反比例函数复习课-教学设计
人教版九年级数学下册第二十六章反比例函数复习教学设计
3.鼓励学生提出疑问,针对学生的疑问进行解答,巩固所学知识。
4.布置课后作业,要求学生运用所学知识解决实际问题,提高学生的数学素养。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,重点掌握反比例函数的定义、性质和图像特点。
3.讲解反比例函数在实际问题中的应用,如速度与时间、物体在水平面上的运动等。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,针对反比例函数的性质、图像和应用进行讨论。
2.各小组分享自己的观点,讨论如何利用反比例函数解决实际问题。
3.教师巡回指导,针对学生的疑问进行解答,引导学生运用所学知识分析问题。
针对九年级学生,他们在之前的学习中已经掌握了函数的基本概念、一次函数、二次函数的性质和应用。在此基础上,学生对反比例函数的学习具备了一定的基础。然而,反比例函数作为函数学习的重要组成部分,其图像、性质和实际应用方面仍存在一定的难度。因此,在本章节的教学过程中,需要关注以下几点:
1.学生在理解反比例函数图像和性质时可能遇到困难,如对双曲线、渐近线等概念的理解。
5.针对课堂所学内容,编写一道反比例函数的应用题,要求题目具有一定的挑战性和趣味性。
6.阅读教材中关于反比例函数的相关内容,总结反比例函数的性质、图像和应用,形成自己的学习笔记。
2.自主探究,合作交流
-引导学生回顾一次函数、二次函数的性质,自主发现反比例函数的性质,组织学生进行小组讨论,共同总结反比例函数的图像特点及其应用。
3.精讲精练,突破难点
-对反比例函数的图像、性质进行详细讲解,结合具体例子,使学生深入理解双曲线、渐近线等概念。
反比例函数复习课教案
反比例函数复习课教案第一章:反比例函数的定义及性质1.1 反比例函数的定义引导学生回顾反比例函数的定义:形如y = k/x (k 为常数,k ≠0) 的函数,称为反比例函数。
强调反比例函数中x 和y 成反比例关系,即xy = k。
1.2 反比例函数的性质分析反比例函数的图像特征:反比例函数的图像是一条通过原点的曲线,称为双曲线。
探讨反比例函数的渐近线:当x 趋向于正无穷或负无穷时,y 趋向于0,x 轴和y 轴是反比例函数的渐近线。
讲解反比例函数的单调性:在第一象限和第三象限,反比例函数是减函数;在第二象限和第四象限,反比例函数是增函数。
第二章:反比例函数的图像与几何意义2.1 反比例函数的图像利用图形软件绘制反比例函数的图像,引导学生观察图像的形状和特点。
引导学生理解反比例函数图像的四个象限特点:当k > 0 时,图像位于第一象限和第三象限;当k < 0 时,图像位于第二象限和第四象限。
2.2 反比例函数的几何意义解释反比例函数表示的是点(x, y) 在坐标平面上的分布情况,且这些点满足xy = k。
引导学生思考反比例函数与面积的关系:反比例函数图像与坐标轴围成的封闭区域的面积等于k 的绝对值。
第三章:反比例函数的性质与应用3.1 反比例函数的性质引导学生利用反比例函数的性质解决问题,如判断两个函数是否为反比例函数、确定反比例函数的单调区间等。
3.2 反比例函数的应用举例说明反比例函数在实际问题中的应用,如物理学中的电流与电压的关系、化学中的浓度与体积的关系等。
引导学生运用反比例函数解决实际问题,培养学生的数学应用能力。
第四章:反比例函数的运算4.1 反比例函数的基本运算复习反比例函数的基本运算规则,如反比例函数的加减乘除、乘积和商的运算。
4.2 反比例函数的复合运算讲解反比例函数的复合运算,如反比例函数与一次函数、二次函数的复合运算。
引导学生运用反比例函数解决复合运算问题,提高学生的数学运算能力。
(完整版)九年级数学:反比例函数复习专题教案
《反比例函数》复习教学设计横龙中学朱利艳复习目标1.知识与技能理解反比例函数定义、图象及其主要性质,能根据所给信息确定反比例函数表达式,能利用反比例函数的图象和性质解决问题,体会函数的应用价值。
.函数的相交问题,主要探究函数相交的交点个数及如何计算交点坐标,并进一步探究x取何值时,一次函数与反比例函数值的大小比较、相交时所围成的三角形的面积问题。
2.过程与方法利用回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合,渗透数形结合思想。
3.情感、态度与价值观进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
复习重点、难点【复习重点】能根据所给信息确定反比例函数表达式,掌握反比例函数的图象特点及性质,利用反比例函数的图象及性质解决问题;反比例函数中面积问题涉及题型的掌握。
【复习难点】对反比例函数图像及性质的理解和一次函数的综合应用,利用反比例函数解决实际问题。
反比例函数与一次函数结合出现的面积问题所涉及的解题方法的归纳。
复习过程一、知识梳理1.反比例函数的定义:一般地,形如y=kx (1y kx xy k或)(k为常数,k____0)的函数叫做反比例函数.2.反比例函数的性质:反比例函数y=kx(k≠0)的图象是___ ___.当k>0时,两分支分别位于第__ ___象限内,且在每个象限内,y随x的增大而_______;当k<0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______.3.反比例函数的图象是中心对称图形,其对称中心为_______;反比例函数还是_______图形,它有两条_______,分别是直线__ _____.4.在双曲线y =kx上任取一点P 向两坐标轴作垂线,与两坐标轴围成的矩形的面积等于_______.5.因在反比例函数的关系式y =kx(k ≠0)中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数的关系式,因而一般只要给出一组x 、y 的值或图象上任意一点的坐标,然后代入y =k x中即可求出_______的值,进而确定出反比例函数的关系式.6.利用反比例函数中|k|的几何意义求解与面积有关的问题。
《反比例函数复习课》教学设计
《反比例函数复习课》教学设计一、学生知识状况分析通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。
本章的教学主要以直观操作,观察,概括和交流作为主要的活动方式。
通过这些活动,对函数的三种表示方法进行有机的整合,逐步形成对函数概念的整体性认识,逐步提高从函数图象中获取数学信息的能力,提高学生的感知水平,逐步形成从函数视角处理问题的意识,体验数形结合的数学思想方法.教师应从现实情境和学生已有的知识经验出发,以本章三维教学目标为标准来考查学生的学习情况,考查学生对反比例函数的定义,图象,性质及其应用掌握的程度,以及从函数图象中敏锐地获取相关信息、分析问题、解决问题的能力.二、教学任务分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念, 是研究现实世界变化规律的重要内容及数学模型, 学生已经在七年级下册和八年级上册学习过变量之间的关系、一次函数等内容, 对函数已有了初步的认识, 在此基础上讨论反比例函数, 可以进一步领悟函数的概念,并积累研究函数性质的方法及用函数观点处理和解决实际问题的经验,为后继学习二次函数等产生积极的影响。
教学目标(一)知识与能力:1.理解反比例函数的概念.2.会作反比例函数的图象,并探索和掌握反比例函数的主要性质.3.会从函数图象中获取信息,能运用反比例函数的概念、图象和主要性质解决实际问题.(二)过程与方法:1.熟练掌握本章的整体知识结构,培养学生的概括和归纳能力,形成知识体系.2.在经历抽象反比例函数概念的过程中,领会反比例函数的意义,理解反比例函数的概念,进一步培养学生的抽象思维能力.3.经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和交流能力.4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能运用数形结合思想解决与反比例函数相关的数学问题和实际应用问题.(三)情感与价值观通过本章内容的回顾与思考,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力,激发学生学习的热情,培养学生学习数学的兴趣。
数学《反比例》教学设计5篇
数学《反比例》教学设计篇5一、知识与技能1.能灵活列反比例函数表达式解决一些实际问题2.能综合利用几何、方程、反比例函数的知识解决一些实际问题二、过程与方法1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力三、情感态度与价值观1.积极参与交流,并积极发表意见2.体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具教学重点:掌握从实际问题中建构反比例函数模型教学难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想.教具准备1.教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)2.学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数y?kx是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。
反比例函数教学设计(甄选8篇)
反比例函数教学设计(甄选8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!反比例函数教学设计(甄选8篇)反比例函数教学设计(1)一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
初中数学_反比例函数复习课教学设计学情分析教材分析课后反思
九年级上册第一章《反比例函数》复习课《复习课——反比例函数》教学设计【课标要求】1. 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式.2. 能画出反比例函数的图象,根据图象的表达式)0(≠=k xky 探索并理解0>k 和0<k 时,图象的变化情况.3.能用反比例函数解决简单实际问题. 【学习目标】1.进一步理解反比例函数的概念,能根据已知条件确定反比例函数的表达式;2.能画出反比例函数的图象,并能借助图象和表达式探索并理解反比例函数的性质,体会数形结合思想;3.进一步体会用函数解决实际问题的方法与思想; 【教材分析】《反比例函数》是在前面已经学习了“图形与坐标”、“一次函数”基础上研究的另一类基本函数.本单元复习是以函数图象为载体,以数形结合思想为主线,围绕“概念(表达式)、图象、性质及应用”展开的,核心内容是“结合图象应用性质比较大小、解方程与不等式、函数实际应用”,学生在解决问题过程中进一步领悟反比例函数的概念并积累研究函数性质的方法及用函数观点解决问题的经验,为后续函数的学习及复习引路.因此,我确定本节课的重点是:依据反比例函数的图象理解运用性质解决问题,体会数形结合思想.九年级的学生在前面已经学习了图形与坐标、一次函数、反比例函数,在上初四以后又学习了二次函数,对函数的研究方向及方法有了一定的认识。
从学生学习情况分析,反比例函数的增减性与一次函数增减性容易相混,用函数观点看待方程、不等式、函数间的关系在理解上、思维方式上存在一定困难,用反比例函数解决实际问题需要建模的思想与策略,需要一定的生活背景知识,对学生有较高的要求. 本节课的复习从学习函数最本质的思想——数形结合思想入手,结合函数图象,在学生疑难问题解决过程中加深对反比例函数乃至对三类函数的理解.基于以上分析,我确定本节课的教学难点是:反比例函数性质的理解与应用。
【评价设计】1.通过环节一实现目标1的达成.2.通过环节二实现目标2的达成.3.通过环节三实现目标3的达成.【课前准备】布置学生根据自己学习所得将《反比例函数》的知识进行梳理、归纳、整合,形成本章的知识结构网络,自主绘制本章的思维导图. 【设计意图】学生在课前将这一章节的基本知识点和基本方法,个人进行自主复习理解,并寻找知识点间的关联性,画出思维导图,让每个学生都经历一次汇总整理,每个同学所画的思维导图体现了各自独特的理解,闪烁着每一个学生智慧的火花,同时也包含了每个学生的不足与错误.也能让老师了解学情.一:辨一辨,明晰概念1:集体展示这节课我们一起复习九年级第一章《反比例函数》,请大家拿出你课前自己自主复习时归纳的本章知识思维导图,老师展示三位同学的作品,大家认真观察,有什么共同的特点?有什么优点?你还有哪些建议?【教师活动】学生的归纳绝大多数是整理本章知识点的,不能体现以“函数”的图象为核心,不能展示知识间的联系.老师展示问题,引领学生复习,渗透本节课的核心思想“图象”,归纳知识间的联系.2:归纳定义【教师活动】PPT出示问题:出示一条反比例函数的图象,给出图象上一点A(3,1),提问:①你能求出该函数图象的表达式吗?②你判断这是什么函数?③你的根据是什么?④你能说出它的定义吗?【学生活动】思考后口答,归纳出反比例函数的定义、表达式及待定系数法求表达式,并感受定义与图象的关系.【教师活动】板书:3:检测目标1、在下列函数中,哪些是反比例函数?并指出其中每一个反比例函数中对应的k 值.()()()()()()()();.8,6.7,13.6,21.5,3.4,28.3,6.2,21.112xay x y x y x y xy x x y xy x y ==-===-+===-2、如果()232m x m y --=是反比例函数,则=m .3、判断下列各点是否在函数xy 3=的图象上.B (-3,-1),C (3,-1), D (-3,1),E (-1,-3),F(1,3);*4、若x 与y 满足xy+1=0,则y 是x 的 函数.【备用题】k 为何值时,关于x 的函数4-+=k 3)x (k y 是反比例函数? 【学生活动】问题1.2.3口答,不单说结果还要说想法, 【教师活动】对学生的说法要进行点评,利用PPT 展示过程.引导学生要进行解题知识方法的总结.【设计意图】通过本题组,由图象认识反比例函数及表达式中的条件,观察图象的信息会利用待定系数法求反比例函数的表达式。
湘教版数学九年级上册第一章《反比例函数》复习教学设计
湘教版数学九年级上册第一章《反比例函数》复习教学设计一. 教材分析湘教版数学九年级上册第一章《反比例函数》是学生在学习了正比例函数和一次函数的基础上,进一步拓展反比例函数的知识。
本章主要内容包括反比例函数的定义、性质、图像和反比例函数的应用等。
通过本章的学习,使学生能理解反比例函数的概念,掌握反比例函数的性质和图像,能运用反比例函数解决实际问题。
二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数和一次函数有一定的了解。
但反比例函数的概念和性质相对较为抽象,学生可能难以理解。
因此,在教学过程中,要注重引导学生从实际问题中提出反比例函数的概念,并通过大量的实例和练习,使学生掌握反比例函数的性质和应用。
三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像,能运用反比例函数解决实际问题。
2.过程与方法:通过观察、实验、探究等方法,引导学生发现反比例函数的性质,培养学生的动手能力和探究能力。
3.情感态度与价值观:激发学生学习反比例函数的兴趣,培养学生积极参与数学学习的态度,提高学生解决问题的能力。
四. 教学重难点1.反比例函数的概念和性质。
2.反比例函数的图像。
3.反比例函数的应用。
五. 教学方法1.情境教学法:通过实际问题引入反比例函数的概念,激发学生的学习兴趣。
2.探究教学法:引导学生通过观察、实验、探究等方法,发现反比例函数的性质。
3.案例教学法:通过典型的实例,使学生理解反比例函数的应用。
4.小组合作学习:引导学生分组讨论,培养学生的合作意识。
六. 教学准备1.教学课件:制作反比例函数的教学课件,包括反比例函数的定义、性质、图像和应用等内容。
2.教学素材:准备一些实际问题,用于引入反比例函数的概念,以及一些典型的实例,用于讲解反比例函数的应用。
3.学具:准备一些反比例函数的模型或图示,帮助学生直观地理解反比例函数的性质。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生从实际问题中提出反比例函数的概念。
反比例函数教案6篇
反比例函数教案6篇教学目标使学生对反比例函数和反比例函数的图象意义加深理解。
教学重难点重点:反比例函数的图象。
难点:利用反比例函数的图象解题。
教学过程一、情境创设解析式y=kx(k为常数,k≠0)图象形状双曲线(以原点为对称中心)k>0位置一、三象限增减性每一象限内,y随x的增大而减小k<0位置二、四象限增减性每一象限内,y随x的增大而增大二、例题讲解例1.如图是反比例函数的图象的一支。
(1)函数图象的另一支在第几象限?试求常数m的取值范围;(2)点都在这个反比例函数的图象上,比较、的大小例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积。
三、课堂练习课本P70练习1、2题四、课堂小结1、反比例函数的图象。
2、反比例函数的性质。
五、课堂作业课本P72/第5题教学目标知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点教学难点1)重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键教师画图中要规范,为学生树立一个可以学习的模板教学方法激发诱导,探索交流,讲练结合三位一体的教学方式教学手段教师画图,学生模仿教具三角板,小黑板学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法教学过程(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)内容设计意图一:课前检测:1.什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。
反比例函数教学设计(通用6篇)
反比例函数教学设计(通用6篇)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y 都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I= .(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t= .它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-113y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y 的值.[生]设反比例函数的表达式为y= .(1)当x=-1时,y=2;∴k=-2.∴表达式为y=- .(2)当x=-2时,y=1.当x=- 时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=- ;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,- .Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y= ,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
第26章反比例函数单元复习课教案2021-2022学年人教版数学九年级下册
第26章反比例函数单元复习课教学设计一、教学内容函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念,是研究现实世界变化规律的重要内容和数学模型.反比例函数是在前面已经学习了“一次函数”、“二次函数”基础上研究一类基本函数,本节课主要是复习反比例函数这一章的内容,在反比例函数的概念基础上,以函数图象为载体,以数形结合思想为主线,围绕“比较大小、图象法解方程与不等式、函数实际应用”核心内容进行。
二、学情分析反比例函数是函数的重要知识,核心知识是反比例函数的概念、图象、性质与应用.从学生学习情况分析,反比例函数的増减性与一次函数增减性容易相混,用函数观点看待方程、不等式、函数间的关系在理解上、思维方式上存在一定困难,用反比例函数解决实际问题需要建模的思想与策略,需要一定的生活背景知识,对学生有较高的要求.基于以上分析,从学习函数最本质的思想——数形结合思想为核心,让学生通过本节课的学习,加深对反比例函数乃至对三类函数的理解。
三、教学目标1.知识与技能:理解反比例函数的主要性质,能根据所给信息确定反比例函数表达式,能画出反比例函数的图象,并利用它们解决简单的实际问题,体会函数的应用价值。
2.过程与方法:回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合。
3.情感、态度与价值观:进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
四、教学重难点教学重点:1、能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题;2、掌握反比例函数的图象特点及性质。
教学难点:1、理解反比例函数的概念;2、画反比例函数的图像,并从图像中获取信息;3、对反比例函数增减性的理解;4、反比例函数的应用。
五、教学方法与手段本节课主要采用启发探索式教学法,引导学生独立思考,主动探索等方式来解决具体问题。
本课利用多媒体辅助教学,增加课堂直观性,提高学习效率和质量,增加学习兴趣,调动积极性六、教学过程 (一)情境引入 头道中学为了美化校园要铺一块长方形草坪,面积为200 2m 。
(完整版)《反比例函数》复习教学设计
《反比例函数》复习教学设计冷水江市中连中心学校邓求姣一、复习目标【知识与技能】理解反比例函数、图象及其主要性质,能根据所给信息确定反比例函数表达式,能画出反比例函数的图象,并利用它们解决简单的实际问题,体会函数的应用价值。
【过程与方法】回顾反比例函数的概念、性质、图象的过程,把数学与实际问题相结合。
【情感、态度与价值观】进一步了解数学在实际生活中的应用,增强应用意识,体会数学的重要性。
二、复习重点、难点【复习重点】1、能根据所给信息确定反比例函数表达式,画出反比例函数的图象,并利用它们解决简单的实际问题;2、掌握反比例函数的图象特点及性质。
【复习难点】1、理解反比例函数的概念;2、画反比例函数的图像,并从图像中获取信息;3、对从反比例函数增减性的理解;4、反比例函数的应用。
三、知识回顾1、反比例函数的概念:一般地,如果两个变量x,y之间的关系k(k为常数,k不等于0)的形式,那么称y是x的可以表示成y=xk中可知,x作为分母,所以不能为零。
反比例函数。
从y=x2、画反比例函数图象时要注意以下几点:⑴列表时自变量的取值应取绝对值相等而符号相反的一对数值,这样既可以简化计算,又便于标点;⑵列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线;⑶在连线时要用“光滑的曲线”,不能用折线。
3反比例函数()0≠=k xky k 的取值范围0>k 0<k图象性质①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图象的两个分支分别在第一、三象限,在每一个象限内y 随x 的增大而减小①x 的取值范围是0≠x ,y 的取值范围是0≠y②函数图象的两个分支分别在第二、四象限,在每一个象限内y 随x 的增大而增大注意:(1)反比例函数是轴对称图形和中心对称图形;(2)双曲线的两个分支都与x 轴、y 轴无限接近,但永远不能与坐标轴相交;(3)在利用图象性质比较函数值的大小时,前提应是“在同一象限”内。
反比例函数教案(优秀3篇)
反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。
运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。
案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。
师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。
通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。
二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。
复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。
案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。
师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。
那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。
生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。
反比例函数教案设计(6篇)
反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。
2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。
教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。
今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。
这两种量之间是反比例关系。
活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。
(2)三角形的面积肯定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积肯定,底面积和高。
反比例函数教案6篇
反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。
反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。
重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。
教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。
今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。
例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。
轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。
即每天至少要48吨。
这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。
实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。
反比例函数复习课单元教学设计
反比例函数单元整体教学设计课时教学设计5.教学评活动过程教师活动学生活动环节一:了解动态,引入新课引入出示近5年中考试卷中反比例函数中考动态,今天针对反比例函数的定义,图象及性质,和一次函数结合进行复习。
设计意图:了解反比例函数考察的内容,分值,分布情况,有针对性复习。
环节二:梳理知识网络学生自主完成此图后,学生回答对于定义中的k 的条件;三种形式中自变量的次数进行强调设计意图:学生通过填写思维导图,对反比例函数的定义,图象,性质进行巩固复习环节三:典例精析,变式训练 模块一:反比例函数的定义1.有下列函数(1) .其中y 是x 的反比例函数的有 ________________ (只填序号)典例1:变式: 若 是反比例函数,则m 的值是 .模块二:图象及性质学生自主探究,同桌交流,学生展示结果,教师给予鼓励。
学生分析(8)为什么不是?(7)中k 值确定变式由学生口述思路学生独立完成典例2,教师追问解题方法.若关于x 的函数 是反比例函数,求m 的值 学生自主完成,典例1演板,学生讲述解题思路5)2(--=m x m y设计意图:增减性比较法有一定的局限性,当点不在同一象限时,采用树形结合;k符号未知时,进行分类。
归纳出常用的方法。
模块三:反比例与一次函数综合设计意图:学生自主探究,小组合作,充分展示,归纳总结坐标系中三角形面积,提升学生分析问环节五:达标检测.6板书设计模块一:反比例定义模块三反比例与一次函数综合模块二:图像及性质7.作业一次函数y=kx+b与反比例函数y= 的图象交于A(2,1),B(-1,n)两点.(1)求反比例函数的解析式.(2)求一次函数的解析式.(3)求△AOB的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数复习课-教学设计反比例函数复习课教学设计济南市第五十六中学米伟伟一、学生知识状况分析通过学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。
本章的教学主要以直观操作,观察,概括和交流作为主要的活动方式。
通过这些活动,对函数的三种表示方法进行有机的整合,逐步形成对函数概念的整体性认识,逐步提高从函数图象中获取数学信息的能力,提高学生的感知水平,逐步形成从函数视角处理问题的意识,体验数形结合的数学思想方法.教师应从现实情境和学生已有的知识经验出发,以本章三维教学目标为标准来考查学生的学习情况,考查学生对反比例函数的定义,图象,性质及其应用掌握的程度,以及从函数图象中敏锐地获取相关信息、分析问题、解决问题的能力.二、教学任务分析函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念, 是研究现实世合作与交流中发展学生的合作意识和交流能力.4.能根据所给信息确定反比例函数的表达式、会作反比例函数的图象,并能运用数形结合思想解决与反比例函数相关的数学问题和实际应用问题.(三)情感与价值观通过本章内容的回顾与思考,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力,激发学生学习的热情,培养学生学习数学的兴趣。
教学重点反比例函数的概念.会作反比例函数的图象,并掌握其性质.反比例函数的相关应用.教学难点利用反比例函数的图像,探索反比例函数的主要性质.反比例函数的相关应用.教学方法自主探究、合作交流.三、教学过程分析本节课设计了五个教学环节:第一环节:复习提问,引人入胜;第二环节:知识串联,形成体系;第三环节:例题精练,巩固新知;第四环节:交流探讨 、收获小结;第五环节:课后作业第一环节:复习提问,引人入胜活动目的 给学生设置疑问,激发学生的思考和回顾,明确本节课的学习任务。
活动过程:请大家先回忆一下,反比例函数中我们学习了哪些主要内容? 学生回答预设:反比例函数的定义;反比例函数的图象及性质;反比例函数的应用。
. 教师引入:下面我们就来系统全面地对反比例函数的有关知识进行复习。
第二环节:知识串联,形成体系 活动目的:引导学生对本章的所学的基础知识进行系统的归纳和整理,使学生明确各个知识点之间的联系, 将基础知识网络化,形成本章知识的框架结构体系。
活动过程:(一)反比例函数的概念一般地,函数xk y =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kxy或xy=k的形式。
(二)反比例函数的图像及性质反比例函数的图像是(双曲线),由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x 轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
表达式请写出反比例函数表达式:;还有哪些形式?图象k>0 k<0 画出图象:画出图象:性质1.图象在第、象限;2.每个象限内,函数y的值随x的增大而______________.1.图象在第、象限;2.在每个象限内,函数y值随x的增大而________________.在一个反比例函数图象上任取一点P,过点P分别作x、轴,y轴的平行线,与坐标轴围成的矩形面积为S则矩形的面积S=|y|·|x|=|xy|=|k|。
对称性: 反比例函数既是 图形,又是 图形。
(三)反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。
由于在反比例函数xk y =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
第三环节:例题精练,巩固新知活动目的:使学生运用反比例函数的概念、图象和主要性质熟练的解决实际问题,提高学生获取信息、分析问题、解决问题的能力。
活动过程:课件展示知识点一、反比例函数的图象与性质【例1】已知反比例函数2y x=,下列结论中,不正..确.的是( ) A .图象必经过点(12),B .在每一个象限内,y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <【例2】 已知点A (-2,y 1)、B (-1,y 2)、C (4,y 3)都在反比例函数4y x =的图象上,则( ) (A )y 1<y 2<y 3 (B) y 3<y 2<y 1 (C) y 3<y 1<y 2(D) y 2<y 1<y 3知识点二、确定反比例函数关系式及xy =k 的应用【例3】 已知反比例函数k y x=的图象经过点(1,-4),则这个函数的解析式为___________.【例4】双曲线1y 、2y 在第一象限的图像如图,14y x =, 过1y 上的任意一点A ,作x 轴的平行线交2y 于B , 交y 轴于C ,若1AOB S∆=,则2y 的解析式是 . 【例5】如图所示,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0)、B (2,0),反比例函数的图象经过点C .求此反比例函数的解析式.【基础演练】1、反比例函数图象经过点(1,﹣1)的反比例函数关系式______________.2、已知反比例函数3yx=的图象过A(m,1),则m=________.3. 如果反比例函数x my-=2的图象在第一、第三象限内,那么m的取值范围是:4、已知反比例函数kyx=的图像过点P(1,3),则反比例函数图像位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限5、如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是()A(﹣3,4) B(﹣4,﹣3)C(﹣3,﹣4) D(4,3)6、反比例函数x k y =(k >0)的部分图象如图所示,A 、B是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1, △BOD 的面积为S 2,则S 1和S 2的大小关系为( )A . S 1> S 2B . S 1= S 2C . S 1<S 2D . 无法确定7.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.注意事项:在本环节教学中,教师可以引导学生首先进行独立思考,避免替代思维,然后可以通过小组讨论、合作交流等形式,启发学生对问题进行探究,分析,完善解题思路,进而感悟和总结解决此类问题的一般方法和规律。
【综合提升】1.如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 .2.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数6(0)=>的图象上,y xx则点C的坐标为.3.如图,菱形OABC的顶点O是原点,顶点B在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为_________ .第四环节:交流探讨收获小结活动内容:教师引导学生进行回顾和整理,然后通过师生交流和生生交流,回答以下问题:本节课我们都一起回顾和复习了哪些内容?交流预设:1.反比例函数概念2.反比例函数图像的做法及性质3.反比例函数在生活中的应用4.做题时要注意数形结合5.具体题目的解题思路活动目的:使学生通过再次的回顾和总结,完善自己知识框架,进一步培养了学生归纳和交流能力。
第五环节:课后作业(一)复习题(二)活动与探究反比例函数图象与矩形的面积若点A是反比例函数y=xk (k≠0)图象上的任意一点,且AB垂直于x轴,垂足为B,AC垂直于y轴,垂足为C,则矩形面积SABOC=|k|.如图(1).1.如图(2),P是反比例函数)y=xk (k≠O)图象上的一点,由P点分别向x轴,y轴引垂线,得阴影部分(矩形)的面积为3,则这个反比例函数的表达式______.2. 如图(3)过双曲线y=x2上两点A、B分别作x轴,y轴的垂线,若矩形ADDC与矩形BFOE的面积分别为S1,S2,则S1与S2的关系是_____.答案:1.解:由题意得|k |=3.又双曲线的两支分布在第二、四象限,所以k<0,故k =-3.∴k=x 3-.2.解:由题意得S 1=S 2=|k |=2.(三)反比例函数与正比例函数图象性质比较分析正比例函数y=kx(k ≠0) x k y = (k 为常数,且k ≠0) 关系式K >0 K <0 K >0K <0 图象 x y 0 xy 0性质 图象经过点 ,与第 象限。
y 随着x 的增大而 。
图象经过点 ,与第 象限。
y 随着x 的增大而 。
双曲线的两个分支分别位于第 象限;在 ,y 随着x 的增大而 。
双曲线的两个分支分别位于第 象限;在 ,y 随着x的增大而 。
第六环节:课堂检测 及时反馈活动目的:出示幻灯片给出课堂检测的题目,围绕本节的重要的知识进行测评,要求会画图,会计算线段的长度和角的度数。
及时反馈学生课堂上学习的效果,以便与掌握学生的学习情况及时查漏补缺。
四、教学反思本节作为反比例函数的复习课,涉及到了中学数学里所有的数学思想方法,包括待定系数法、数形结合法、方程思想等等,这些方法相互渗透,相互融合,构成了函数应用的广泛性,解法的多样性,和思维的创造性。
函数的性质、图象及函数与方程、不等式知识的联系和综合应用是命题的热点,尤以探索性题型考查较多,其主要特点是要求学生能够建立数学模型,对相关知识进行综合应用。