面积(单位面B 的面积(单位面C 的面积(单位面 积) 积) 积)图 1 图 2由此我们能够得出什么结论?可猜想:命题 1:假如直角三角形的两直角边分别为 a 、b ,斜边为 c , 那么 。

四、合作研究:方法 1:已知:在△ ABC 中,∠ C=90°,∠ A 、∠ B 、 DC∠ C 的对边为 a 、b 、c 。

人教版八年级数学下册《17.1勾股定理》教案

人教版八年级数学下册《17.1勾股定理》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例解释:
-在讲解勾股定理的表达式时,教师应通过图示和实际例子,让学生明确a、b、c分别代表直角三角形的哪三条边,并强调只有直角三角形才满足这一关系;
-在应用勾股定理解决实际问题时,教师应选取贴近学生生活的例子,如房屋的斜边长度计算,使学生理解数学与生活的紧密联系;
-在介绍证明方法时,教师应详细讲解每种方法的思路和步骤,让学生理解证明的逻辑过程。
-勾股定理在直角三角形中的运用,如求斜边或直角边的长度;
-结合实际情境,运用勾股定理解决问题,如房屋建筑、道路设计等;
-了解勾股定理的数学证明,包括几何证明和代数证明;
-了解勾股定理在古代数学史上的发现和应用。
二、核心素养目标
1.培养学生的逻辑推理能力:通过探索勾股定理的证明过程,让学生体会数学逻辑的严谨性,提高推理和证明能力;
五、教学反思
在今天的教学中,我发现学生们对勾股定理的概念和应用表现出很大的兴趣。通过引入日常生活中的实际问题,他们能够更直观地理解数学知识的应用。在讲授理论时,我注意到有些学生对于几何证明的部分感到困惑,这提示我需要在这个环节上多下功夫。
我尝试使用了不同的教学方法,比如通过动画和模型来展示证明过程,这样有助于学生理解抽象的数学原理。在实践活动环节,分组讨论和实验操作让学生们积极参与,他们不仅学会了如何应用勾股定理,还提高了团队合作能力。
这些核心素养目标与新教材要求相符,注重培养学生的综合能力和人文素养,为学生的终身发展奠定基础。

人教版八年级下册第十七章17.1勾股定理(教案)

人教版八年级下册第十七章17.1勾股定理(教案)
程度不同的练习题,使他们在原有基础上得到提高。
其次,在实践活动和小组讨论中,学生们表现出了很高的热情,积极投入到讨论和实验操作中。但我也观察到,有些小组在讨论过程中容易偏离主题,讨论内容与勾股定理的实际应用关系不大。针对这个问题,我需要在今后的教学中加强对学生的引导,确保讨论主题紧扣教学内容,提高课堂效率。
此外,在课堂总结环节,虽然大部分学生能较好地掌握勾股定理的知识点,但仍有少数学生存在疑问。为了帮助这部分学生更好地消化吸收课堂内容,我计划在课后设置答疑时间,鼓励他们提出问题,并及时给予解答。
-对勾股数的理解和应用:学生需要掌握勾股数的概念,并能够找出勾股数,这对于数感和数学直觉有一定要求。
举例解释:
a.在证明过程的难点上,例如,使用面积法证明勾股定理时,学生可能会难以理解如何从一个大正方形中分割出四个相同的直角三角形和一个中间的小正方形,以及如何通过这些图形的面积关系得出勾股定理。
b.在解决复杂问题的难点上,如在一个不规则图形中识别出直角三角形并应用勾股定理,或者在一个实际问题中,如测量旗杆高度时,学生可能不知道如何将问题抽象为直角三角形的模型,并应用勾股定理。
c.在勾股数的应用上,例如,学生可能知道3、4、5是一组勾股数,但不知道如何找出其他勾股数,或不理解勾股数在建筑、工程等领域中的应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情形?”比如,在篮球场地的角落,或是楼梯的形状。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)

人教版数学八下17.1《勾股定理》教案3篇

人教版数学八下17.1《勾股定理》教案3篇

初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A 、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案

新人教版第十七章勾股定理教案第十七章勾股定理第1课时勾股定理(1)教学目标:1.知识与技能:掌握勾股定理的内容,会用面积法证明勾股定理,能够应用勾股定理进行简单的计算和实际运用。

2.过程与方法:通过观察、猜想、归纳、验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想。

3.情感态度与价值观:在探索勾股定理的过程中,体验获得成功的快乐。

教学重点:知道勾股定理的结果,并能运用于解题。

教学难点:进一步发展学生的说理和简单推理的意识及能力。

教学准备:彩色粉笔、三角尺、图片、四个全等的直角三角形。

教学过程:一、课堂导入2002年世界数学家大会在我国北京召开,出示了本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号。

今天我们就来一同探索勾股定理。

二、合作探究让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。

这个事实是我国古代3000多年前有一个叫XXX的人发现的。

他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话的意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。

讨论:32+42与52有何关系?52+122和132有何关系?通过计算得到32+42=52,52+122=132,于是有勾2+股2=弦2.那么对于任意的直角三角形也有这个性质吗?用四个全等的直角三角形拼成如图所示的图形,其等量关系为:4S△+S小正=S大正,即4×ab+(b-a)2=c2,化简可得a2+b2=c2.三、证明定理勾股定理的证明方法达300余种。

下面这个古老的精彩的证法出自我国古代无名数学家之手。

已知:如图,在△ABC 中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

人教版八年级数学下册17.1《勾股定理》教学设计

人教版八年级数学下册17.1《勾股定理》教学设计
3.遇到问题及时请教同学或老师,解决问题,提高自身能力。
4.作业完成后,进行自我检查,确保答案正确。
2.勾股数的判断和应用,使学生能够灵活运用勾股数解决相关问题。
3.学生在解决实际问题时,能够将勾股定理与其他数学知识相结合,形成综合解决问题的能力。
教学设想:
1.创设情境,引入新课:通过讲述古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,激发学生的学习兴趣,为新课的学习营造良好的氛围。
2.自主探究,合作交流:引导学生通过观察、分析、归纳等思维活动,发现勾股定理。在此基础上,组织学生进行小组讨论,分享各自的发现和证明方法,培养学生的合作意识和交流能力。
2.提问引导:请学生们思考直角三角形的特点,回顾已学的直角三角形相关知识,为新课的学习做好铺垫。
(二)讲授新知
1.勾股定理的概念及表述:
"勾股定理是关于直角三角形的一个基本定理,它描述了直角三角形三条边之间的关系。具体来说,直角三角形的两条直角边的平方和等于斜边的平方。"
2.勾股定理的证明:
a.利用具体的直角三角形进行演示,引导学生观察、思考、发现勾股定理。
8.融入数学文化,培养人文素养:在教学过程中,适时融入数学历史文化,让学生了解勾股定理在人类文明发展中的地位和作用,培养他们的人文素养。
四、教学内容与过程
(一)导入新课
1.情境引入:通过古希腊数学家毕达哥拉斯在朋友家发现勾股定理的故事,引发学生对勾股定理的好奇心,激发学习兴趣。
"同学们,你们听说过古希腊数学家毕达哥拉斯吗?今天我们要学习的勾股定理,就是他在一次偶然的机会中发现的。让我们一起走进这个故事,探寻勾股定理的奥秘吧!"
"有兴趣的同学可以研究一下勾股数在三角形中的应用,以及它与三角形类型之间的关系,这将有助于你们更深入地理解勾股定理。"

人教版八年级数学下册17.1.1勾股定理(教案)

人教版八年级数学下册17.1.1勾股定理(教案)
在教学内容方面,我意识到需要更加强调勾股定理在生活中的应用。学生们对于理论知识的学习往往感到枯燥,但如果能让他们了解到这些知识在实际生活中的重要作用,相信他们会更有兴趣去学习。
最后,我会继续关注学生的学习反馈,以便在今后的教学中更好地满足他们的需求。通过不断反思和改进,我希望能够帮助学生们在数学学习上取得更好的成绩。
举例:在讲解勾股定理的应用时,可以给出具体例子,如直角三角形中,一边长为3,另一边长为4,求斜边长。强调学生需要将已知信息与勾股定理直接联系起来,得出斜边长为5的结论。
2.教学难点
-难点内容:勾股定理的证明及其在复杂问题中的应用。
-学生可能遇到的难点:
a.理解和掌握勾股定理的证明过程,尤其是割补法等几何证明方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如测量墙壁上的画作高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
b.在实际问题中,如何将问题抽象为直角三角形模型并应用勾股定理。
c.对于非整数勾股数或非标准直角三角形的识别和应用。
d.在计算过程中,对平方根的理解和运用。
举例:对于割补法的证明,教师可以通过动态演示或实际操作教具,帮助学生形象地理解证明过程。对于实际问题的应用,可以设计一些综合性的题目,如建筑物的高度测量,要求学生能够将实际问题转化为直角三角形的斜边求解问题。针对非整数勾股数,可以引导学生通过探索发现勾股定理在分数和根号下的应用。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和计算方法这两个重点。对于难点部分,如割补法的证明,我会通过图示和实际操作来帮助大家理解。

人教八下数学17.1.1勾股定理教案

人教八下数学17.1.1勾股定理教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
c)逆向应用:举例说明如何通过三边长度关系(如a²+b²=c²)来判断一个三角形是否为直角三角形,强调a、b、c在直角三角形中的位置关系。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形边长的情况?”(如测量墙角到地面的距离)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
-学会使用勾股定理解决实际问题,如计算直角三角形的边长。
-掌握勾股定理的证明方法,理解证明过程中的数学逻辑。
举例:重点讲解勾股数(如3、4、5)之间的关系,并通过实际例题演示如何运用勾股定理计算未知边长。
2.教学难点
-理解勾股定理的证明过程,尤其是如何从具体的直角三角形图形中抽象出数学关系。
-在解决实际问题时,如何正确判断哪些问题适用于勾股定理,以及如何建立数学模型。
本章内容将围绕勾股定理展开,使学生深入理解勾股定理的内涵,掌握其应用,并能运用所学知识解决实际问题。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,特别是在直角三角形中的应用,提高学生的数学应用素养。
2.通过勾股定理的探究与证明,发展学生的逻辑思维和空间想象能力,强化数学推理与证明素养。

八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八

八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八

勾股定理(1)知识与技能:掌握勾股定理和他的简单的应用,理解定理的一般探究方法。

过程与方法:在方格纸上通过计算面积的方法探索勾股定理的活动,让同学们经历观察、归纳、猜想和验证的数学发现过程,发展数与形结合的数学思想。

情感态度与价值观:在数学活动中发现探索意识和合作交流的良好学习习惯。

教学重点:经历探索和验证勾股定理的过程,会利用两边求直角三角形的另一边的长。

教学难点:拼图法验证勾股定理,会利用两边求直角形另一边的长。

教具准备:方格纸、4个全等的三角形,小黑板等。

教与学互动设计:一、创设情境导入新课引导学生观察课本第64页的地面图形,说说你发现了什么?提问:①图中有些什么形状?②三个正方形之间有什么关系?③通过②的结论你能有什么猜想?说说看。

二、实验操作探求新知1.数格子(1)要求学生在准备好的方格纸中作一个任意的等腰直角三角形,分别以三角形的边为边向三角形的外部作正方形。

观察三个正方形的面积之间有什么关系。

(2)要求学生在方格纸中作一个任意的直角三角形,分别以三角形的边为边向三角形的外部作正方形。

观察三个正方形的面积之间有什么关系。

(3)要求学生在方格纸中作一个任意的非直角三角形,分别以三角形的边为边向三角形的外部作正方形。

观察三个正方形的面积之间有什么关系。

讨论、得出结论:在一个直角三角形中,两直角边的平方和等于斜边的平方。

2.证明猜想。

10c20cm要求用四个全等到的直角三角形拼成一个以斜边为边长的正方形,推理得出 a 2+b 2=c 23.得出结论定理:经过证明被确认的命题叫做定理。

勾股定理:在一个直角三角形中,两直角边的平方和等于斜边的平方。

三、应用迁移例1.求下图中的字母A ,B 所代表的正方形的面积。

例2.一个文具盒的尺如图,一根长30cm 的细 木棒能否放进这个文具 盒,为什么?练习:填空(1)在Rt ∆ABC 中,∠C=90°,a=5,b=12,则c = (2)在Rt ∆ABC 中,∠B=90°,a=3,b=4,则c =(3)在等腰Rt ∆ABC 中,AC=BC ,∠C=90°,AC :BC :AB= (4)在Rt ∆ABC 中,∠C=90°,∠A=30°,BC :AC :AB= 探究2.如图,一个3 m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 的距离为,如果梯子的顶端A 沿墙下滑,那么梯子的底端B 也外移吗?练习:1.如图,阴影部分是一个正方形,求此正方形的面积。

新人教版八年级下数学精品教案:第十七章 勾股定理

新人教版八年级下数学精品教案:第十七章  勾股定理

17.1 勾股定理第1课时 勾股定1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长;(2)S △ABC ;(3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据面积公式得到CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =12×5×12=30(cm 2); (3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】 分类讨论思想在勾股定理中的应用在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 的周长.解析:本题应分△ABC 为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC 为锐角三角形时,如图①所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,如图②所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】 勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2. 方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A 、B 、C 、D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A 、B 、C 、D 的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时 勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】 勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC =5米,BC =13米,即可求得AB 的值,6秒后根据BC ,AC 长度即可求得AB 的值,然后解答即可.解:在Rt △ABC 中,BC =13米,AC =5米,则AB =BC 2-AC 2=12米.6秒后,B ′C =13-0.5×6=10米,则AB ′=B ′C 2-AC 2=53(米),则船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】 利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了1003km 到达B 点,然后再沿北偏西30°方向走了100km 到达目的地C 点,求出A 、C 两点之间的距离.解析:根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解.解:∵AD ∥BE ,∴∠ABE =∠DAB =60°.∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =1003km ,BC =100km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km),∴A 、C 两点之间的距离为200km.方法总结:先确定△ABC 是直角三角形,再根据各边长,用勾股定理可求出AC 的长.【类型三】 利用勾股定理解决立体图形最短距离问题如图,长方体的长BE =15cm ,宽AB =10cm ,高AD =20cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM ,AM =102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM ,AM =202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】 运用勾股定理解决折叠中的有关计算如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 的对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解析:连接BM ,MB ′.设AM =x ,在Rt △ABM 中,AB 2+AM 2=BM 2.在Rt △MDB ′中,MD 2+DB ′2.∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x=2,即AM =2.故选B.方法总结:解题的关键是设出适当的线段的长度为x ,然后用含有x 的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】 勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=a m,AC=b m,AD =x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC=a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,则10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.17.2 勾股定理的逆定理第1课时 勾股定理的逆定理1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =52+52=52,AC =32+32=32,AB =22+82=68.在△ABC 中,∵BC 2+AC 2=50+18=68,AB 2=68,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD 中,AE =EB ,AF=14AD .求证:CE ⊥EF .解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF .设正方形的边长为4,∵四边形ABCD 为正方形,∴AB =BC =CD =DA=4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,且∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2,3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件可求出AC ,再运用勾股定理可证△ACD 为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD 的面积.解:连接AC .∵∠B =90°,∴△ABC 为直角三角形,∴AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°.∴S 四边形ABCD =S △ABC +S △ACD =12×6×8+12×10×24=144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB=90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB =13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题第 11 页 共 11 页如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私A 艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意.反走私艇A 和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得距离C 艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC =12AB ·BC =12AC ·BE ,得BE =6013海里.由CE 2+BE 2=122,得CE =14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分. 答:走私艇C 最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。

人教版八年级数学下册第十七章-勾股定理-教案.docx

人教版八年级数学下册第十七章-勾股定理-教案.docx

17.1 勾股定理(第1课时)【教学任务分析】【教学环节安排】突出一下,换成下图你有什发现?说出你的观点其它直角三角形是否也存在这种关系?的面积C的面积:如果直角三角形的两直角边长分别为页,理解,提示:面积关系是图18.1-22.已知:如图在Rt△ABC中,∠C=90°,长3. 已知:如图,等边△ABC的边长是6cm教师布置作业,并提出要求学生课下独立完成,延续课堂17.1 勾股定理(第2课时)【教学任务分析】【教学环节安排】图18.1--73m长的梯子AB,斜靠在一竖直的2.5m,如果梯子的顶端A0.5m吗?由图根据勾股定理可求BD的长,看看是否是AB和CD是什么关系?分别求出OB、OD即可.提示:① AD 与BD17.1 勾股定理(第3课时)【教学任务分析】【教学环节安排】解:①在数轴上找到点A,使OA=3②过A点作直线L垂直于OA,,在③以O为圆心,以OB为半径画弧,交数轴于点教材69页,练习1、2题.2. 如图18.1-14,一根12米高的电线杆两侧各用15米的铁丝固.,欲测量松花江的宽度,沿江岸取B、C两点,在垂直江岸,测得BC=50米,∠B=60°,则求AC的长。

图18.1-16 图18.1-1718.1 第6题18.1 第10题17.1 勾股定理(第4课时)【教学任务分析】【教学环节安排】图18.1-26已知:如图,四边形ABCD中,°,CD=1cm,求BC的长。

17章勾股定理(小结与复习)【教学任务分析】【教学环节安排】78.解:提示:配成完全平方式9. 放置露在-短,(251010. 5秒和0都垂直.学习小组互相讨论,交流,展示第17章勾股定理教学活动【教学任务分析】【教学环节安排】2..如图,某学校(与公路车站(D店(C点),使之与该校之间的距离.如图,一只蚂蚁从实心长方体的顶点A处(三条棱长如图所示),问怎样走路线最短?最。

人教版数学八年级下册17.1《勾股定理(直角三角形三边的关系)》教案

人教版数学八年级下册17.1《勾股定理(直角三角形三边的关系)》教案
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的表达式:直角三角形两直角边的平方和等于斜边的平方。
-学会运用勾股定理计算直角三角形的边长。
-熟悉勾股定理的证明方法,如构造法、割补法等。
-能够识别和判断勾股数。
-掌握勾股定理在实际问题中的应用。
举例:在教学过程中,教师应通过多种例题和图形,反复强调勾股定理的表达式和应用方法,确保学生能够准确记忆并熟练运用。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形两直角边的平方和等于斜边的平方。它是解决直角三角形边长计算问题的关键,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过计算一个直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明方法这两个重点。对于难点部分,如证明过程的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如构造直角三角形模型,演示勾股定理的基本原理。
其次,在实践活动环节,我发现学生们在分组讨论时,有些小组的讨论并不充分,部分学生参与度不高。为了提高学生的参与度,我打算在接下来的课程中,尝试采取一些激励措施,如设立小组竞赛,鼓励学生积极发言,提高他们的讨论热情。
此外,在学生小组讨论环节,我发现有些学生对于勾股定理在实际生活中的应用了解不够深入。这可能是因为他们在生活中观察不够仔细,或者是对数学知识的应用意识不够强烈。针对这个问题,我计划在今后的教学中,多引入一些生活中的实际案例,让学生感受到数学知识的实用价值,激发他们学习数学的兴趣。

人教版八年级下册第17章勾股定理教学设计

人教版八年级下册第17章勾股定理教学设计
4.培养学生遵循数学规律、严谨治学的态度,养成独立思考、自主学习的好习惯。
二、学情分析
八年级下册的学生已经具备了一定的数学基础,掌握了基本的几何知识和代数运算。在此基础上,他们对勾股定理的学习将更加深入地理解直角三角形的性质,并为后续学习相似三角形、解直角三角形等内容奠定基础。学生在这个阶段好奇心强,求知欲旺盛,但逻辑思维能力和空间想象能力仍需进一步培养。此外,部分学生可能在学习过程中对几何证明产生恐惧心理,需要教师关注并引导。因此,在教学勾股定理时,教师应关注以下几点:
5.着重培养学生的几何直观和空间想象能力,为后续学习打下坚实基础。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的概念及表述。
2.掌握勾股定理的证明方法,能运用定理解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
(二)教学设想
1.教学导入:
-通过介绍勾股定理的历史背景,引发学生对勾股定理的好奇心,激发学习兴趣。
4.设计丰富的例题和练习,引导学生运用勾股定理解决实际问题,提高学生的应用能力和解题技巧。
(三)情感态度与价值观
1.培养学生对勾股定理的敬畏之心,认识到数学的简洁美和规律美,增强学生对数学的热爱。
2.引导学生体验探究过程,培养学生勇于探索、克服困难的精神,提高学生的自信心。
3.通过勾股定理在现实生活中的应用,使学生认识到数学与现实生活的紧密联系,培养学生的应用意识。
-利用多媒体展示直角三角形图像,让学生观察并思考直角三角形边长之间的关系。
2.新课导入:
-采用探究式教学法,引导学生通过观察、猜想、验证等步骤发现勾股定理。
-结合实际例题,让学生感受勾股定理在实际生活中的应用,培养学生的应用意识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学第十七章勾股定理集体备课(教案)17.1 勾股定理(一)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2.培养在实际生活中发现问题总结规律的意识和能力。

3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。

二、教学重点、难点1.重点:勾股定理的内容及证明。

2.难点:勾股定理的证明。

三、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。

我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。

这个事实可以说明勾股定理的重大意义。

尤其是在两千年前,是非常了不起的成就。

让学生画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。

以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。

”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。

再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。

你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

对于任意的直角三角形也有这个性质吗?命题1:如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么 。

四、合作探究:方法1:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。

⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正 AB4×21ab +(b -a )2=c 2,化简可证。

⑶发挥学生的想象能力拼出不同的图形,进行证明。

⑷ 勾股定理的证明方法,达300余种。

这个古老的精彩的证法,出自我国古代无名数学家之手。

激发学生的民族自豪感,和爱国情怀。

方法2:已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证:a 2+b 2=c 2。

分析:左右两边的正方形边长相等,则两个正方形的面积相等。

左边S=4×21ab +c 2 右边S=(a+b )2 左边和右边面积相等,即4×21ab +c 2=(a+b )2 化简可证。

五、课堂小结六、作业 P28页习题第1题七、教学反思17.1 勾股定理(二)一、教学目标1.会用勾股定理进行简单的计算。

2.树立数形结合的思想、分类讨论思想。

二、重点、难点1.重点:勾股定理的简单计算。

2.难点:勾股定理的灵活运用。

三、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。

学习勾股定理重在应用。

四、合作探究问题(1)在长方形ABCD 中AB 、BC 、AC 大小关系?(2)一个门框的尺寸如图1所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?b b b cccc a a a a bb b b a ac c a C2例:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.①求梯子的底端B距墙角O多少米?②如果梯的顶端A沿墙下滑0.5米至C.算一算,底端滑动的距离近似值(结果保留两位小数).O五、课堂小结六、作业 P28页习题第2、5题七、教学反思17.1 勾股定理(三)一、教学目标1.会用勾股定理解决较综合的问题。

2.树立数形结合的思想。

二、重点、难点1.重点:勾股定理的综合应用。

2.难点:勾股定理的综合应用。

三、课堂引入复习勾股定理的内容。

本节课探究勾股定理的综合应用。

四、合作探究:分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。

如图,已知OA=OB,(1)说出数轴上点A所表示的数。

图17.2-2(2)在数轴上作出8对应的点?AO 1B变式训练:在数轴上画出表示22,13--的点。

五、课堂小结六、作业 P28页习题第6题七、教学反思17.2 勾股定理的逆定理(一)一、教学目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2.探究勾股定理的逆定理的证明方法。

3.理解原命题、逆命题、逆定理的概念及关系。

二、重点、难点1.重点:掌握勾股定理的逆定理及证明。

2.难点:勾股定理的逆定理的证明。

三、课堂引入创设情境:⑴怎样判定一个三角形是等腰三角形?⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

四、合作交流:1、如图17.2-2,若△ABC 的三边长a 、b 、c 满足222c b a=+,试证明△ABC是直角三角形,请简要地写出证明过程.分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A 1B 1=c ,则通过三边对应相等的两个三角形全等可证。

⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。

充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

证明略。

2、.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题。

(2)什么叫互为逆定理。

(3)任何一个命题都有 _____,但任何一个定理未必都有 __ 3.说出下列命题的逆命题。

这些命题的逆命题成立吗? (1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

解略。

例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ;五、课堂小结六、作业 P34页习题第1题七、教学反思17.2 勾股定理的逆定理(二)一、教学目标1.灵活应用勾股定理及逆定理解决实际问题。

2.进一步加深性质定理与判定定理之间关系的认识。

二、重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题。

2.难点:灵活应用勾股定理及逆定理解决实际问题。

三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

四、自学展示:已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。

求:四边形ABCD 的面积。

归纳:求不规则图形的面积时,要把不规则图形分析:⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA );⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC 中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ;⑷利用梯形面积公式可解,或利用三角形的面积。

五、合作探究例2 “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗? 分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24, QR=30; ⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR-∠QPS=45°。

六、课堂小结让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

七、作业 P34页习题第3题EABCD E八、教学反思第17章 勾股定理复习(一)教学目标1.理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边.2.勾股定理的应用.3.会运用勾股定理的逆定理,判断直角三角形. 重点:掌握勾股定理及其逆定理.难点:理解勾股定理及其逆定理的应用. 一、复习回顾在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定理以及它的应用.其知识结构如下:1.勾股定理:(1)直角三角形两直角边的______和等于_______的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有: 这就是勾股定理.(2)勾股定理揭示了直角三角形___之间的数量关系,是解决有关线段计算问题的重要依据.22222222,,b a c a c b b c a +=-=-=,2222,a c b b c a -=-=.勾股定理的探索与验证,一般采用“构造法”.通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理. 2.勾股定理逆定理“若三角形的两条边的平方和等于第三边的平方,则这个三角形为________.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a 2+b 2=c 2),先构造一个直角边为a,b 的直角三角形,由勾股定理证明第三边为c,进而通过“SSS ”证明两个三角形全等,证明定理成立. 3.勾股定理的作用:(1)已知直角三角形的两边,求第三边;(2)在数轴上作出表示n (n 为正整数)的点.勾股定理的逆定理是用来判定一个三角形是否是直角三角形的.勾股定理的逆定理也可用来证明两直线是否垂直,勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.(3)三角形的三边分别为a 、b 、c ,其中c 为最大边,若222c b a =+,则三角形是直角三角形;若222c b a >+,则三角形是锐角三角形;若2<+c b a 22,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的最大边. 二、合作交流:例1:如果一个直角三角形的两条边长分别是6cm 和8cm ,那么这个三角形的周长和面积分别是多少?例2:如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .例3:.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4:.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E21EDCBA四、学习检测:1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .321,421,521 C .3,4,5 D .4,721,821 2.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍 B .2倍 C .3倍 D .4倍 3.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( )A .6cmB .8.5cmC .1330cm D .1360cm4.在△ABC 中,三条边的长分别为a ,b ,c ,a =n 2-1,b =2n ,c =n 2+1(n >1,且n 为整数),这个三角形是直角三角形吗?若是,哪个角是直角5.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm ,另一只朝左挖,每分钟挖6cm ,10分钟之后两只小鼹鼠相距( )A .50cmB .100cmC .140cmD .80cm6.等腰△ABC 的面积为12cm 2,底上的高AD =3cm ,则它的周长为 . 7.等边△ABC 的高为3cm ,以AB 为边的正方形面积为 .8.一个三角形的三边的比为5∶12∶13,它的周长为60cm ,则它的面积是 。

相关文档
最新文档