中考数学专题(一) 数、式、方程的计算
中考数学专题复习资料数与式
![中考数学专题复习资料数与式](https://img.taocdn.com/s3/m/7b008c30f8c75fbfc77db2fe.png)
第一轮中考复习——数及式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点及全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且及原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式及多项式统称为整式。
单项式:只含有数及字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
【2019-2021年】浙江省宁波市中考真题分类汇编专题1数与式、方程与不等式(解析版)
![【2019-2021年】浙江省宁波市中考真题分类汇编专题1数与式、方程与不等式(解析版)](https://img.taocdn.com/s3/m/da0a100eae45b307e87101f69e3143323968f5c3.png)
【2019-2021年】浙江省宁波市中考真题分类汇编专题1 数与式、方程与不等式1.(2019·宁波)-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。
2.(2019·宁波)下列计算正确的是()A. B. C. D.【答案】D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。
故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。
3.(2019·宁波)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。
故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.(2019·宁波)若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。
5.(2019·宁波)不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1.故答案为:A【分析】解不等式的步骤是:去分母、移项、合并同类项、系数化为1.根据解不等式的步骤计算即可求解。
九年级数学中考复习专题——方程与不等式(附答案)
![九年级数学中考复习专题——方程与不等式(附答案)](https://img.taocdn.com/s3/m/35dae211da38376bae1fae92.png)
知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。
(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。
(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。
知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。
中考数学 新定义题型专题01 数与式中的新定义问题(老师版)
![中考数学 新定义题型专题01 数与式中的新定义问题(老师版)](https://img.taocdn.com/s3/m/067510237dd184254b35eefdc8d376eeaeaa17de.png)
专题01 数与式中的新定义问题一、考情分析"新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。
它一般分为三种类型: (1)定义新运算;(2)定义初、高中知识衔接"新知识"; (3)定义新概念。
这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题.利用的数学思想:(1)转化的思想,把未知的问题转化为学过的知识解决。
(2)对全新的概念,需要灵活的迁移运用。
二、精选考题1.定义新运算:对于任意实数a 、b ,都有13a b a b =-⊗,则12x x -⊗⊗的值为 1 . 【解答】解:13a b a b =-⊗, 12131(132)x x x x ∴-=---⊗⊗131132x x =--+1=.故答案为:1.2.定义新运算:对于任意实数a ,b ,都有a ⊕(1)b a b b =+-,等式右边是通常的加法、减法及乘法运算,比如:3⊕23(21)2927=⨯+-=-=. (1)2⊕(3)-= 1- .(2)若2-⊕x 等于5-,则x = . 【解答】解:(1)原式2(31)(3)=⨯-+-- 2(2)3=⨯-+ 43=-+1=-.故答案为:1-.(2)由题意可知:2(1)5x x -+-=-, 225x x ∴---=-, 33x ∴-=-, 1x ∴=,故答案为:1.3.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:2a b a b =+⊗.例如3523511=⨯+=⊗;4(3)24(3)5-=⨯+-=⊗.若()2x y -=⊗,且21y x =-⊗,则20202020x y +=20203. 【解答】解:()2x y -=⊗,2()2x y ∴+-=①. 21y x =-⊗,41y x ∴+=-②.①+②得:331x y +=. 13x y ∴+=. 2020202020202020()3x y x y ∴+=+=. 故答案为:20203. 4.对于非零的两个实数m ,n ,定义一种新运算“&”,规定2&m n m n =-,若2&(3)7-=,则(3)&(2)--的值为 11 . 【解答】解:(3)&(2)--2(3)(2)=--- 92=+11=,故答案为:11.5.有一种用“☆”定义的新运算,对于任意实数a ,b ,都有a ☆221b b a =++.例如7☆24427131=+⨯+=.(1)已知m -☆3的结果是4-,则m = 7 .(2)将两个实数2n 和2n -用这种新定义“☆”加以运算,结果为9,则n 的值是多少? 【解答】解:(1)根据题意可得:m -☆233214m =-+=-, 解得:7m =; 故答案为:7;(2)根据题意可得:2n ☆(2)9n -=, 即2(2)419n n -++=, 解得:2n =或2-,(2)n -☆2242(2)19n n n =+-+=,解得:2n =-或32, 则2n =-或32或2. 6.规定:符号[]x 叫做取整符号,它表示不超过x 的最大整数,例如:[5]5=,[2.6]2=,[0.2]0=.现在有一列非负数1a ,2a ,3a ,⋯,已知110a =,当2n 时,11215([][])55n n n n a a ---=+--,则2022a 的值为 11 . 【解答】解:110a =, 21115([]0)115a a ∴=+--=,322115([][])1255a a =+--=,433215([][])1355a a =+--=,544315([][])1455a a =+--=,65415([1][])105a a =+--=,⋯1a ∴,2a ,3a ,⋯,每5个结果循环一次,202254042÷=⋯,2022211a a ∴==,故答案为:11.7.有一种用“☆”定义的新运算:对于任意实数a ,b 都有a ☆2b b a =+.例如7☆244723=+=.(1)已知m ☆2的结果是6,则m 的值是多少?(2)将两个实数n 和2n +用这种新定义“☆”加以运算,结果为4,则n 的值是多少? 【解答】解:(1)根据题中的新定义得:m ☆246m =+=, 解得:2m =;(2)根据题意得:n ☆(2)4n +=,即2(2)4n n ++=, 解得:0n =或5n =-; (2)n +☆224n n n =++=,解得:2n =-或1n =, 则0n =或5-或2-或1.8.请你阅读如图框内老师的新定义运算规定,然后解答下列各小题. (1)若x ⊕1y =,x ⊕22y =-,分别求出x 和y 的值; (2)若x 满足x ⊕20,且3x ⊕(8)0->,求x 的取值范围.【解答】解:(1)根据题意得4314322x y x y -=⎧⎨-⨯=-⎩,解得11x y =⎧⎨=⎩;(2)根据题意得4320433(8)0x x -⨯⎧⎨⨯-⨯->⎩,解得322x-<. 故x 的取值范围是322x-<. 9.用※定义一种新运算:对于任意实数m 和n ,规定m ※23n m n mn n =--,如:1※221212326=⨯-⨯-⨯=-.则(2)-( )A .B .-C .D .【解答】解:原式2(2)(2)=--==故选:A .10.定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如(a bi a +,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(3)(53)(35)(13)82i i i i -++=++-+=+;2(1)(3)1333(13)142i i i i i i i +⨯-=⨯-+⨯-=+-++=+. 根据以上信息,完成下列问题: (1)填空:3i = i - ,4i = ; (2)计算:(2)(34)i i +⨯-; (3)计算:2342022i i i i i ++++⋯+.【解答】解:(1)321i i i i i =⋅=-⋅=-,4221(1)1i i i =⋅=-⋅-=, 故答案为:i -,1; (2)(2)(34)i i +⨯-; 6834i i =-++105i =-;(3)2342022i i i i i ++++⋯+ 111i i i =--++⋯+-1i =-.11.阅读理解:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为(a bi a +,b 为实数),a 叫这个复数的实部,b 叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:2(1)(23)13234i i i i i i +⨯-=-+-=-. (1)填空:3i = i - ,4i = ; (2)(7)(7)i i +-; (3)计算:2(2)i +;(4化简成a bi +的形式. 【解答】解:(1)21i =-,32(1)i i i i i ∴=⋅=-⋅=-, 4222()(1)1i i ==-=, 3i i ∴=-,41i =,故答案为:i -,1; (2)(7)(7)i i +- 249i =- 49(1)=-- 50=;(3)2(2)i + 244i i =++ 34i =+;(4=====∴= 12.先阅读下列材料,再解答后面的问题:材料:一般地,若(0n a b a =>且1a ≠,0)b >,则n 叫做以a 为底b 的对数,记为log a b (即log )a b n =.如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814)=.问题:(1)计算:2log 16= 4 ,2331(log 9)813log += .(2)5log 5、5log 25、5log 125之间满足怎样的关系式,请说明理由. (3)由(2)的结果,你能归纳出一个一般性的结论吗? log log a a M N += (0a >,且1a ≠,0M >,0)N >.根据幂的运算法则:n m n m a a a +⋅=以及对数的含义证明上述结论. 【解答】解:(1)4216=, 2log 164∴=,239=,4381=, 3log 92∴=,8143log =,2331(log 9)813log ∴+21243=+⨯443=+ 163=, 故答案为:4;163; (2)555log 5log 25log 125+=,理由如下: 根据题意,5log 51=,5log 252=,5log 1253=, 555log 5log 25log 125∴+=;(3)log log log ()a a a M N MN +=,证明如下:设1log a M b =,2log a N b = 则1b a M =,2b a N =,∴1212b b b b MN a a a +=⋅=,又n m n m a a a +⋅=,∴1212b b b b a a a +⋅=,即log log log ()a a a M N MN +=, 故答案为:log ()a MN .13.定义:如果4(0,1)a N a a =>≠,那么x 叫做以a 为底N 的对数,记作log a x N =.例如:因为2749=,所以7log 492=;因为3125s =,所以log 1253S =.则下列说法中正确的有()个.①6log 636=;②3log 814=;③若4log (14)4a +=,则50a =;④222log 128log 16log 8=+; A .4B .3C .2D .1【解答】解:166=, 6log 61∴=,故①不符合题意;4381=,3log 814∴=,故②符合题意;44256=, 14256a ∴+=,242a ∴=,故③不符合题意;72128=, 2log 1287∴=,4216=, 2log 164∴=,328=, 2log 83∴=,743=+,222log 128log 16log 8∴=+,故④符合题意;综上所述,符合题意的有2个, 故选:C .14.对a ,b ,c ,d 定义一种新运算:a c ad bcb d =-,如232413514=⨯-⨯=,计算2x yx x y=+ 22x xy + .【解答】解:原式2()x x y xy =+-222x xy xy =+- 22x xy =+,故答案为:22x xy +.15.阅读材料:对于任何有理数,我们规定符号a b c d 的意义是:a bad bc c d=-.例如:14232=⨯-⨯=-.按照这个规定,解决下列问题: (1)请你计算3574-的值. (2)求当3x =,1y =-时,2222332x xy yx xy y+--+的值.(3)如果2157353x x -=--,求x 的值.【解答】解:(1)原式345(7)=⨯-⨯- 1235=+47=;(2)原式222(32)3(2)x xy y x xy y =-+-+-22642633x xy y x xy y =-+--+ 75xy y =-+;当3x =,1y =-时, 原式73(1)5(1)=-⨯⨯-+⨯- 216=-16=;(3)(3)(21)5(35)7x x ----=, 6315257x x -+-+=, 6257153x x -+=+-, 1919x =, 1x =.16.材料1:对于一个四位自然数M ,如果M 满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M 为“满天星数”.对于一个“满天星数” M ,同时将M 的个位数字交换到十位、十位数字交换到百位、百位数字交换到个位,得到一个新的四位数N ,规定:()9M NF M -=. 例如:2378M =,因为321-=,871-=,所以2378是“满天星数”;将M 的个位数字8交换到十位,将十位数字7交换到百位,将百位数字3交换到个位,得到2783N =,23782783(2378)459F -==-.材料2:对于任意四位自然数100010010(abcd a b c d a =+++、b 、c 、d 是整数且19a ,0b ,c ,9)d ,规定:()G abcd c d a b =⋅-⋅.根据以上材料,解决下列问题:(1)请判断2467、3489是不是“满天星数”,请说明理由;如果是,请求出对应的()F M 的值;(2)已知P 、Q 是“满天星数”,其中P 的千位数字为(m m 是整数且17)m ,个位数字为7;Q 的百位数字为5,十位数字为(s s 是整数且28)s .若()()G P G Q +能被11整除且s m >,求()F P 的值.【解答】解:(1)2467不是“满天星数”,3489是“满天星数”,理由如下: 2467的百位数字为4,千位数字为2,4221∴-=≠,2467∴不是“满天星数”.3489的千位数字为3,百位数字为4,十位数字为8,个位数字为9,431∴-=,981-=,3489M ∴=是“满天星数”, 3894N ∴=,34893894(3489)459F -∴==-. (2)由题意可得:(1)67P m m =+,45(1)Q s s =+,则1000100(1)6071100167P m m m =++++=+,4000500101450111Q s s s =++++=+. 2()67(1)42G P m m m m ∴=⨯-+=--,2()(1)2020G Q s s s s =+-=+-,2222()()422022G P G Q m m s s s s m m ∴+=--++-=+--+.()()G P G Q +能被11整除且s m >,∴只要22()()()(1)s s m m s m s m s m s m s m +--=+-+-=-++能被11整除.28s ,17m ,s 、m 均为整数,s m >,4116s m ∴++,111s m ∴++=即10s m +=.∴876234s s s m m m ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩或或. 2367P ∴=或3467或4567.23672673(2367)349F -∴==-,34673674(3467)239F -==-,45674675(4567)129F -==-. 17.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数-- “好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且426+=,6能被6整除;643不是“好数”,因为6410+=,10不能被3整除.问百位数字比十位数字大5的所有“好数”有 7 个.【解答】解:611,617,721,723,729,831,941共7个,理由:设十位数数字为a ,则百位数字为5(04a a +<的整数),525a a a ∴++=+,当1a =时,257a +=,7∴能被1,7整除,∴满足条件的三位数有611,617,当2a =时,259a +=,9∴能被1,3,9整除,∴满足条件的三位数有721,723,729,当3a =时,2511a +=,11∴能被1整除,∴满足条件的三位数有831,当4a =时,2513a +=,13∴能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.故答案为:7.18.阅读下列材料,解决问题.【材料1】对于任意一个多位数,如果它的各位数字之和除以一个正整数n 所得的余数与它自身除以这个正整数n 所得的余数相同,我们就称这个多位数是n 的“余同数”.例如:对于多位数2714,271439042÷=⋯,且(2714)342+++÷=⋯,则2714是3的“余同数”.【材料2】对于任意两个多位数A ,B ,若A 除以正整数n 所得的余数与B 除以正整数n 所得的余数相同,则A 与B 的差一定能被n 整除.(1)判断3142是否是5的“余同数”,并说明理由;(2)若一个三位数是7的“余同数”,它的百位数字与十位数字之和小于9,个位数字比百位数字大1,求所有符合条件的三位数.【解答】解:(1)不是,理由如下:31425628......2÷=,(3142)52+++÷=,3142∴不是5的同余数;(2)设这个三位数为10010a b c ++,则9a b +<,1c a =+,这个三位数是7的“余同数”,10010()a b c a b c ∴++-++能被7整除,10010()7a b c a b c ++-++ 100107a b c a b c ++---= 9997a b += 2147a b a b +=++, ∴27a b +是整数, 又18a ,09b ,9a b +<,1218a b ∴+<,27a b ∴+=或214a b +=,∴708a b c =⎧⎪=⎨⎪=⎩或516a b c =⎧⎪=⎨⎪=⎩或324a b c =⎧⎪=⎨⎪=⎩或132a b c =⎧⎪=⎨⎪=⎩或263a b c =⎧⎪=⎨⎪=⎩,综上,这个三位数为708或516或324或132或263.19.新定义题:小明在课外阅读中对有关“自定义型题”有了一定的了解,他也尝试着自定义了“颠倒数”的概念:从左到右写下一个自然数,再把它按从右到左的顺序写一遍,如果两数位数相同,这样就得到了这个数的“颠倒数”,如286的颠倒数是682.请你探究,解决下列问题:(1)请直接写出2022的“颠倒数”为 2202 .(2)能否找到一个数字填入空格,使由“颠倒数”构成的等式126⨯□=□621⨯成立? 请你用下列步骤探究“□”所表示的数字.①设这个数字为x ,将自然数“6□”和“□6”转化为用含x 的代数式表示分别为 和 ;②列出关于x 的满足条件的方程,并求出x 的值;③经检验,所求x 的值符合题意吗? (填“符合”或“不符合” )【解答】解:(1)由“颠倒数”的定义可得:2022的“颠倒数”为2202,故答案为:2202,;(2)①设这个数字为x ,自然数“6□”用含x 的代数式表示为:61060x x ⨯+=+,自然数“□6”用含x 的代数式表示为:106x +,故答案为:60x +,106x +;②由题意得:12(60)21(106)x x +=+,解得:3x =,x ∴的值为3;③检验:1263756⨯=,3621756⨯=,12633621∴⨯=⨯,3x ∴=符合题意,故答案为:符合.20.我们规定用(,)a b 表示一对数对,给出如下定义:记m=0,0)n a b =>>,将(,)m n 与(,)n m 称为数对(,)a b 的一对“对称数对”.例如:(4,1)的一对“对称数对”为1(2,1)与1(1,)2. (1)数对(25,4)的一对“对称数对”是 1(,2)5 和 ; (2)若数对(3,)y 的一对“对称数对”的两个数对相同,求y 的值;(3)若数对(,2)x 的一对“对称数对”的一个数对是1),求x 的值;(4)若数对(,)a b 的一对“对称数对”的一个数对是,求ab 的值.【解答】解:(1)由题意知:1,25m n ====, ∴数对(25,4)的一对“对称数对”是1(,2)5和1(2,)5, 故答案为:1(,2)5;1(2,)5.(2)数对(3,)y 的一对“对称数对”的两个数对相同,∴=,∴= ∴13y =.(3)数对(,2)x的一对“对称数对”是和,∴=,∴1=,1x∴=.(4)数对(,)a b的一对“对称数对”是和,∴====或,∴11327273a ab b⎧⎧==⎪⎪⎨⎨⎪⎪==⎩⎩或,∴199ab=或.21.若一个三位正整数m abc=(各个数位上的数字均不为0)满足9a b c++=,则称这个三位正整数为“长久数”.对于一个“长久数”m,将它的百位数字和个位数字交换以后得到新数n,记()9m nF m+=.如:216m=满足2169++=,则216为“长久数”,那么612n=,所以216612(216)929F+==.(1)求(234)F、(522)F的值;(2)对于任意一个“长久数”m,若()F m能被5整除,求所有满足条件的“长久数”.【解答】解:(1)当234m=时,2349++=,m是长久数,432n∴=,234432(234)749F+∴==.当522m=时,5229++=,m是长久数,225n∴=,522225(522)839F+∴==.(2)由题意得:10010m a b c=++,10010n c b a=++.1001010010()9a b c c b aF m+++++∴=101101209a c b ++= 101()209a cb ++=. 9a bc ++=,101(9)20()9b b F m -+∴= 901819b -= 1019b =-.又a 、b 、c 均为不为0的正整数,1b ∴=,2,3,⋯⋯,7. ∴当1b =时,()1019192F m =-⨯=,不能被5整除,舍去;当2b =时,()1019283F m =-⨯=,不能被5整除,舍去;当3b =时,()1019374F m =-⨯=,不能被5整除,舍去;当4b =时,()1019465F m =-⨯=,能被5整除,此时5a c +=,∴12344321a a a a c c c c ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩或或或. 144m ∴=或243或342或441.当5b =时,()1019556F m =-⨯=,不能被5整除,舍去;当6b =时,()1019647F m =-⨯=,不能被5整除,舍去;当7b =时,()1019738F m =-⨯=,不能被5整除,舍去.综上所述,所有满足条件的“长久数”有144或243或342或441.22.对于一个四位自然数N ,如果N 满足各数位上的数字不全相同且均不为0,它的千位数字减去个位数字之差等于百位数字减去十位数字之差,那么称这个数N 为“差同数”.对于一个“差同数” N ,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s ,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t ,规定:2()29s t F N +=.例如:7513N =,因为7351-=-,故:7513是一个“差同数”.所以:735122715318s t =-==-=,则:2236(7513)229F +==. (1)请判断2586、8734是否是“差同数”.如果是,请求出()F N 的值;(2)若自然数P ,Q 都是“差同数”,其中100010616P x y =++,1003042(19Q m n x =++,08y ,19m ,07n ,x ,y ,m ,n 都是整数),规定:()()F P k F Q =,当3()()F P F Q -能被11整除时,求k 的最小值.【解答】解:(1)对于2586,其各数位上的数字不全相同且均不为0,2658-≠-, 2586∴不是“差同数”, 对于8734,其各数位上的数字不全相同且均不为0,8473-=-,8734∴是“差同数”, 847311s ∴=-=,83749t =-=,1129(8734)129F +⨯∴==, 2586∴不是“差同数”,8734是“差同数”, (8734)1F =; (2)100010616100060010(1)6P x y x y =++=++++,P ∴的千位数字为x ,百位数字为6,十位数字为(1)y +,个位数字为6, 又自然数P 是差同数,66(1)x y ∴-=-+即11x y +=,(106)(61)1055p S x y x y ∴=+-+=--,(101)661065p t x y x y =++-=+-,10552(1065)()629y x y F P x --++-∴==-, 10030423000100402Q m n m n =++=++++,Q ∴的千位数字为3,百位数字为m ,十位数字为4,个位数字为(2)n +, 又自然数Q 是差同数,3(2)4n m ∴-+=-,即5m n +=,302(104)1028Q s n m n m ∴=++-+=-+,34(102)3210Q t m n m n =-++=--,10282(3210)()329n m m n F Q m -++--∴==-, 3()()3(6)(3)321F P F Q x m x m ∴-=---=+-,19x ,08y ,且11x y +=,39x ∴,19m ,07n ,且5m n +=,15m ∴,1132111x m ∴-+-,又321x m +-能被11整除,32111x m ∴+-=±或0,①当32111x m +-=-时,3x =,1m =,8y =,4n =, 此时,()363()312F P k F Q -===--; ②当32111x m +-=时,9x =,5m =,2y =,0n =, 此时,()963()352F P k F Q -===--; ③当3210x m +-=时,6x =,3m =,此时,()0F Q =,k ∴值不存在,综上,k 的最小值为32-.23.对于实数P ,我们规定:用的最小整数.2=,2=,现在对72进行如下操作: {}{}{}727299332===第一次第二次第三次,即对72只需进行3次操作后变为2.类比上述操作:对36只需进行 3 次操作后变为2;如果只需进行3次操作后变为2的所有正整数中最大的数为 .【解答】解:由题意得:现在对36进行如下操作: {}{}{}363666332===第一次第二次第三次,∴对36只需进行3次操作后变为2;现在对256进行如下操作: {}{}{}2562561616442===第一次第二次第三次,如果只需进行3次操作后变为2的所有正整数中最大的数为:256;故答案为:3,256.24.如果一个三位数满足各数位上的数字都不为0,且百位数字比十位数字大1,则称这个数为“阶梯数”.若s ,t 都是“阶梯数”,将组成s 的各数位上的数字中最大数字作为十位数字,组成t 的各数位上的数字中最小数字作为个位数字,得到一个新两位数m 叫做s ,t 的“萌数”,将组成s 的各数位上的数字中最小数字作为十位数字,组成t 的各数位上的数字中最大数字作为个位数字,得到一个新两位数n 叫做s ,t 的“曲数”,记(,)2F s t m n =+.例如:因为211-=,615-=,所以211和654都是“阶梯数”;211和654的“萌数” 24m =,“曲数” 16n =,(211,654)2241664F =⨯+=.(1)判断435 是 (填“是”或“否” )为“阶梯数”;(2)若(1)6s a a =-,(1)5t b b =+(其中25a <,69b <,且a ,b 都是整数),且(,)167F s t =,求满足条件的s 、t 的值;(3)若p 、q 都是“阶梯数”,其中100103p x y =++,20010q a b =++(其中23x ,18y ,28b 且a ,b ,x ,y 都是整数),当(F p ,132)(F q +,824)157=时,求(,)F p q 的值. 【解答】解:(1)435中,百位4比十位3大1,符号阶梯数定义.故答案为:是.(2)s 和t 的萌数为65,曲数为(1)(1)a b -+,(F s ∴,)265(1)(1)167t a b =⨯+-+=,解得4a =,6b =.436s ∴=,765b =.(3)p 、q 都是阶梯数,1y x ∴=-,1a =,又23x ,28b ,10010(1)3213p x x ∴=+-+=或323,212q =、213、214、215、216、217、218. (F p ∴、132)31210(1)3x =⨯+-+,(F q ,824)(102)218b =+⨯+,由(F p 、132)(F q +,824)157=,得102080x b +=,其中x 为偶数,2x ∴=,3b =,即213p =,213q =.(F p 、)2311375q =⨯+=.25.一个多位自然数分解为末三位与末三位以前的数,让末三位数减去末三位以前的数,所得的差能被13整除,则原多位数一定能被13整除.(1)判断266357 能 (选填“能”或“不能” )被13整除;(2)证明:任意一个多位自然数都满足上述规律;(3)将一个多位自然数分解为个位与个位之前的数,若让个位之前的数加上个位数的k 倍(k 为正整数),所得之和能被13整除,且原多位自然数也能被13整除,求当150k 时,所有满足条件的k 的值.【解答】(1)解:266357能被13整除;理由如下:266357的末三位数为357,末三位以前的数为266,35726691∴-=,91137÷=,266357∴能被13整除,故答案为:能;(2)证明:设这个多位数的末三位数为a ,末三位以前的数为b ,则这个多位数可表示为1000b a +,根据题意得:13(a b n n -=为整数),13a n b ∴=+,则1000100013100113b a b n b b n +=++=+,100113b n +可以被13整除,1000b a ∴+可以被13整除,∴任意一个三位以上的自然数都满足这个规律,即任意一个多位自然数都满足上述规律;(3)解:设个位之前及个位数分别为m 、n (出现的字母均为自然数),依题意不妨设13m kn t +=,则原多位数为10m n +,依题意不妨设1013m n s +=, 联立可得:3110(101)101313n k s t k t kn +=--=-+, 则31k +为13倍数,分别将1k =、2、3、4、550⋯代入可知,4k ∴=或17k =或30k =或43k =.26.一个三位自然数a ,满足各数位上的数字之和不超过10,并且个位数字与百位数字不同,我们称这个数为“完美数”.将a 的个位数字与百位数字交换得到一个新数a ',记G (a )11a a '-=.例如,当125a =时,521a '=,125521(125)3611G -==-;当370a =时,73a '=,37073(370)2711G -==. (1)判断236 不是 (选填“是”或“不是” )完美数,计算(321)G = ;(2)已知两个“完美数” m ,n ,满足10010m a b =++,100(09n c d b a =+<,09c ,09d ,a ,b ,c ,d 为整数),若()G m 能被7整除,且()()9(2)G m G n d +=+,求m n -的最小值.【解答】解:(1)2361110++=>,236∴不是完美数, 根据题意,321123(321)1811G -==; 故答案为:不是;18.(2)10010m a b =++,10010m b a '∴=++,100n c d =+,100n d c '∴=+,()()9(2)112m m n n G m G n d -'-'∴+=+=+, 22a b c d ∴-+=+,设()7G m x =,x 为整数, ∴9999711a b x -=,即9()7a b x -=, 09b a <,∴满足条件的a 只有7或8或9,当9a =时,m 不是完美数,故舍去,当8a =时,1b =,这个数是811,是完美数,此时,8122c d -+=+,即25c d =-,09c ,09d ,3d ∴=,1c =时,301n =,则510m n -=;4d =,3c =时,403n =,则811403408m n -=-=;5d =,5c =时,505n =,则811505306m n -=-=;6d =,7c =(舍去), ∴共有三种情况,最小的为306;当7a =时,0b =,这个数是710,是完美数,此时,7022c d -+=+,即25c d =-,09c ,09d ,3d ∴=,1c =时,301n =,则710301409m n -=-=;4d =,3c =时,403n =,则710403302m n -=-=;5d =,5c =时,505n =,则710505205m n -=-=;6d =,7c =(舍去), ∴共有三种情况,最小的为205;综上,m n -的最小值为205.27.阅读材料:我们知道,任意一个正整数k 都可以进行这样的分解:(k m n m =⨯,n 是正整数,且)m n ,在k 的所有这种分解中,如果m ,n 两因数之差的绝对值最小,我们就称m n⨯是k 的最佳分解,并规定:()m f k n=.例如:18可以分解成118⨯,29⨯或36⨯,因为1819263->->-,所以36⨯是18的最佳分解,所以31(18)62f ==. (1)计算:f (6)=23 ,f (4)= ,2()f x = .(其中x 为正整数) (2)若21010(2)1011f x x +=,其中x 是正整数,求x 的值. (3)若2(9)1f x -=,其中x 是正整数,求x 的值.【解答】解:(1)6的最佳分解为23⨯,所以f (6)23=;4的最佳分解为22⨯,所以f (4)1=;2x 的最佳分解为x x ⋅,所以2()1f x =. 故答案为:23;1;1. (2)22x x +的最佳分解为:(2)x x +, ∴2(2)2x f x x x +=+, 又21010(2)1011f x x +=, 所以101021011x x =+, 解得2020x =,经检验,2020x =符合题意.(3)由2(9)1f x -=,可设229(x t t -=为正整数),即2(3)(3)x x t +-=,33x t x ∴-<<+,有以下几种情况:①当2t x =-时,229(2)x x -=-,解得134x =(舍去); ②当1t x =-时,229(1)x x -=-,解得5x =;③当t x =时,229x x -=,无解;④当1t x =+时,229(1)x x -=+,解得5x =-;⑤当2t x =+时,229(2)x x -=+,解得134x =-; 综上所述,5x =.28.阅读下列材料:材料一:对于一个百位数字不为0的四位自然数M ,以它的百位数字作为十位,十位数字作为个位,得到一个两位数m ,若m 等于M 的千位数字与个位数字的平方差,则称数M 为“平方差数”.例如:7136是“平方差数”,因为227613-=,所以7136是“平方差数”;又如:4251不是“平方差数”,因为22411525-=≠,所以4251不是“平方差数”.材料二:我们有时可以利用分解因数的方法解决求整数解的问题,例如:若p ,q 为两个正整数()18p q pq >=,则p ,q 为18的正因数,又因为18可以分解为181⨯或92⨯或63⨯,所以方程18pq =的正整数解为181p q =⎧⎨=⎩或92p q =⎧⎨=⎩或63p q =⎧⎨=⎩. 根据上述材料解决问题:(1)判断9810,6361是否是“平方差数”?并说明理由;(2)若一个四位“平方差数” M ,将它的千位数字、个位数字及m 相加,其和为30,求所有满足条件的“平方差数” M .【解答】解:(1)9810是“平方差数”,229081-=,9810∴是“平方差数”; 6361不是“平方差数”,22613536-=≠,6361∴不是“平方差数”. (2)设M 的千位数字为a ,个位数字为b ,则22m a b =-,由题意得2230a b a b ++-=,即()(1)30a b a b +-+=.a b +>,11a b -+>且均为30的正因数,∴将30分解为215⨯或310⨯或56⨯.①()(1)215a b a b +-+=⨯,解得87a b =⎧⎨=⎩,即8157M =; ②()(1)310a b a b +-+=⨯,解得64a b =⎧⎨=⎩,即6204M =; ③()(1)56a b a b +-+=⨯,解得50a b =⎧⎨=⎩,即5250M =; 解得51a b =⎧⎨=⎩,即5241M =.8157∴=或6204或5250或5241.M29.【阅读】在数轴上,若点A表示数a,点B表示数b,则点A与点B之间的距离为AB a b=-.||例如:两点A,B表示的数分别为3,1AB=--=.-,那么|3(1)|4(1)若|3|2x-=,则x的值为1或5.(2)当x=(x是整数)时,式子|1||2|3-++=成立.x x(3)在数轴上,点A表示数a,点P表示数p.我们定义:当||1-=时,点P叫点A的1倍伴随点,p a当||2-=时,点P叫点A的2倍伴随点,p a⋯当||-=时,点P叫点A的n倍伴随点.p a n试探究下列问题:若点M是点A的1倍伴随点,点N是点B的2倍伴随点,是否存在这样的点A和点B,使得点M恰与点N重合,若存在,求出线段AB的长;若不存在,请说明理由.【解答】解:(1)|3|2x-=,表示到表示数x的点到表示数3的点的距离为2,当表示数x的点在表示数3的点的左侧时,321x=-=;当表示数x的点在表示数3的点的右侧时,325x=+=;故答案为:1或5;(2)|1||2|3-++=表示的是表示数x的点到表示数1的点的距离和表示数2x x-的点的距离之和,分下列三种情况:①当表示数x的点在2-到1之间时,如图1,此时|1||2|3-++=成立;x x满足条件的x的整数为2-,1-,0,1;②当表示数x的点在2-左侧时,如图2,此时|1||2|3-++>,不存在这样的点;x x③表示数x的点在1右侧时,如图3,此时|1||2|3-++>,不存在这样的点;x x故答案为:2-或1-或0或1;(3)存在,理由如下:设点M 所表示的数位m ,点A 所表示的数为a ,点B 所表示的数为b ,点M 和N 重合,∴点N 所表示的数为n ,点M 是点A 的1倍伴随点,点N 是点B 的2倍伴随点,||1m a ∴-=,||2m b -=,12m a b ∴=±=±,当12a b +=+时,1a b -=,此时1AB =;当12a b +=-时,3a b -=-,此时3AB =;当12a b -=+时,3a b -=,此时3AB =;当12a b -=-时,1a b -=-,此时1AB =;综上,存在,此时AB 的长为1或3.30.如果一个自然数M 能分解成A B ⨯,其中A 和B 都是两位数,且A 与B 的十位数字之和为10,个位数字之和为9,则称M 为“十全九美数”,把M 分解成A B ⨯的过程称为“全美分解”,例如:28384366=⨯,4610+=,369+=,2838∴是“十全九美数“;3912317=⨯,2110+≠,391∴不是“十全九美数”. (1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M 是“十全九美数“,“全美分解”为A B ⨯,将A 的十位数字与个位数字的差,与B 的十位数字与个位数字的和求和记为()S M ;将A 的十位数字与个位数字的和,与B 的十位数字与个位数字的差求差记为()T M .当()()S M T M 能被5整除时,求出所有满足条件的自然数M . 【解答】解:(1)2100是“十全九美数”,168不是“十全九美数”,理由如下: 21002584=⨯,2810+=,549+=,2100∴是“十全九美数”;1681412=⨯,10l l +≠,168∴不是“十全九美数“;(2)设A 的十位数字为m ,个位数字为n ,则10A m n =+, M 是“十全九美数”, M A B =⨯, B ∴的十位数字为10m -,个位数字为9n -,则10(10)910910B m n m n =-+-=--, 由题知:()109192S M m n m n n =-+-+-=-,()[10(9)]21T M m n m n m =+----=-, 根据题意,令()1925(()21S M n k k T M m -==-为整数), 由题意知:19m ,09n ,且都为整数,119219n ∴-,12117m -,当k l =时,192521n m -=-, ∴1925211n m -=⎧⎨-=⎩或19210212n m -=⎧⎨-=⎩或19215213n m -=⎧⎨-=⎩, 解得17m n =⎧⎨=⎩或3292m n ⎧=⎪⎪⎨⎪=⎪⎩(舍去)或22m n =⎧⎨=⎩; 17921564M A B ∴=⨯=⨯=或22871914M A B =⨯=⨯=;当2k =时,1921021n m -=-, ∴19210211n m -=⎧⎨-=⎩, 解得192m n =⎧⎪⎨=⎪⎩(舍去); 当3k =时,1921521n m -=-, ∴19215211n m -=⎧⎨-=⎩, 解得12m n =⎧⎨=⎩; 12971164M A B ∴=⨯=⨯=,综上,满足“十全九美数”条件的M 有:1564或1914或1164.31.一个自然数能分解成A B ⨯,其中A ,B 均为两位数,A 的十位数字比B 的十位数字大1,且A ,B 的个位数字之和为10,则称这个自然数为“分解数”.例如:48197961=⨯,7比6大1,1910+=,4819∴是“分解数”;又如:14964434=⨯,4比3大1,4410+≠,1496∴不是“分解数”.(1)判断325,851是否是“分解数”,并说明理由;(2)自然数M A B =⨯为“分解数”,若A 的十位数字与B 的个位数字的和为()P M ,A 的个位数字与B 的十位数字的和()F M ,令()()()P M G M F M =,当()G M 为整数时,则称M 为“整分解数”.若B 的十位数字能被2整除,求所有满足条件的“整分解数” M .【解答】解:(1)3252513=⨯,2比1大1,5310+≠,325∴不是“分解数”; 68513723=⨯,3比2大l ,7310+=,851∴是“分解数”. (2)令10B x y =+,10(1)10A x y =++-,(8l x <<,19y ,且x ,y 为整数), ()1P M x y =++,()10F m x y =-+,1()10x y G M x y ++∴=-+,2x 为整数, 2x ∴=,4,6,8,当2x =时,315()11212y G M y y +==-+-+-+,为整数, 12y ∴-+的值为3或5,解得9y =或7,13129899M ∴=⨯=,23327891M =⨯=;当4x =或6x =时,不存在()G M 为整数,∴舍去;当8x =时,927()11818y G M y y +==-+-+-+为整数, 189y ∴-+=,解得9y =,391898099M ∴=⨯=.综上所述,M 的值为899,891,8099.32.对于任意一个四位数N ,如果N 满足各个位上的数字互不相同,且个位数字不为0,N的百位上的数字与十位上的数字之差是千位上的数字与个位上的数字之差的2倍,则称这个四位数N 为“双减数”.对于一个“双减数” N abcd =,将它的千位和百位构成的两位数为ab ,个位和十位构成的两位数为dc ,规定;()12ab dc F N -=. 例如:7028N =.因为2(78)02⨯-=-,故7028是一个“双减数”,则7082(7028)112F -==-. (1)判断9527,6713是否是“双减数”,并说明理由,如果是,并求出()F N 的值;(2)若自然数A 为“双减数”, F (A )是3的倍数,且A 各个数位上的数字之和能被13整除,求A 的值.【解答】解:(1)9527:523-=,972-=,不满足“双减数”的定义,故9527不是双减数;6713:716-=,633-=,满足623=⨯,且满足各个位上的数字互不相同,且个位数字不为0,故6713是双减数;6731(6713)312F -==. 9527∴不是双减数,6713是双减数,(6713)3F =.(2)设A abcd =,由题意可知,F (A )是3的倍数,且A 各个数位上的数字之和能被13整除且百位数与十位数之差是千位数与个位数之差的两倍.()312ab dc F A k -∴==. 13a b c d n +++=②(n 为正整数,能被13整除说明是13的倍数), 2()b c a d -=-③,由③式可得知,ab dc -的结果中,个位数是十位数的两倍,而且()312ab dc F A k -==①. ∴36ab dc k -=,(说明ab dc -是36的倍数), 根据“双减数“各位数不重复与0d ≠的性质,ab 最大为98,dc 最小为10,ab dc ∴-最大为88, ∴36ab dc -=或36-或72(舍去)或72-(舍去),(根据“双减数“百位上的数字与十位上的数字之差是千位上的数字与个位上的数字之差的2倍排除),3a d ∴-=,6b c -=或3a d -=-,6b c -=-,即3a d =+④,6b c =+⑤或3a d =-⑥,6b c =-⑦,将④⑤代入②可得,(3)(6)13d c c d n ++-++=, 将⑥⑦代入②可得,(3)(6)13d c c d n -+-++=, 同理,根据“双减数“的性质可得a b c d +++的最大值为987630+++=,最小值为01236+++=,630a b c d ∴+++,a b c d ∴+++是13的倍数,a b c d ∴+++只能取13或26.Ⅰ、当13a b c d +++=时,可得2d c +=或11d c +=;当2d c +=时,d 与c 的值可能为20d c =⎧⎨=⎩,02d c =⎧⎨=⎩(舍去),11d c =⎧⎨=⎩(舍去),(根据双减数个位数不能为0,且每位数不相等排除), 即20d c =⎧⎨=⎩; 当11d c +=时,2a b +=,则20a b =⎧⎨=⎩,02a b =⎧⎨=⎩(舍去),11a b =⎧⎨=⎩(舍去), 即20a b =⎧⎨=⎩,此时,6c =,5d =. Ⅱ、当26a b c d +++=时,可得2()17d c +=,2()35d c +=. 172d c +=(舍去)或352d c +=(由于d ,c 不为整数,与题意不符,故舍去), 3235a d ∴=+=+=,66b c =+=5602A ∴=或2065.33.对于一个四位自然数(R abcd a =,b ,c ,d 不全相同且均不为0),如果a d b c -=-,那么称这个数R 为“天平数”,对于一个“天平数” R ,将它的千位和个位构成的两位数减去百位和十位构成的两位数所得差记为s ,将它的千位和十位构成的两位数减去百位和个位构成的两位数所得差记为t ,规定:()10s t f R +=;例如:8734R =,因为8473-=-,故:8734是一个“天平数”.所以:847311s =-=,83749t =-=,则:119()210f R +==. (1)请判断7513是否是“天平数”,如果是,请求出()f R 的值;如果不是,请说明理由;(2)若自然数M ,N 都是“天平数”,其中1007051M x y =++,100010512(19N m n x =++,08y ,19m ,08n ,x ,y ,m ,n 都是整数),规定:()()f M k f N =,当()()4f N f M -=时,求k 的值. 【解答】解:(1)是,且(7513)4f =,理由如下:7351-=-,7513∴是一个“天平数”. 735122s ∴=-=,715318t =-=,2218(7513)410f +∴==; (2)1007051700010050(1)M x y x y =++=++++,M ∴的前位数字是7,百位数字是x ,十位数字是5,个位数字是1y +, M 是“天平数”, 7(1)5y x ∴-+=-,即11x y +=,(701)(105)6610Ms y x x y ∴=++-+=-+,75(101)7410Mt x y x y =-++=--,66107410()1421010s t x y x y f M x +-++--∴===-, 100010512100050010(1)2N m n m n =++=++++,N ∴的前位数字是m ,百位数字是5,十位数字是(1)n +,个位数字是2, N 是“天平数”, 25(1)m n ∴-=+,即6m n +=,(102)(501)1049Ns m n m n ∴=+-++=--,(101)521051Nt m n m n =++-=+-,10491051()2101010s t m n m n f N m +--++-∴===-, 19x ,08y 且11x y +=,39x ∴,19m ,08n ,且6m n +=,16m ∴,()()(210)(142)22244f N f M m x x m -=---=+-=,14x m ∴+=,14x m ∴=-,56m ∴, 此时,()142721()21055f M x m k f N m m m --====----, 当5m =时,k 值不存在;当6m =时,1k =-,综上,k 的值为1-.34.如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为8,则称数M 为“团圆数”,并把数M 分解成M A B =⨯的过程,称为“欢乐分解”.例如:5722226=⨯,22和26的十位数字相同,个位数字之和为8,572∴是“团圆数”. 又如:2341813=⨯,18和13的十位数字相同,但个位数字之和不等于8,234∴不是“团圆数”.(1)最小的“团圆数”是 187 ;(2)判断195,621是否是“团圆数”?并说明理由;(3)把一个“团圆数” M 进行“欢乐分解”,即M A B =⨯,A 与B 之和记为()P M ,A 与B 差的绝对值记为()Q M ,令()()()P M G M Q M =,当()G M 能被8整除时,求出所有满足条件的M 的值. 【解答】解:(1)由题意可知,最小的“团圆数”十位数字是1,个位数字分别为1和7, ∴最小的“团圆数”是1117187⨯=,故答案为:187;(2)1951315=⨯,且358+=,195∴是“团圆数”, 6212327=⨯,378+≠,621∴不是“团圆数”; (3)设10A a b =+,则108B a b =+-,208A B a ∴+=+,|||28|A B b -=-,()()()||P M A B G M Q M A B +==-能被8整除, ∴2088|28|a kb +=-,k 为整数, 52(|4|)4a b k ∴+=-,52a ∴+是4的倍数,∴满足条件的a 有2,6,若2a =,则488|28|k b =-,k 为整数, ∴3|4|k b =-, |4|b ∴-是3的因数,43b ∴-=-,1-,1,3,∴满足条件的b 有1,3,5,7,21A ∴=,27B =或23A =,25B =或25A =,23B =或27A =,21B =,567A B ∴⨯=或575,若6a =,则1288|28|k b =-,k 为整数, ∴8|4|k b =-, |4|b ∴-是8的因数,48b ∴-=-,4-,2-,1-,1,2,4,8,∴满足条件的b 有2,3,5,6,62A ∴=,66B =或63A =,65B =或65A =,63B =或66A =,62B =,62664092A B ∴⨯=⨯=或4095,综上,M 的值为567或575或4092或4095.35.对于任意一个四位数m ,若m 满足各数位上的数字都不为0,且千位与百位上的数字不相等,十位与个位上的数字不相等,那么称这个数为“智慧数”.将一个“智慧数” m 的任意一个数位上的数字去掉后可以得到四个新三位数,把这四个新三位数的和与3的商记为()F m .例如“智慧数” 1234m =,去掉千位上的数字得到234,去掉百位上的数字得到134,去掉十位上的数字得到124,去掉个位上的数字得到123.这四个新三位数的和为234134124123615+++=,6153205÷=,所以(1234)205F =.(1)计算:(2131)F = 262 ;(5876)F = ;(2)若“智想数” 780010(15n x y x =++,19y ,x ,y 都是正整数),()F n 也是“智慧数”,且()F n 能被12整除,求满足条件的n 的值.【解答】解:(1)(2131)(213211231131)3262F =+++÷=;(5876)(587586576876)3875F =+++÷=;故答案为:262;875;(2) “智慧树” 78001071000810010n x y x y =++=⨯+⨯++, ∴数n 的千位上的数为7,百位上的数为8,十位上的数为x ,个位上的数为y , ()(7807807001080010)310207F n x y x y x y x y ∴=+++++++++÷=++, 15x ,19y ,()F n 也是“智慧数”,且()F n 能被12整除, ∴可设()1020712F n x y k =++=,即()F n 是3的倍数,也是4的倍数, ()743403402333F n x y x y k x ++∴==+=++,且()3F n 是4的倍数, 当1x =时,y 可取2,5,8,此时()3433F n =(舍)或344或345(舍),此时()1032F n =,符合定义,7815n =;当2x =时,y 可取1,4,7,此时()3453F n =(舍)或346(舍)或347(舍),无符合题意的n ;当3x =时,()340733F n y =++,y 可取3,6,9,此时()3483F n =或349(舍)或350(舍),此时()7833F n =,不符合题意;当4x =时,y 可取2,5,8,此时()3503F n =(舍)或351(舍)或352,此时()1056F n =,7848n =, 当5x =时,y 可取1,4,7,此时()3523F n =或353(舍)或354(舍),此时()1056F n =,7851n =, 综上,符合题意的点n 值为7815或7848或7851.。
江苏省苏州市中考数学专题训练(一)数与式的运算与求值-人教版初中九年级全册数学试题
![江苏省苏州市中考数学专题训练(一)数与式的运算与求值-人教版初中九年级全册数学试题](https://img.taocdn.com/s3/m/69cf4aba69eae009591becc4.png)
2017中考数学专题训练(一)数与式的运算与求值本专题主要考查实数的运算、整式与分式的化简与求值,纵观5年中考往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值,还应注意整体思想和各种解题技巧.类型1 实数的运算【例1】计算:|-3|+2sin 45°+tan 60°-(-13)-1-12+(π-3)0.【解析】先理清和熟悉每项小单元的运算方法,把握运算的符号技巧. 【学生解答】原式=3+2×22+3-(-3)-23+1=3+1+3+3-23+1=5. 针对练习1.(2016某某中考)计算:|2-3|-16+⎝ ⎛⎭⎪⎫130. 解:原式=3-2-4+1=- 2.2.(2016某某中考)计算:4sin 60°+|3-12|-⎝ ⎛⎭⎪⎫12-1+(π-2 016)0.解:原式=4×32+ (23-3)-2+1 =23+23-3-2+1 =43-4.3.(2016某某中考)计算:(-1)2 016+8-|-2|-(π-3.14)0.解:原式=1+22-2-1 =22- 2 = 2.4.(2016某某中考)计算:⎝ ⎛⎭⎪⎫13-1-12+2tan 60°-(2-3)0.解:原式=3-23+23-1=2.类型2 整式的运算与求法【例2】先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 【解析】认真观察式子特点,灵活运用乘法公式化简,再考虑代入求值. 【学生解答】原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2,当x =-1,y =33时,原式=-1+1=0. 针对练习5.(2016某某中考)先化简,再求值:x (x -2)+(x +1)2,其中x =1. 解:原式=x 2-2x +x 2+2x +1=2x 2x =1时,原式=2×12+1=3.6.(2016某某中考)先化简,再求值(x +2)(x -2)+x (4-x ),其中x =14.解:原式=x 2-4+4x -x 2=4xx =14时,原式=4×14-4=-3.7.已知x 2-4x -1=0,求代数式(2x -3)2-(x +y )(x -y )-y 2的值.解:原式=4x 2-12x +9-x 2+y 2-y 2=3x 2-12x +9=3(x 2-4x +3),∵x 2-4x -1=0,即x 2-4x =1,∴原式=12.8.已知多项式A =(x +2)2+(1-x )(2+x )-3. (1)化简多项式A ;(2)若(x +1)2=6,求A 的值.解:(1)A =x 2+4x +4+2-2x +x -x 2-3=3x +3;(2)(x +1)2=6,则x +1=±6,∴A =3x +3=3(x +1)=±3 6.类型3 分式的化简求值【例3】已知x 2-4x +1=0,求2(x -1)x -4-x +6x的值.【解析】先化简所求式子,再看其结果与已知条件之间的联系,能否整体代入.【学生解答】原式=2x (x -1)-(x -4)(x +6)x (x -4)=x 2-4x +24x 2-4x,∵x 2-4x +1=0,∴x 2-4x =-1.原式=-1+24-1=-23. 针对练习9.(2016随州中考)先化简,再求值:⎝ ⎛⎭⎪⎫3x +1-x +1÷x 2+4x +4x +1,其中x =2-2.解:原式=⎣⎢⎡⎦⎥⎤3x +1-(x +1)(x -1)x +1·x +1(x +2)2=-(x +2)(x -2)x +1·x +1(x +2)2=2-x x +2,当x =2-2时,原式=2-2+22-2+2=4-22=22-1.10.先化简代数式 (3a a -2-a a +2)÷aa 2-4,再从0,1,2三个数中选择适当的数作为a 的值代入求值.解:原式=3a (a +2)-a (a -2)(a +2)(a -2)·(a +2)(a -2)a =2a 2+8a (a +2)(a -2)·(a +2)(a -2)a =2a (a +4)a=2aa =1时,2a +8=10.11.先化简,再求值:(a +1a +2)÷(a -2+3a +2),其中a 满足a -2=0.解:原式=a (a +2)+1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1,当a -2=0,即a =2时,原式=312.(2016某某中考)先化简,再求值:⎝ ⎛⎭⎪⎫x 2-y x -x -1÷x 2-y 2x 2-2xy +y 2,其中x =2,y = 6. 解:原式=⎝ ⎛⎭⎪⎫x 2-y x -x 2x -x x ×(x -y )2(x +y )(x -y )=-y -x x ×x -y x +y =-x -y x ,把x =2,y =6代入得:原式=-2-62=-1+ 3.13.(2016某某中考)先化简,后求值:⎝⎛⎭⎪⎫x x -2-4x 2-2x ÷x +2x 2-x,其中x 满足x 2-x -2=0.解:原式=x 2-4x (x -2)·x (x -1)x +2=(x +2)(x -2)x (x -2)·x (x -1)x +2=x -1,解方程x 2-x -2=0,得x 1=-1,x 2=2,当x =2时,原分式无意义,所以当x =-1时,原式=-1-1=-2.14.(2016某某中考)先化简,再求值:⎝ ⎛⎭⎪⎫x x 2+x -1÷x 2-1x 2+2x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4的整数解中选取.解:原式=x -x 2-x x (x +1)·x +1x -1=-x x +1·x +1x -1=x 1-x ,解不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4得-1≤x <52,当x =2时,原式=21-2=-2.。
中考总复习数学01- 第二部分 专题一 运算求解题
![中考总复习数学01- 第二部分 专题一 运算求解题](https://img.taocdn.com/s3/m/78cda601b5daa58da0116c175f0e7cd18525184c.png)
∴1※(-2)=3×1+4×(-2)
=3+(-8)
=-5,
∴1※(-2)的值为-5.
8
9
10
11
12
专题一
返回类型清单
运算求解题—新定义
(2)若5※3=16,2※(-3)=-2,求a与b的值.
解:(2)∵5※3=16,2※(-3)=-2,
5a+3b=16①,
∴൝
①+②得7a=14,解得a=2,
数学
专题一
运算求解题
专题一
运算求解题
类型清单
类型一
缺项
类型二
运算过程纠错
类型三
新定义
类型四
数轴情境问题
专题一
返回类型清单
运算求解题—缺项
类型一
缺项
题型讲解
缺项的有关题目,通常给定一个代数式或者式子的部分信息,要求我们按
要求补全缺项,利用相应的运算法则,解决问题.主要通过观察、分析、
尝试、计算,验证结论,解决问题,培养了学生的符号意识和运算能力.
+
∴m= .
−
8
9
10
11
12
专题一
返回类型清单
运算求解题—数轴情境问题
类型四
数轴情境问题
题型讲解
数轴情境类题型主要考查学生对数轴概念的理解能力,培养学生借助
数轴建立数式联系,运用数学知识解决问题,培养学生的抽象思维和学
习习惯.
例题
13
14
15
专题一
返回类型清单
运算求解题—数轴情境问题
题型讲解
7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只
中考数学专题训练第3讲一次方程与一元一次不等式(知识点梳理)
![中考数学专题训练第3讲一次方程与一元一次不等式(知识点梳理)](https://img.taocdn.com/s3/m/84002ea76aec0975f46527d3240c844769eaa024.png)
整式知识点梳理考点01 方程的有关概念一、等式1.等式:用“=”来表示相等关系的式子叫作等式。
2.等式的性质:(1)性质1:等式两边加(或减)同一个数(或式子),结果仍相等(如果b a =,那么c b c a ±=±(c 为一个数或式子))。
(2)性质2:等式两边乘同一个数或除以同一个不为0的数,结果仍相等(如果b a =,那么bc ac =.如果)(0≠=c b a ,那么cb c a =) 3.等式性质的延伸:(1)对称性:等式左右两边互换,所得结果仍相等,即如果b a =,那么a b =。
(2)传递性:如果b a =,c b =,那么c a =。
二、方程的概念和方程的解1.方程的概念:含有未知数的等式叫作方程。
2.方程与等式的区别:方程是等式,但等式中不一定含有未知数,即等式不一定是方程。
3.方程的解:使方程左右两边相等的未知数的值,叫作方程的解。
4.判断一个数(或一组数)是不是某方程的解,只需看两点:(1)它是方程中的未知数的值.(2)将它分别代入方程的左右两边,若左边等于右边,则它是方程的解,否则不是。
5.解方程:求方程解的过程叫作解方程。
6.方程的解和解方程的区别:方程的解是一个结果,解方程则是得到这个结果的一个过程。
7.一元一次方程:只含有一个未知数(元),并且未知数的次数是1,这样的整式方程叫作一元一次方程。
8.一元一次方程知识拓展:(1)“元”是指未知数,“次”是指未知数的次数.(2)一元一次方程满足3个条件:①是整式方程.②只含有一个未知数.③未知数的次数是1.(3)一元一次方程的标准形式:),0(0是已知数、b a a b ax ≠=+。
考点02 解一元一次方程与一元一次方程的应用一、解一元一次方程1.移项:把等式一边的某项变号后移到另一边,叫作移项,注意移项要变号。
2.解一元一次方程的步骤:(1)去分母:把方程两边都乘以各分母的最小公倍数(去分母时,若分子是多项式,要添括号).(2)去括号:先去小括号,再去中括号,最后去大括号(不要漏乘括号里的项,不要弄错符号).(3)移项:把含有未知数的项移到方程的一边,其他项移到另一边(注意移项要变号).(4)合并同类项:把等号两边的同类项分别合并,化成“b ax =”的形式(0≠a ).(5)系数化为1:方程两边同除以未知数的系数a 得方程的解为ab x =。
专题1.数与式(解析版)
![专题1.数与式(解析版)](https://img.taocdn.com/s3/m/701ea6cef90f76c660371a0d.png)
2019年中考数学典题精选系列专题01 数与式1.3月30日,我区航空经济产业功能区2019年一季度重大项目集中开工仪式在电子科大产业园四期项目用地举行.参加此次集中开工仪式项目共计71个,总投资超过249亿元,未来随着这一波又一波项目的建成投产,必将为双流航空经济插上腾飞之翼,助力双流打造中国航空经济之都.用科学记数法表示249亿元为()A.249×108元B.24.9×109元C.2.49×1010元D.0.249×1011元【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将249亿用科学记数法可表示为2.49×1010.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C.3.按如图所示的运算程序运算,能使输出的结果为7的一组x,y的值是()A.x=1,y=2 B.x=﹣2,y=1 C.x=2,y=1 D.x=﹣3,y=1【答案】C【解析】【分析】将各项中的x与y代入程序计算,即可得到结果.【详解】A、当x=1,y=2时,原式=2﹣2=0,不符合题意;B、当x=﹣2,y=1时,原式=8+1=9,不符合题意;C、当x=2,y=1时,原式=8﹣1=7,符合题意;D、当x=﹣3,y=1时,原式=18+1=19,不符合题意,故选:C.【点睛】本题考查代数式求值,熟练掌握运算法则是解题关键.4.下列整数中,比小的数是()A.B.C.D.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.【详解】∵-3>-π,0>-π,1>-π,-4<-π故选D.【点睛】本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.5.已知23ab=,则代数式a ba+的值为()A.52B.53C.23D.32【答案】B【解析】由23ab=得到:a=23b,则代入可得2533b ba bb b++==.故选:B.6.下列运算正确的是()A .B .C .D .【答案】D【解析】【分析】根据合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算求出每个式子的值,再根据结果判断即可.【详解】A 、与不是同类项,故本选项错误;B 、,故本选项错误;C 、,故本选项正确;D 、,故本选项正确.故选D.【点睛】本题考查了合并同类项法则,有理数的混合运算,负整数指数幂,二次根式的混合运算等知识点,主要考查学生的计算能力和辨析能力,题目比较好,但是一道比较容易出错的题目.7.一列数a1,a2,a3,…,其中a1=,a n =(n为不小于2的整数),则a100=()A .B.2 C.﹣1 D.﹣2【答案】A【解析】根据表达式求出前几个数后发现:每三个数为一个循环组.用100除以3,根据商和余数的情况确定a100的值即可.解:根据题意得,a 2==2,a 3==﹣1,a 4==,a 5==2,…,依此类推,每三个数为一个循环组依次循环, ∵100÷3=33…1,∴a 100是第34个循环组的第一个数,与a 1相同, 即a 100=.故选A .8.已知a ﹣b=3,则代数式a 2﹣b 2﹣6b 的值为( ) A .3 B .6 C .9 D .12 【答案】C .【解析】由a ﹣b=3,得到a=b+3,则原式=(b+3)2﹣b 2﹣6b=b 2+6b+9﹣b 2﹣6b=9.故选C .学科*网 9.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n ,我们可得到同理可得那么, 23420162017••••••i i i i i i ++++++。
2023中考数学一轮复习专题1
![2023中考数学一轮复习专题1](https://img.taocdn.com/s3/m/b4b40339a31614791711cc7931b765ce05087ae4.png)
专题1.9 数与式计算100题(基础篇)(真题专练)1.(2021·江苏淮安·中考真题)先化简,再求值:(11a -+1)÷21a a -,其中a =﹣4. 2.(2021·广西桂林·中考真题)计算:|﹣3|+(﹣2)2.3.(2021·江苏连云港·262--.4.(2021·辽宁本溪·中考真题)先化简,再求值:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭,其中2sin303a =︒+.5.(2021·黑龙江齐齐哈尔·中考真题)(1)计算:()201 3.144cos 4512π-⎛⎫-+-+︒- ⎪⎝⎭(2)因式分解:3312xy xy -+.6.(2021·吉林长春·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =. 7.(2021·湖南永州·中考真题)先化简,再求值:()()212(2)x x x +++-,其中1x =.8.(2021·湖南张家界·中考真题)计算:2021(1)22cos60-+-︒9.(2021·广东深圳·中考真题)先化简再求值:2169123x x x x ++⎛⎫+÷ ⎪++⎝⎭,其中1x =-. 10.(2021·湖南长沙·中考真题)先化简,再求值:()()()()233322x x x x x -++-+-,其中12x =-.11.(2021·湖南株洲·中考真题)计算:12602--︒-.12.(2021·浙江台州·中考真题)计算:|-2| 13.(2021·浙江·中考真题)计算:()()()211x x x x +++-.14.(2020·山东济南·中考真题)计算:0112sin 3022π-⎛⎫⎛⎫-︒ ⎪ ⎪⎝⎭⎝⎭.15.(2020·黑龙江大庆·中考真题)计算:1015(1)3π-⎛⎫---+ ⎪⎝⎭16.(2020·贵州毕节·中考真题)计算:11|2|(3)2cos303π-⎛⎫-+++︒- ⎪⎝⎭17.(2020·云南·中考真题)先化简,再求值:22244242x x x xx x -+-÷-+,其中12x =.18.(2020·广东深圳·中考真题)计算:101()2cos30|(4)3π--︒+--.19.(2020·广东广州·中考真题)已知反比例函数ky x=的图象分别位于第二、第四象限,化简:21644k k k ---20.(2020·湖南邵阳·中考真题)计算:120201(1)|12sin602-︒⎛⎫-+-- ⎪⎝+⎭. 21.(2020·江苏淮安·中考真题)计算:(1)0|3|(1)π-+-(2)1112x x x +⎛⎫÷+ ⎪⎝⎭22.(2020·湖北·中考真题)计算:101|2|20202-⎛⎫--+ ⎪⎝⎭.23.(2020·湖北宜昌·中考真题)在“-”“×”两个符号中选一个自己想要的符号,填入212212⎛⎫+⨯ ⎪⎝⎭中的□,并计算.24.(2020·湖南张家界·中考真题)计算:21|12sin 45(3.14)2π-︒⎛⎫-+-- ⎪⎝⎭.25.(2020·四川泸州·中考真题)化简:2211x x x x +-⎛⎫+÷ ⎪⎝⎭.26.(2020·江苏连云港·中考真题)化简2233121a a aa a a ++÷--+.27.(2019·青海·中考真题)计算:)11112453cos -⎛⎫+--︒ ⎪⎝⎭28.(2019·广西河池·中考真题)计算:21332-⎛⎫+- ⎪⎝⎭.29.(2019·辽宁大连·中考真题)计算:22241112a a a a-÷+---30.(2019·辽宁大连·中考真题)计算:22)31.(2019·湖北省直辖县级单位·中考真题)(1)计算:20(2)|3|(6)----; (2)解分式方程:22511x x =--. 32.(2019·广西河池·中考真题)分解因式:2((1)5)2x x -+-.33.(2019·湖南株洲·中考真题)计算:02cos30π+-︒.34.(2019·四川遂宁·中考真题)计算:201920(1)(2)(3.14)4cos30|2π-︒-+-+--+ 35.(2019·浙江湖州·中考真题)计算:()31282-+⨯.36.(2019·四川乐山·中考真题)计算:()10120192sin 302π-︒⎛⎫--+ ⎪⎝⎭.37.(2019·四川乐山·中考真题)如图,点A 、B 在数轴上,它们对应的数分别为2-,1xx +,且点A 、B 到原点的距离相等.求x 的值.38.(2019·四川乐山·中考真题)化简:2222111x x x x x x -+-÷-+. 39.(2019·浙江杭州·中考真题)化简:242142x xx圆圆的解答如下:2224214224422x x x x xx xx圆圆的解答正确吗?如果不正确,写出正确的解答.40.(2019·北京·中考真题)计算:()01142604sin π-----+(). 41.(2019·辽宁鞍山·中考真题)先化简,再求值:(233x x x +-﹣2169x x x--+)÷9x x-,其中x =42.(2019·辽宁葫芦岛·中考真题)先化简,再求值:2221a aa a +-+÷(211a a --),其中a =(13)﹣1﹣(﹣2)0.43.(2019·辽宁和平·中考真题)计算:2012cos301(2019)2π-⎛⎫-+︒-- ⎪⎝⎭44.(2019·福建·中考真题)先化简,再求值:(x-1)÷(x -21x x-),其中x +1 45.(2019·湖北鄂州·中考真题)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x xx x ⎛⎫---÷ ⎪-+--⎝⎭.46.(2019·辽宁阜新·中考真题)(1)(12)-1+4sin30°. (2)先化简,再求值:22m 9m 6m 9-++÷(1-2m 3+),其中m=2.47.(2019·贵州安顺·中考真题)计算:()1201920192cos 608(0.125)--+⨯-︒+.48.(2019·辽宁营口·中考真题)先化简,再求值:2821333a a a a a ++⎛⎫+-÷ ⎪++⎝⎭,其中a 为不等式组121232a a -<⎧⎪⎨+>⎪⎩的整数解. 49.(2019·辽宁盘锦·中考真题)先化简,再求值:(m +12m +)÷(m ﹣2+32m +),其中m =3tan30°+(π﹣3)0.50.(2019·湖南娄底·中考真题)计算:1011)2sin |602+-︒⎛⎫-- ⎪⎝⎭51.(2019·江苏常州·中考真题)计算:(1)1212π-⎛⎫+-⎪⎝⎭;(2)()()()111x x x x -+--. 52.(2019·广西贺州·中考真题)计算:()()201901 3.142sin30π-+-.53.(2019·吉林·中考真题)先化简,再求值:()()212a a a -++,其中a =54.(2019·湖南湘潭·中考真题)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:()()3322x y x y x xy y +=+-+ ; 立方差公式:()3322()x y x y x xy y -=-++ ;根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =.55.(2019·湖南永州·中考真题)先化简,再求值:221·11a a aa a a a ---+-,其中a =2.56.(2019·湖南永州·中考真题)计算:(﹣1)2019sin60°﹣(﹣3). 57.(2019·广西广西·中考真题)计算:22()()19(6)2-+--+-÷.58.(2019·湖南株洲·中考真题)先化简,再求值:221(1)a a a a a -+--,其中12a =.59.(2019·湖北武汉·中考真题)计算:()32242x x x -⋅60.(2019·黑龙江·中考真题)先化简再求值:22224()2442x x x x x x x x +---÷--+-其中4tan452cos30x =︒+︒.61.(2019·黑龙江·中考真题)已知:ab =1,b =2a -1,求代数式12a b-的值.62.(2019·黑龙江·中考真题)计算:0(2019)160sin π-+︒.63.(2019·山东枣庄·中考真题)先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11,{52 2.x x ->-≥-64.(2019·甘肃兰州·中考真题)计算:02|2|1)(2)tan 45--+--︒ 65.(2019·甘肃兰州·中考真题)化简:(1 2 )+2(+1)(1)a a a a --66.(2019·山东东营·中考真题)(1)计算:()101 3.142019π-⎛⎫+- ⎪⎝⎭2sin 4512+- (2)化简求值:22222a b a ab b a b a ab a ⎛⎫++-÷ ⎪--⎝⎭,当1a =-时,请你选择一个适当的数作为b 的值,代入求值.67.(2019·甘肃陇南·中考真题)计算:20()|243()225cos π---︒+-68.(2019·浙江台州·()11--.69.(2019·四川遂宁·中考真题)先化简,再求值:2222222a ab b a ab a b a a b -+-÷--+,其中a ,b 满足2(2)0a -+=.70.(2019·江苏宿迁·中考真题)先化简,再求值:212111a a a ⎛⎫+÷ ⎪--⎝⎭,其中2a =-.71.(2019·江苏宿迁·中考真题)计算:()101112π-⎛⎫--+ ⎪⎝⎭72.(2019·江苏苏州·中考真题)计算:()222π+---.73.(2019·江苏苏州·中考真题)先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =.74.(2019·山东济宁·中考真题)计算:016sin 60|2018|2︒⎛⎫+ ⎪⎝⎭75.(2019·江苏南京·中考真题)计算22()()x y x xy y +-+.76.(2019·浙江温州·中考真题)计算:(1)06(1(3)---;(2)224133x x x x x +-++. 77.(2019·重庆·中考真题)计算:(1)2()(2)x y y x y +-+ ; (2)294922a a a a a --⎛⎫+÷⎪--⎝⎭78.(2021·甘肃兰州·中考真题)先化简,再求值:22611931m m m m m --÷--+-,其中4m =. 79.(2021·青海西宁·中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 80.(2021·山东济南·中考真题)计算:101(1)32tan 454π-⎛⎫+-+-- ⎪⎝⎭︒. 81.(2021·山东日照·中考真题)(1)若单项式14m n x y -与单项式33812m nx y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111x x x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =.82.(2021·四川绵阳·中考真题)(1)计算:02cos 452021︒ (2)先化简,再求值:2222x xy x y x y x y ---+-,其中 1.12x =,0.68y =. 83.(2021·广西河池·中考真题)先化简,再求值:2(1)(1)x x x +-+,其中2021x =.84.(2021·四川德阳·中考真题)计算:(﹣1)31|﹣(12)﹣2+2cos45°85.(2021·山东滨州·中考真题)计算:221244422x x x x x x x x -+-⎛⎫-÷⎪-+--⎝⎭. 86.(2021·西藏·中考真题)先化简,再求值:2212a a a ++-•221a a --﹣(11a -+1),其中a =10.87.(2021·湖南湘潭·中考真题)先化简,再求值:22169(1)24x x x x +++÷+-,其中3x =.88.(2021·贵州遵义·中考真题)先化简2242x x x -÷-(244x x x x+--),再求值,其中x =2.89.(2021·湖南湘潭·中考真题)计算:011|2|(2)()4tan 453π----+-︒90.(2021·黑龙江牡丹江·中考真题)先化简,再求值:(22211x x x -+--1)1x x ÷+,其中x =sin30°. 91.(2021·广西梧州·中考真题)计算:(﹣1)2+(﹣8)÷4(﹣2021)0.92.(2021·江苏南通·中考真题)(1)化简求值:2(21)(6)(2)x x x -++-,其中x = (2)解方程2303x x-=-. 93.(2021·辽宁丹东·中考真题)先化简,再求代数式的值:22241242a a a a a-+++---,其中02sin 302(1)a π=︒+-.94.(2021·贵州毕节·中考真题)先化简,再求值:2222a b ab b a a a ⎛⎫--÷- ⎪⎝⎭,其中2a =,1b =. 95.(2021·江苏泰州·中考真题)(1)分解因式:x 3﹣9x ; (2)解方程:22x x -+1=52x-. 96.(2021·江苏徐州·中考真题)计算:(1)101220212-⎛⎫-- ⎪⎝⎭(2)22111a a a a ++⎛⎫+÷⎪⎝⎭ 97.(2021·吉林·中考真题)先化简,再求值:()()()221x x x x +---,其中12x =. 98.(2021·山东淄博·中考真题)先化简,再求值:222a ab b a ba b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中1,1a b =.99.(2021·内蒙古呼伦贝尔·中考真题)计算:222sin 601---︒+100.(2021·辽宁大连·中考真题)计算:223333693a a a a a a a ++⋅--++-.参考答案1.a +1,﹣3【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:(11a -+1)÷21a a - =11(1)(1)1a a a a a+-+-⋅-=11a a a+⋅=a +1,当a =﹣4时,原式=﹣4+1=﹣3.【点拨】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行化简,代入数值后准确进行计算. 2.7【分析】根据有理数的绝对值以及乘方的意义化简各数后即可得到答案. 解:|﹣3|+(﹣2)2 =3+4 =7【点拨】此题主要考查了有理数的运算,正确化简各数是解答此题的关键. 3.4.,-6=6,计算出结果. 解:原式2644=+-= 故答案为:4.【点拨】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 4.23a -,2 【分析】先把分式化简后,再求出a 的值代入求出分式的值即可. 解:2623193a a a a -⎛⎫÷+ ⎪-+⎝⎭26323=933a a a a a a +-⎛⎫÷+ ⎪-++⎝⎭63=3)(3)3a a a a a +⨯+-( 2=3a - 2sin303a =︒+ 1232=⨯+4=当4a =时,原式=2=243-.【点拨】本题考查了分式的化简值,特殊角的三角函数值,熟练分解因式是解题的关键. 5.(1)6(2)3(2)(2)xy y y -+-【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可.解:(1)解:原式4141)=++411=++6=(2)解:原式23(4)xy y =-- 3(2)(2)xy y y =-+-【点拨】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键. 6.4,5a【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 解:221aa a a224a a a =-+-4a =-当4a =时,原式44-=【点拨】本题考查了整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 7.25x +,7.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将1x =代入求值即可得.解:原式22214x x x =+++-,25x =+,将1x =代入得:原式2157=⨯+=.【点拨】本题考查了整式的化简求值,熟记完全平方公式和平方差公式是解题关键. 8【分析】先运用乘方、绝对值、特殊角的三角函数值以及平方根的性质化简,然后计算即可.解:2021(1)22cos60-+-︒11222=-+-⨯+=【点拨】本题主要考查了乘方、绝对值、特殊角的三角函数值、平方根的性质等知识点,灵活运用相关知识成为解答本题的关键. 9.12x +;1 【分析】先把分式化简后,再把x 的值代入求出分式的值即可. 解:原式212331122(3)232x x x x x x x x x +++⎛⎫=+⋅=⋅= ⎪++++++⎝⎭ 当1x =-时,原式1112==-+. 【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键. 10.2x -,1.【分析】先计算完全平方公式、平方差公式、单项式乘以多项式,再计算整式的加减,然后将x 的值代入即可得.解:原式22246299x x x x x =-+-++-, 2x =-,将12x =-代入得:原式12212x ⎛⎫=⨯-= ⎪⎝⎭=--.【点拨】本题考查了整式的化简求值,熟练掌握整式的运算法则是解题关键. 11.3【分析】熟记特殊三角数值、掌握绝对值的代数意义和负整数指数幂的求法,遵循运算法则计算即可.解:原式131223222=+-=+-= 【点拨】本题考察实数的运算,属于基础题,难度不大.熟练掌握运算法则是解题的关键.12.【分析】先算绝对值,化简二次根式,再算加减法,即可求解.解:原式=2+【点拨】本题主要考查二次根式的运算,熟练掌握二次根式的性质以及合并同类二次根式法则,是解题的关键.13.21x +【分析】利用单项式乘多项式、平方差公式直接求解即可.解:原式2221x x x =++-21x =+.【点拨】本题考查整式的乘法,掌握单项式乘多项式法则和平方差公式是解题的关键. 14.4【分析】分别计算零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,再合并即可得到答案. 解:原式112222=-⨯++ =1﹣1+2+2=4.【点拨】本题考查的是实数的混合运算,考查了零指数幂,锐角三角函数,算术平方根,负整数指数幂的运算,掌握以上知识是解题的关键.15.7.【分析】先计算绝对值运算、零指数幂、负整数指数幂,再计算有理数的加减法即可得. 解:原式513=-+43=+7=.【点拨】本题考查了绝对值运算、零指数幂、负整数指数幂等知识点, 熟记各运算法则是解题关键.16.【分析】根据绝对值、零指数幂、三角函数、负指数幂、二次根式的运算法则计算即可.解:101|2|(3)2cos303π-⎛⎫-+++︒- ⎪⎝⎭2123=++--=【点拨】本题考查绝对值、零指数幂、三角函数、负指数幂、二次根式的混合运算,关键在于牢记运算法则.17.2.【分析】先把分子、分母能分解因式的分解因式,再把除法转化为乘法,约分后再代入求值即可. 解:22244242x x x x x x -+-÷-+ ()()()()222222x x x x x x -+=•+-- 1x = 当1,2x = 上式11 2.2=÷= 【点拨】本题考查的是分式的除法运算,掌握把除法转化为乘法是解题的关键. 18.2【分析】分别计算负整数指数幂,锐角三角函数,绝对值,零次幂,再合并即可.解:101()2cos30|(4)3π--︒+--321=-31=2.=【点拨】本题考查实数的运算,考查了负整数指数幂,锐角三角函数,绝对值,零次幂的运算,掌握以上知识是解题的关键.19.5【分析】由反比例函数图象的性质可得k <0,化简分式时注意去绝对值.解:由题意得k <0.()()224416164444k k k k k k k k +---=----441415k k k k k +=++-=+-+==【点拨】本题考查反比例函数图象的性质和分式的化简,关键在于去绝对值时符号的问题. 20.2【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.解:原式=)1212++-=121+=2【点拨】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.21.(1)2;(2)12. 【分析】(1)根据绝对值、零指数幂、二次根式的计算方法计算即可.(2)根据分式的混合运算法则计算即可.解:(1) 0|3|(1)3122π-+-=+-=. (2)111111122212x x x x x x x x x x x ++++⎛⎫÷+=÷=⋅= ⎪+⎝⎭. 【点拨】本题考查分式的混合运算和绝对值、零指数幂、二次根式的计算,关键在于熟练掌握相关的计算方法.22.1【分析】根据负整数指数幂,绝对值的运算,0次幂分别计算出每一项,再计算即可. 解:101|2|20202-⎛⎫--+ ⎪⎝⎭221=-+ 1=.【点拨】本题考查负整数指数幂,绝对值的运算,0次幂,熟练掌握运算法则是解题的关键.23.-;5或×;5【分析】先选择符号,然后按照有理数的四则运算进行计算即可.解:(1)选择“-”212212⎛⎫+⨯- ⎪⎝⎭1422=+⨯ 41=+5=(2)选择“×”212212⎛⎫+⨯⨯ ⎪⎝⎭ 1422=+⨯ 41=+5=【点拨】本题考查了有理数的四则运算,熟知有理数的四则运算法则是解题的关键. 24.4-【分析】根据绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂进行运算即可.解:201|12sin 45(3.14)2π-︒⎛⎫-+-- ⎪⎝⎭1214=--114=-4=-【点拨】本题考查了绝对值的性质,特殊角的三角函数值,零次幂,负整数指数幂,熟知以上运算是解题的关键.25.21x - 【分析】首先进行通分运算,进而利用因式分解变形,再约分化简分式.解:原式=221x x x x x ++⨯- =()()()2111x x x x x +⨯+- =21x - 【点拨】此题主要考查了分式的化简求值,正确利用分解因式再化简分式是解题关键. 26.1a a- 【分析】首先把分子分母分解因式,把除法变为乘法,然后再约分后相乘即可.解:原式23(3)1(1)a a a a a ++=÷-- , 23(1)1(3)a a a a a +-=⋅-+, 1a a-=. 【点拨】此题主要考查了分式的乘除法,关键是掌握分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.27.3-.【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式1312-+-=131-=3=-.故答案为3-.【点拨】本题考查实数运算,正确化简各数是解题关键.28.【分析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.解:原式143=++=【点拨】此题主要考查了实数运算,正确化简各数是解题关键.29.2a a - 【分析】直接利用分式的乘除运算法则化简,进而利用分式的加减运算法则计算得出答案;解:原式2(1)(1)112(2)2a a a a a -+=⨯---- 1122a a a +=--- 2a a =-. 【点拨】此题主要考查了分式的混合运算,正确化简是解题关键.30.7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.解:原式346=+-34=+-7=.【点拨】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.31.(1)6;(2)x=32【分析】(1)先计算乘方、去绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x 的值,再检验即可得.解:(1)原式=43416-++=;(2)两边都乘以()()11x x +-,得:()215x +=, 解得:32x =, 检验:当32x =时,()()51104x x +-=≠, ∴原分式方程的解为32x =. 【点拨】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.32.()(33)x x +-.【分析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.解:原式221210x x x =-++-29x =-(3)(3)x x =+-.【点拨】此题主要考查了公式法分解因式,正确运用公式是解题关键.33.1【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.解:原式12-=1=1=.【点拨】此题主要考查了实数运算,正确化简各数是解题关键.34.74- 【分析】先根据整数指数幂、负指数幂、零指数幂、三角函数和绝对值进行化简,再进行加减运算.解:原式111424=-++-11124=-++- 74=-. 【点拨】本题考查指数幂、三角函数和绝对值,解题的关键是掌握指数幂、三角函数和绝对值.35.-4.【分析】先求(-2)3=-8,再求12×8=4,即可求解;解:原式844=-+=-【点拨】本题考查有理数的计算;熟练掌握幂的运算是解题的关键.36.2 【分析】111=12=212()-⎛⎫ ⎪⎝⎭,()012019=π-,sin 301=2︒ 解:原式12122=-+⨯ 211=-+2=.【点拨】本题考查了负整数指数幂,零指数幂,特殊角的正弦值,掌握即可解题. 37.2x =-【分析】根据点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数,即21x x =+,解分式方程即可.解:∵点A 、B 到原点的距离相等∵A 、B 表示的数值互为相反数 即21x x =+,去分母,得2(1)x x =+,去括号,得22x x =+,解得2x =-经检验,2x =-是原方程的解.【点拨】本题考查了相反数,绝对值的定义,解分式方程,解本题的关键是读懂题意,根据题中点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数38.1x【分析】平方差公式a 2-b 2=(a+b )(a -b )完全平方公式(a±b )2=a 2±2ab+b 2 解:原式2(1)(1)(1)x x x -=+-÷(1)1x x x -+ (1)(1)x x -=+×1(1)x x x +- 1x=. 【点拨】本题考查了运用完全平方公式与平方差公式,提公因式进行因式分解,分式的化简,注意符号问题即可.39.圆圆的解答不正确.正确解为2x x -+,解答见解析. 【分析】根据完全平方差公式先对分式进行通分,再化简,即可得到答案.解:圆圆的解答不正确.正确解答如下: 原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+- 24(24)(4)(2)(2)x x x x x -+--=+- (2)(2)(2)x x x x --=+- 2x x =-+. 【点拨】本题考查分式化简,解题的关键是掌握完全平方差公式.40.3【分析】根据绝对值、零指数幂、特殊角的三角函数值、负指数幂法则计算即可解:原式124+14==3【点拨】本题考查零指数幂、特殊角的三角函数值,负指数幂,熟练掌握相关的知识是解题的关键.41.21(3)x -,原式=13. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 解:原式=231[](3)(3)9x x x x x x x +--•--- 2(3)(3)(1)(3)9x x x x x x x x -+--=•-- 2291(3)9(3)x x x x x x -=•=---当x = 原式=13. 【点拨】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.42.2a a 1-,原式=4. 【分析】先把分母因式分解后约分,再进行通分和同分母的减法运算得到()()()()212111a a a a a a a +--÷-+ ,接着化简计算得到2a a 1- ,然后化简()10123a -⎛⎫=-- ⎪⎝⎭,最后把2a = 代入计算即可; 解:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭()()()()212111a a a a a a a +--=÷-- ()()()()211211a a a a a a a +-=•--- ()()111a a a a a +=•-+2a a 1=-, 当()10123312a -⎛⎫=-- ⎪⎝⎭=﹣=时,原式22421==- . 【点拨】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.注意分式有意义的条件.43.6【分析】直接利用负指数幂的性质、特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案.解:原式==6. 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.44.【分析】先化简分式,然后将x 的值代入计算即可.解:原式=(x−1)÷2221(1)(1)1x x x x x x x x -+=-⋅=--,当x 1时,12=+. 【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 45.x+2;当1x =-时,原式=1.【分析】先化简分式,然后将x 的值代入计算即可.解:原式()()22244242x x x x x x ⎡⎤--=-÷⎢⎥---⎢⎥⎣⎦ 244224x x x x x -⎡⎤=-÷⎢⎥---⎣⎦ ()()22424x x x x x -+-=⋅-- 2x =+∵20x -≠,40x -≠,∵2x ≠且4x ≠,∵当1x =-时,原式121=-+=.【点拨】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键. 46.(2)31m m -+;13-. 【分析】(1)先化简二次根式、计算负整数指数幂、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.解:(1)原式-2+4×122+2(2)原式=()()2m 3m 3(m 3)+-+÷(m 3m 3++-2m 3+) =m 3m 3-+•m 3m 1++ =m 3m 1-+, 当m=2时,原式=2321-+=13-. 【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.47.-3【分析】分别根据负整数指数幂的性质、算术平方根的定义、特殊角的余弦值、零指数幂以及积是乘方逆运算化简即可解答. 解:原式20191131(0.1258)22=--+++-⨯11311322=--++-=-. 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.48.1;1a a -+13【分析】先根据变形得到2821333a a a a a ++⎛⎫+-÷ ⎪++⎝⎭,进行乘法运算得到22283(1)a a +-=+,化简得到11a a -+,然后将a 的整数解代入求值. 解:原式28(3)(3)33(1)a a a a a +-++=⋅++ 22283(1)a a +-=+2(1)(1)(1)a a a +-=+ 11a a -=+, 解不等式得534a <<, ∵不等式组的整数解为2a =,当2a =时, 原式211213-==+. 【点拨】本题考查分式的化简求值和完全平方公式,熟练分解因式是解题的关键.49.11m m +-. 【分析】本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比. 解:原式=2212m m m +++÷2432m m -++ =2(1)22(1)(1)m m m m m ++⨯++- 11m m +=-,m =3tan30°+(π﹣3)0=1,【点拨】本题考查了分式的化简求值,熟练分解因式是解题的关键.50.-1.【分析】原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解:原式122=-12=-+1=-. 【点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.51.(1)0;(2)1x -.【分析】根据零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则准确计算即可;解:(1)120112302π-⎛⎫+-=+-= ⎪⎝⎭;(2)()()()111x x x x -+--=2211x x x x --+=-;【点拨】本题考查实数的运算,整式的运算;熟练掌握零指数幂,负指数幂,多项式乘以多项式(单项式)的运算法则是解题的关键.52.【分析】先分别计算幂、三角函数值、二次根式,然后算加减法. 解:原式=111422++⨯﹣﹣ =﹣4+1=﹣3.【点拨】本题考查了实数的运算,熟练掌握三角函数值、零指数幂的运算是解题的关键. 53.5【分析】先根据完全平方公式及单项式与多项式的乘法计算,再合并同类项,然后把a =代入计算即可.解:原式=22221221a a a a a -+++=+,当a =原式=221⨯+=5.【点拨】本题考查了整式的化简求值熟练掌握运算顺序及乘法公式是解答本题的关键. 54.2【分析】根据题目中的公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 解:22332428x x x x x x ++--- ()22324(2)(2)24x x x x x x x x ++=---++ 3122x x =--- 22x =-,当3x =时,原式2232==- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 55.-1.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:221·11a a a a a a a ---+- =()()()a 1a 1aa a a 1a 1a 1+---+- =a 1a 1-- =a 1a a 1--- =1a 1-- 当a 2=时,原式=1121-=-- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 56.5.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:(﹣1)2019sin60°﹣(﹣3)=﹣+3 =﹣1+3+3=5【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.57.13.【分析】分别运算每一项然后再求解即可.解:22()()19(6)2-+--+-÷1693=++-13=.【点拨】本题考查实数的运算,熟练掌握实数的运算法则是解题的关键.58.1(1)a a -,-4. 【分析】根据分式的减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题. 解:221(1)a a a a a-+-- 2(1)1(1)a a a a a-+=-- 11a a a a+=-- 2(1)(1)(1)a a a a a --+=- 221(1)a a a a -+=- 1(1)a a =-, 当12a =时,原式1411122==-⎛⎫- ⎪⎝⎭. 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 59.67x【分析】按顺序先分别进行积的乘方运算、同底数幂的乘法运算,然后再合并同类项即可. 解:()32242x x x -⋅ =668x x -67x =.【点拨】本题考查了整式的混合运算,涉及了积的乘方、同底数幂的乘法、合并同类项,熟练掌握各运算的运算法则是解题的关键.60【分析】先将多项式进行因式分解,根据分式的加减乘除混合运算法则,先对括号里的进行通分,再将除法转化为乘法,约分化简即可.解:原式()()2224222x x x x x x x ⎡⎤-+-=-÷⎢⎥---⎢⎥⎣⎦ 22224x x x x x x +-⎛⎫=-⋅ ⎪---⎝⎭ 2224x x x -=⋅-- 24x =-,当4tan452cos304124x ︒︒=+=⨯+=原式=== 【点拨】本题主要考查了分式的加减乘除混合运算,熟练应用分式的基本性质进行约分和通分是解题的关键.61.-1.【分析】根据ab=1,b=2a -1,可以求得b -2a 的值,从而可以求得所求式子的值.解:∵ab =1,b =2a -1,∵b -2a =-1,∵122111b a a b ab ---===- 【点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 62【分析】直接利用特殊角的三角函数值、绝对值的性质、零指数幂的性质分别化简得出答案. 解:()020191sin6011π-+-︒== 【点拨】此题主要考查了实数运算,正确化简各数是解题关键.63.34. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求出其整数解, 继而代入计算可得. 解:原式211(1)(1)11x x x x x x -⎛⎫=÷+ ⎪+---⎝⎭ 21•(1)(1)x x x x x-=+-1x x =+, 解不等式组11,{52 2.x x ->-≥-得722x <≤,则不等式组的整数解为3,当3x =时,原式33314==+. 【点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算 法则及解一元一次不等式组的能力.64.4【分析】根据实数的混合运算顺序和运算法则计算可得解:原式21414=-+-=【点拨】此题考查实数的混合运算,掌握运算法则是解题关键65.a -2【分析】先去括号,再注意到(a+1)(a -1)可以利用平方差公式进行化简,最后合并同类项即可解:原式2222(1)a a a =-+-22222a a a =-+-2a =-【点拨】此题考查代数式的化简,掌握运算法则是解题关键66.(1)2020;(2)1【分析】(1)根据负指数幂、零指数幂、绝对值和三角函数、二次根式,即可得到答案;(2)根据分式的性质进行化简,再代入1a =-,即可得到答案.解:1()原式201912++=2020+= 2020=;2()原式()()222a b a a a b a b -=-+ ()()()()2a b a b aa ab a b -+=-+ 1a b =+, 当1a =-时,取2b =,原式1112==-+. 【点拨】本题负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简,解题的关键是掌握负指数幂、零指数幂、绝对值、三角函数、二次根式和分式的化简.67.3【分析】先根据乘方的计算法则、绝对值的性质、零指数幂及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.解:20()||243()225cos π---︒+-,4(221=--,421=-,3=.【点拨】本题考查的是实数的运算,熟知零指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.68.【分析】根据实数的性质进行化简,即可求解.解:原式11=+=【点拨】此题主要考查实数的运算,解题的关键是熟知实数的性质.69.1a b-+,-1 【分析】根据平方差公式进行变形,再根据分式混合运算法则进行计算,再根据平方差公式的性质和二次根式的性质进行求解,即可得到答案. 解:原式2()2()()()a b a a b a b a a b a b-=-+--+ 12a b a b=-++ 1a b =-+,∵a ,b 满足2(2)0a -+=,∵20a -=,10b +=,2a =,1b =-,原式1121=-=--.【点拨】本题考查平方差公式和二次根式的性质,解题的关键是掌握平方差公式和二次根式的性质.70.12a +,12- 【分析】直接将括号里面通分进而利用分式的混合运算法则计算得出答案. 解:原式()()1112a a a a a +-=⨯- 12a +=, 当2a =-时,原式21122-+==-. 【点拨】此题主要考查了分式的化简求值,正确掌握运算法则是解题关键.71【分析】直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.解:原式211=-【点拨】此题主要考查了实数运算,正确化简各数是解题关键.72.4.【分析】直接利用根式计算,绝对值计算和零指数幂的运算进行逐一计算即可解:321=+-原式4=【点拨】本题考查实数的简单计算,掌握计算法则是解题关键73.13x +. 【分析】先利用分式的运算规则将分式进行化简,然后将x 值带入即可解:原式()233633x x x x -+-=÷++()23333x x x x --=÷++ ()23333x x x x -+=⋅-+ 13x =+ 代入3x 原式。
中考数学专题复习一实数及其运算
![中考数学专题复习一实数及其运算](https://img.taocdn.com/s3/m/8c255b16abea998fcc22bcd126fff705cd175c7c.png)
专题01有理数考点一:有理数之正数和负数◎基础巩固1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2.正数和负数的意义:表示具有相反意义的两个量。
3.正负号的化简:同号为正,异号为负。
◎同步练习1.下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣52.下列各数为负数的是()A .﹣2B .0C .3D .53.四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .314.在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .35.若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃6.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元7.在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2km B .﹣1km C .1km D .+2km8.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃9.(如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.10.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.考点二:有理数之相反数◎基础巩固1.相反数的定义:只有符号不同的两个数互为相反数。
我们说其中一个数是另一个数的相反数。
0的相反数还是0。
2.相反数的性质:互为相反数的两个数和为0。
即a 与b 互为相反数⇔0=+b a ⇔()a b b a -=-=◎同步练习11.实数9的相反数等于()A .﹣9B .+9C .91D .﹣9112.下列各数中,﹣1的相反数是()A .﹣1B .0C .1D .213.﹣2022的相反数是.14.如图,数轴上点A 表示的数的相反数是()A .﹣2B .﹣21C .2D .3考点三:有理数之绝对值◎基础巩固1.绝对值的定义:数轴上表示数a 的点到原点的距离用数a 的绝对值来表示。
中考数学方程和方程式基础知识
![中考数学方程和方程式基础知识](https://img.taocdn.com/s3/m/6a16e25576c66137ef06193a.png)
中考数学方程和方程式基础知识基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)(2)一玩一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆ 当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(5)一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a bx x -=+21,a cx x =⋅21(6)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
2021年上海市16区中考数学一模考点分类汇编专题01 数与式、方程与不等式(逐题详解版)
![2021年上海市16区中考数学一模考点分类汇编专题01 数与式、方程与不等式(逐题详解版)](https://img.taocdn.com/s3/m/e16f4cc2866fb84ae45c8df5.png)
2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 4.(2021·上海静安区·九年级一模)32的相反数是____. 5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.8.(20212x -的根为____.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.2021年上海市16区中考数学一模汇编专题01 数与式、方程与不等式一、单选题1.(2021·上海静安区·九年级一模)如果0a ≠,那么下列计算正确的是( )A .0()0a =-B .0()1a -=-C .01a -=D .01a =--【答案】D【分析】利用零指数幂的定义分别得出结果即可求解【详解】A 选项0()a =1-,故错误,B 选项0()a =1-,故错误C 选项01a -=-,故错误,D 选项01a -=-,故正确,故选:D【点睛】熟记任何非零次幂的零次幂等于1是解决本题的关键2.(2021·上海静安区·九年级一模)下列多项式中,是完全平方式的为( )A .214x x -+B .21124x x++C .21144x x +-D .21144x x -+ 【答案】A【分析】利用配方法分别转化为完全平方式的形式即可求解.【详解】A 选项214x x -+=212x ⎛⎫- ⎪⎝⎭,故正确,B 选项21124x x++=213416x ⎛⎫++ ⎪⎝⎭,故错误 C 选项21144x x +-=216516256x ⎛⎫+- ⎪⎝⎭,故错误,D 选项21144x x -+=216316256x ⎛⎫-+ ⎪⎝⎭,故错误 故选:A【点睛】本题考查配方法的运用,熟练添加常数项,即一次项系数一半的平方是解决问题的关键,添加之后要注意再减去添加的常数项,进行等价转化.二、填空题3.(2021·上海长宁区·九年级一模)已知12x y =,那么+-x y x y的值为_______________. 【答案】3-【分析】根据已知得到2y x =,代入所求式子中计算即可. 【详解】解:∵12x y =,∴ 2y x =,∴2332x y x x x x y x x x ++===----:故答案为:-3. 【点睛】本题考查了求分式的值,利用已知得到2y x =后再整体代入是解题的关键.4.(2021·上海静安区·九年级一模)32的相反数是____. 【答案】32- 【分析】只有符号不同的两个数叫互为相反数,根据定义解答. 【详解】32的相反数是32-,故答案为:32-. 【点睛】此题考查互为相反数的定义,掌握定义是解题的关键.5.(2021·上海松江区·九年级一模)计算sin30cot 60︒⋅︒=____.【分析】先代入特殊角的三角函数值,然后再进行计算即可.【详解】1sin 30cot 60=236︒⋅︒=⨯,故答案为:6. 【点睛】本题考查了特殊角的三角函数值、实数乘法运算,熟记特殊角的三角函数值是解题关键.6.(2021·上海奉贤区·九年级一模)已知点Р是线段AB 上一点,且2BP AP AB =⋅,如果2AP =厘米,那么BP =________________ (厘米).【答案】1+【分析】设BP x =厘米,得2AB x =+厘米,根据题意得()222x x =⨯+,通过求解方程,即可得到答案. 【详解】设BP x =厘米,根据题意得:2AB AP BP x =+=+厘米∵2BP AP AB =⋅,∴()222x x =⨯+ ,∴1x =±10-,故舍去;∴15x ,即1BP =1+.【点睛】本题考查了一元二次方程、二次根式、线段的知识;解题的关键是熟练掌握一元二次方程、二次根式的性质,从而完成求解.7.(2021·上海浦东新区·九年级一模)如图,ABC 中,AB=10,BC=12,AC=8,点D 是边BC 上一点,且BD :CD=2:1,联结AD ,过AD 中点M 的直线将ABC 分成周长相等的两部分,这条直线分别与边BC 、AC 相交于点E 、F ,那么线段BE 的长为______.【答案】2【分析】如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b == 由三角形的周长关系可得:5,a b +=再证明:,ANM DEM ∽利用相似三角形的性质求解8,AN a =-再证明:,ANF CEF ∽可得:10432,b a ab +-=再解方程组可得答案.【详解】解:如图,过A 作//AN BC 交EF 于N ,设,,BE a AF b ==()1,2AB BE AF AB BC AC ∴++=++ ()1101012815,2a b ∴++=++= 5,a b ∴+=:2:112BD CD BC ==,,84BD CD ∴==,, 8,DE a ∴=- M 为AD 的中点,,AM MD ∴= //AN BC ,,ANM DEM ∴∽ 1AN AM DE DM ∴==, 8,AN a ∴=- //AN BC ,,ANF CEF ∴∽ ,AN AF CE CF ∴= 即:8,848a b a b -=-+- ∴ 10432,b a ab +-= 510432a b b a ab +=⎧∴⎨+-=⎩解得:23a b =⎧⎨=⎩或94a b =⎧⎨=-⎩,经检验:94a b =⎧⎨=-⎩不合题意,舍去, 2.BE ∴= 故答案为:2.【点睛】本题考查的是三角形的相似的判定与性质,二元方程组的解法,一元二次方程的解法,掌握以上知识是解题的关键.8.(20212x =-的根为____.【答案】x 1=【分析】方程两边同时平方,得到一个一元二次方程,解出x 的值,再进行检验即可得出结果.【详解】解:方程两边同时平方得:()2322x x -=-,∴2210x x -+=,即()210x -=,∴x 1=x 2=1,经检验,x=1是原方程的根,故答案为:x=1.【点睛】本题考查了无理方程求解,先平方得到一元二次方程求解再验证根,掌握基本概念和解法是解题的关键.9.(2021·上海奉贤区·九年级一模)如图,用一段篱笆靠墙围成一个大长方形花圃(靠墙处不用篱笆),中间用篱笆隔开分成两个小长方形区域,分别种植两种花草,篱笆总长为17米(恰好用完),围成的大长方形花圃的面积为24平方米,设垂直于墙的一段篱筐长为x 米,可列出方程为________________________.【答案】()17324x x -=【分析】垂直于墙的一段篱筐长为x 米,共有三段垂直于墙的篱笆,所以垂直于墙的篱笆总长度为3x ,又因为篱笆总长为17米(恰好用完),所以大长方形花圃的长为()173x -米,最后根据长方形的面积公式即可求解.【详解】解:由题意可得:()17324x x -=.故答案为:()17324x x -=.【点睛】本题考查了一元二次方程的应用,解题的关键是注意大长方形花圃的宽有三段都是篱笆.10.(2021·上海宝山区·九年级一模)某公司10月份的产值是100万元,如果该公司第四季度每个月产值的增长率相同,都为0)x x >(,12月份的产值为y 万元,那么y 关于x 的函数解析式是______. 【答案】()21001y x =+; 【分析】根据:现有量=原有量×(1+增长率)n,即可列方程求解. 【详解】依题意得:()21001y x =+,故答案为:()21001y x =+【点睛】考查了一元二次方程的应用,可直接套公式:原有量×(1+增长率)n =现有量,n 表示增长的次数. 三、解答题11.(2021·上海闵行区·九年级一模)计算:24sin 452cos 60cot 30tan 601︒︒︒︒-+-【答案】2【分析】分别把特殊角的三角函数值代入,再分别计算,结合分母有理化,合并化简即可解题.【详解】解:原式14122⨯=⨯1= 2=.【点睛】本题考查特殊角的三角函数值,分母有理化等知识,是重要考点,难度较易,掌握相关知识是解题关键.12.(2021·上海静安区·九年级一模)已知线段x 、y 满足2x y x x y y +=-,求x y的值.. 【分析】利用比例性质化比例式化为整式,再移项两边同除以y 2,化为22310x x y y --=,然后解一元二次方程,即可求解.【详解】解:222xy y x xy +=-,2230x xy y --=.∵0y ≠,∴22310x x y y --=,∴x y = ∵x 、y表示线段,∴负值不符合题意,∴x y = 【点睛】本题考查比例的性质、解一元二次方程,利用整体换元的思想方法解方程是解答的关键,注意x 、y 的非负性.13.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-3. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ∴==142ADB S DB AC ∴=⋅=,12ADB S AB DH =⋅,DH ∴=AH ==1tan 3DH DAB AH ∴∠==; (2)过E 作EH ⊥CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒,∴ACD EHD .∴AC EH CD DH = 即44EH x x EH =--.∴()444x EH x -=+ .∵EH ⊥CB ,90ACB ∠=︒,4AC BC ==,∴)44x EB x -==+ ,AB =∴)44x AE x -=+,∵EF AD ⊥,90C ∠=︒,∴AFG ADC ∠=∠ .∵EDB ADC ∠=∠,∴AFG EDB ∠=∠.∵45FAE B ∠=∠=︒,∴AFE BDE . ∴AF AE DB BE =即)4444x y x x --=-+.整理得,()2402y x x =-+<≤; (3)在Rt △MDB 中,DB=4-x,所以).x - 在Rt △ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan ∠DAB=44DM x AM x-=⋅+按照点F 的位置,分两种情况讨论△CDF 与△AGE 相似: ①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan ∠FDC=tan ∠DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0.解得-4 或-4 (舍去),如果∠CFD=∠DAB ,由tan ∠CFD=tan ∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC的延长线上,此时y=2x-4如图如果∠FDC=∠DAB,由44y xx x-=+结合y=2x-4,整理,得23160.x-=解得或3-(舍去)如果∠CFD=∠DAB,44x xy x-=+与y=2x-4,整理,得238160.x x-+=此方程无解.综上,CD的值为、8-或3.【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.。
中考数学《数与式》+《方程(组)与不等式(组)》专题测试卷
![中考数学《数与式》+《方程(组)与不等式(组)》专题测试卷](https://img.taocdn.com/s3/m/15399329cdbff121dd36a32d7375a417866fc1fd.png)
2022年中考数学专题测试卷【一】《数与式》+《方程(组)与不等式(组)》(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分) 1.下列各数中是有理数的是( )A.πB.0C. 2D.35 2.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( )A. 0.69×107B. 69×105C. 6.9×105D. 6.9×106 3.在实数|-3|,-2,0,π中,最小的数是( )A.|-3|B.-2C.0D.π 4.下列等式成立的是( )A.x 2+3x 2=3x 4B.0.00028=2.8×10-3C.(a 3b 2)3=a 9b 6D.(-a +b)(-a -b)=b 2-a 25.世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 以下所列方程中正确的选项是〔 〕A .128)% 1(1682=+aB .128)% 1(1682=-aC .128)% 21(168=-aD .128)% 1(1682=-a6.假设函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),那么当函数值y =8时,自变量x 的值是〔 〕A 6B .4C 6或4D .46 7.函数x y =1,34312+=x y .当21y y >时, x 的范围是〔 〕 A .x <-1 B .-1<x <2 C .x <-1或者x >2 D .x >2 8.已知x 2-3x -4=0,则代数式xx 2-x -4的值是( )A.3B.2C.13D.129.已知方程0120212=+-x x 的两个根分别为x 1,x 2,则2212021x x -的值为( ) A.1 B.-1 C.2021 D.-202110.已知a ≥2,m 2-2am +2=0,n 2-2an +2=0,m ≠n ,则(m -1)2+(n -1)2的最小值是( )A.6 B .3 C .-3 D .0 二、填空题(每小题3分,共18分)11.一个正数的平方根分别是x +1和x -5,则x =12.定义新运算:a ※b =a 2+b ,例如3※2=32+2=11,已知4※x =20,则x = 13.关于x 的分式方程的解为正实数,则k 的取值范围是________14.若a -1a =6,则a 2+1a2的值为 .15.假设关于x 的不等式325m x -<的解集是2x >,那么实数m 的值是____________ 16.已知a 1=t t -1,a 2=11-a 1,a 3=11-a 2,…,a n +1=11-a n(n 为正整数,且t≠0,1),则a 2016=___________(用含有t 的代数式表示) 三、解答题(本题含9道小题,共72分) 17.(6分)计算:(1)-|4-12|-(π-3.14)0+(1-cos30°)×(12)-2.(2)计算:|1﹣|﹣×+﹣()﹣2;18.(12分)解方程〔组〕、不等式〔组〕(1)x 2-4x-12=0 (2)13321++=+x xx x(3)34194x y x y +=⎧⎨-=⎩ (4)110334(1)1x x +⎧-⎪⎨⎪--<⎩≥19.(1)(8分)先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-2,b=1 2 .(2)先化简,再求值:(x+1x2-x-xx2-2x+1)÷1x,其中x=2+1.20.(6分)已知1x-1y=3,求分式2x-14xy-2yx-2xy-y的值.21.(6分)已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.(1)mn; (2)m2+n2.22.(8分)用※定义一种新运算:对于任意实数m和n ,规定,如:.(1)求;(2)若,求m的取值范围,并在所给的数轴上表示出解集.23.(6分)若数a 使关于x 的不等式组⎩⎨⎧x 3-2≤14x -7,6x -2a>51-x有且仅有三个整数解,且使关于y 的分式方程1-2y y -1-a1-y =-3的解为正数,则所有满足条件的整数a 的值之和是多少?24. (10分)君实机械厂为青扬公司消费A 、B 两种产品,该机械厂由甲车间消费A 种产品, 乙车间消费B 种产品,两车间同时消费.甲车间每天消费的A 种产品比乙车间每天消费的B 种产品多2件,甲车间3天消费的A 种产品与乙车间4天消费的B 种产品数量一样. (1)求甲车间每天消费多少件A 种产品?乙车间每天消费多少件B 种产品?(2)君实机械厂消费的A 种产品的出厂价为每件200元,B 种产品的出厂价为每件180元.现 青扬公司需一次性购置A 、B 两种产品一共80件,君实机械厂甲、乙两车间在没有库存的情况下只消费8天,假设青扬公司按出厂价购置A 、B 两种产品的费用超过15000元而不超过15080元.请你通过计算为青扬公司设计购置方案.25. (10分)近年来,政府大力HY 改善的办学条件,并实在加强对学生的平安管理和平安 教育.某中学新建了一栋教学大楼,进出这栋教学大楼一共有2道正门和2道侧门,其中两道正门大小一样,两道侧门大小也一样.平安检查中,对4道门进展了测试:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生;当同时开启一道正门和两道侧门时,3分钟可以通过840名学生.(1)求平均每分钟一道正门和一道侧门分别可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.平安检查规定:在紧 急情况下,全大楼的学生应在5分钟内通过这4道门平安撤离.假设这栋教学大楼的教 学室里最多有1500名学生,试问建造的这4道门是否符合平安规定?请说明理由.。
初中数学专题1:数与式分式化简求值
![初中数学专题1:数与式分式化简求值](https://img.taocdn.com/s3/m/1ad6bee57fd5360cbb1adb0e.png)
数学中考专题一:分式化简求值一、考纲要求(分值范围17-20分)(一)、有理数部分1.了解部分:|a|的含义。
2.理解部分:有理数的概念、相反数、绝对值、乘方的意义、有理数的混合运算、有理数的运算律。
3.掌握部分:用数轴上的点表示有理数、比较有理数的大小、相反数、绝对值、有理数的加减乘除乘方运算、有理数的混合运算、有理数的运算律。
4.运用部分:相反数、绝对值、理数的混合运算、有理数的运算律。
(二)、实数部分1.了解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根、无理数和实数的概念及其与数轴上的点的对应关系、近似数的概念、二次根式及最简二次根式的概念、二次根式(根号下仅限于数)加减乘除及四则运算法则。
2.理解部分:平方根、算术平方根、立方根的概念、利用乘方和开方互逆求百以内整数的平方根和立方根。
3.掌握部分:求实数的相反数与绝对值、用有理数估计一个无理数的大致范围、用计算机进行近似计算。
4.运用部分:二次根式(根号下仅限于数)加减乘除及四则运算法则(三)、代数式1.了解部分:无。
2.理解部分:用字母表示数的意义、求代数式的值。
3.掌握部分:简单数量关系的分析与表示、求代数式的值。
4.运用部分:求代数式的值。
(四)、整式与分式1.了解部分:整数指数幂的意义和基本性质、分式和最简分式的概念。
2.理解部分:科学记数法、整式的概念、乘法公式(平方差和完全平方公式)3.掌握部分:整式的加减乘法(多项式限一次与二次式)运算、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质、约分和通分、分式的加减乘除运算。
4.运用部分:科学记数法、乘法公式(平方差和完全平方公式)、用提公因式法公式法(直接用公式不超过两次)进行因式分解、公式的基本性质。
5.经历部分:乘法公式(平方差和完全平方公式)。
6.探索部分:乘法公式(平方差和完全平方公式)。
三亚市中考数学专题题型复习01:方程、不等式、函数的实际应用
![三亚市中考数学专题题型复习01:方程、不等式、函数的实际应用](https://img.taocdn.com/s3/m/496ef3168bd63186bdebbc7a.png)
三亚市中考数学专题题型复习01:方程、不等式、函数的实际应用姓名:________ 班级:________ 成绩:________一、解答题 (共2题;共20分)1. (10分)某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元.如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?2. (10分)一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.(1)根据图象,直接写出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.二、综合题 (共14题;共155分)3. (10分) (2016七下·邻水期末) 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):实际花费130290 (x)累计购物在甲商场127…在乙商场126…(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?4. (10分) (2019七下·确山期末) 甲、乙两家工厂生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元,甲、乙两个厂家推出各自销售的优惠方案:甲厂家,买张桌子送三把椅子:乙厂家,桌子和椅子全部按原价的8折优惠现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x把() .(1)分别用含x的式子表示购买甲、乙两个厂家桌椅所需的金额:购买甲厂家的桌椅所需金额为________;购买乙厂家的桌椅所需金额为________ 。
2023年中考一轮复习—计算题专题(含答案)
![2023年中考一轮复习—计算题专题(含答案)](https://img.taocdn.com/s3/m/ecaebb6932687e21af45b307e87101f69f31fb5e.png)
中考数学一轮复习--解答题计算题专题一、一元一次方程(形如ax+b=0,a ≠0)一般的解题步骤:1、有括号的时候,先去括号。
2、有分式的时候,去分母(不等号两边同乘分母最小公倍数)3、移项,即单项式由等号左边移至等号右边,或由等号右边移至等号左边。
(注意:移项要变号,即+变-,-变+)4、合并同类项(加减运算中适用,所谓同类项是底数相同且底数相应的指数也相同的单项式。
),合并法则:底数与指数不变,系数相加减,如:a ²b-5a ²b=(1-4)a ²b=-3a ²b5、未知数系数化为1。
具体方法:方程两边同除以未知数的系数(系数要带符号)。
例题如下:例1:5x ﹣2(3﹣2x )=﹣3解:5x-6+4x=-3………………去括号(乘法分配率)5x+4x=-3+6………………移项(变号)9x=3……………………合并同类项9x 9 = 39…………………系数化为1 X = 13例2:5x+2(3x ﹣7)=9﹣4(2+x )解:5x+6x-14=9-8-4x …………去括号(乘法分配率)5x+6x+4x=9-8+14…………移项(变号) 15x=15…………………合并同类项15x 15=1515………………系数化为1 X=1二、一元一次不等式组(由两个及两个以上的一元一次不等式组成)1、不等式的一般解题步骤:①有括号的时候,先去括号。
②有分式的时候,去分母(不等号两边同乘分母最小公倍数)③移项,即单项式由不等号左边移至不等号右边,或由不等号右边移至不等号左边。
(注意:移项要变号,即+变-,-变+)④合并同类项(加减运算中适用,所谓同类项是底数相同且底数相应的指数也相同的单项式。
),合并法则:底数与指数不变,系数相加减,如:a²b-5a ²b=(1-4)a²b=-3a²b⑤未知数系数化为1。
具体方法:不等号两边同除以未知数的系数(系数要带符号),需特别注意:如果不等号两边同除或同乘负数,不等号要变号,如:-x≥1,则-x/-1≤1/-1,得:x≤-12、不等式组的解题步骤:①将不等式组中的每一个不等式单独求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 1 页 专题(一) 数、式、方程的计算
【例1】2013年我国GDP 总值为56.9万亿元,增速达7.7%,将56.9万亿元用科学记数法表示为( B )
A .56.9×1012元
B .5.69×1013元
C .5.69×1012元
D .0.569×1013元
用科学记数法把一个数表示为a ×10n
的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
【例2】关于x 的一元二次方程x 2+2(m -1)x +m 2=0的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值范围是( B )
A .m ≤12
B .m ≤12
且m ≠0 C .m <1 D .m <1且m ≠
先由方程有两个实数根可得Δ≥0,根据根与系数的关系得出x 1+x 2=-2(m -1),x 1x 2=m 2,再由x 1+x 2>0,x 1x 2>0得到不等式组,解之即可.
真题热身
1.9的算术平方根是( B )
A .±3
B .3
C .-3 D. 3
2.下列实数是无理数的是( D )
A .-2 B.13
C. 4
D. 5 3.下列计算正确的是( D )
A .(-1)-1=1
B .(-1)0=0
C .|-1|=-1
D .-(-1)2=-1
4.联合国人口基金会的报告显示,世界人口总数在2011年10月31日达到70亿.将70亿用科学记数法表示为( A )
A .7×109
B .7×108
C .70×108
D .0.7×1010
5.已知方程x 2-2x -1=0,则此方程( C )
A .无实数根
B .两根之和为-2
C .两根之积为-1 D
1+ 2
6.计算:1220-5415=4
. 7.化简:(a -2a 2+2a -a -1a 2+4a +4)÷a -4a +2
=__1a +2a __. 8.不等式13
(x -m)>3-m 的解集为x >1,则m 的值为__4__. 9.关于x 的两个方程x 2-x -2=0与1x +1=2x +a
有一个解相同,则a =__4__.。