半导体名词解释
半导体物理名词解释
半导体物理名词解释1.单电子近似:假设每个电子是在周期性排列且固定不动的原子核势场及其他电子的平均势场中运动。
该势场是具有与晶格同周期的周期性势场。
2.电子的共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,因而,电子将可以在整个晶体中运动。
这种运动称为电子的共有化运动。
3.允带、禁带: N个原子相互靠近组成晶体,每个电子都要受到周围原子势场作用,结果是每一个N度简并的能级都分裂成距离很近能级,N个能级组成一个能带。
分裂的每一个能带都称为允带。
允带之间没有能级称为禁带。
4.准自由电子:内壳层的电子原来处于低能级,共有化运动很弱,其能级分裂得很小,能带很窄,外壳层电子原来处于高能级,特别是价电子,共有化运动很显著,如同自由运动的电子,常称为“准自由电子”,其能级分裂得很厉害,能带很宽。
6.导带、价带:对于被电子部分占满的能带,在外电场的作用下,电子可从外电场中吸收能量跃迁到未被电子占据的能级去,形成了电流,起导电作用,常称这种能带为导带。
下面是已被价电子占满的满带,也称价带。
8.(本证激发)本征半导体导电机构:对本征半导体,导带中出现多少电子,价带中相应地就出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是本征半导体的导电机构。
9.回旋共振实验意义:这通常是指利用电子的回旋共振作用来进行测试的一种技术。
该方法可直接测量出半导体中载流子的有效质量,并从而可求得能带极值附近的能带结构。
当交变电磁场角频率W等于回旋频率Wc时,就可以发生共振吸收,Wc=qB/有效质量10.波粒二象性,动量,能量P=m0v E=12P2m0P=hk1.间隙式杂质:杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。
2.替位式杂质:杂质原子取代晶格原子而位于晶格点处,称为替位式杂质。
3.施主杂质与施主能级:能够释放电子而产生导电电子并形成正电中心。
它们称为施主杂质或n型杂质。
半导体是什么
半导体的本质和应用
半导体是一种介于导体和绝缘体之间的材料。
它具有在特定条件下可以有选择
性地导电的特性。
半导体的本质在于其电子结构中存在一些未被填满的能级,使得在外加电场或热激发的作用下,电子可以很容易地在材料中移动。
半导体的基本特性
半导体材料中的导带和价带之间存在称为“禁带宽度”的能隙。
在原子折叠之后,半导体材料通过共价键连接,因此其电子虽然处于原子间,但在整个材料中可以自由移动。
当外界条件施加以后,这些电子会在导带和价带之间跃迁,从而实现电导。
半导体的应用
半导体材料在现代科技中有着广泛的应用。
其中最重要的当属半导体器件,如
二极管和晶体管。
这些器件可以用来控制电流的流动,从而实现逻辑电路、放大器和其他电子设备。
此外,半导体还广泛应用于光电子领域,如太阳能电池和发光二极管。
通过半
导体材料的光电转换性质,可以将光能转化为电能或者发光,实现各种照明和能源转换的功能。
总的来说,半导体作为一种特殊的材料,在现代社会的科技发展中起着至关重
要的作用。
其独特的导电性能和光电性能广泛应用于电子器件、光电子器件以及能源技术等领域,推动了科技的不断进步和创新。
半导体物理中的名词解释
半导体物理中的名词解释引言半导体物理是研究半导体材料与器件特性及其应用的学科领域。
在这个领域中,涉及了许多专有名词和概念。
本文将对部分半导体物理中的名词进行解释,帮助读者更好地理解和掌握半导体物理的基础知识。
1. 半导体半导体是指在温度较低时具有介于导体和绝缘体之间电导率的物质。
其导电性能可以通过外加电场或温度的改变而变化。
在半导体中,电子的能带结构起着关键作用。
常见的半导体材料包括硅和锗。
2. 能带能带是描述电子能量状态的概念,常见的有价带和导带。
价带是较低能量的电子能级,而导带是较高能量的电子能级。
能带间的能隙是指两个能带之间的能量差异。
3. 底带和势垒底带是指位于能量较低的束缚态能级,例如价带。
势垒是指在能带之间建立的电势差。
在半导体中,势垒可以通过外加电场或杂质掺入来调节。
4. 载流子载流子是指在半导体中参与电荷输运的粒子,包括电子和空穴。
电子的运动带负电荷,而空穴则带正电荷。
在半导体中,载流子的浓度和运动性质对于电导率至关重要。
5. 禁带宽度和掺杂禁带宽度是指价带和导带之间的能隙。
掺杂是通过引入杂质来改变半导体的导电性能。
掺杂可以分为n型和p型掺杂,分别引入电子和空穴作为载流子。
6. PN结和二极管PN结是指将n型半导体和p型半导体相接触形成的结构。
PN结具有整流特性,发挥了二极管的作用。
当正向偏置时,电流可以流过结;而反向偏置时,电流则被阻塞。
7. MOS结和场效应晶体管MOS结是指金属氧化物半导体结。
它是指在绝缘体上形成金属-氧化物-半导体结构。
MOS结构被广泛应用于场效应晶体管中。
场效应晶体管是一种控制门电压来调节电流的半导体器件。
8. 肖特基结和肖特基二极管肖特基结是一种由金属和半导体形成的结。
肖特基结具有快速开关特性和低电压降,被用于高频和高速电子器件。
肖特基二极管是利用肖特基结制成的二极管。
9. 光电效应和光电二极管光电效应是指当光照射到半导体材料时,激发电子从价带跃迁到导带的现象。
半导体技术名词解释题
半导体技术名词解释题1、半导体:半导体指常温下导电性能介于导体与绝缘体之间的材料。
2、本征半导体:本征半导体是完全不含杂质且无晶格缺陷的纯净半导体。
3、直接带隙半导体:直接带隙半导体是导带底和价带顶在k空间中处于同一位置的半导体。
4、间接带隙半导体:间接带隙半导体材料导带底和价带顶在k空间中处于不同位置。
5、极性半导体:在共价键化合物半导体中,含有离子键成分的半导体为极性半导体。
6、能带、允带、禁带:当N个原子相互靠近结合成晶体后,每个电子都要受到周围原子势场的作用,其结果是每个N度简并的能级都分裂成N个彼此相距很近的能级,这N个能级组成一个能带。
此时电子不再属于某个原子而是在晶体中做共有化运动,分裂的每个能带都称为允带,允带包含价带和导带两种。
允带间因为没有能级称为禁带。
7、半导体的导带:半导体的导带是由自由电子形成的能量空间。
即固体结构内自由运动的电子所具有的能量范围。
8、半导体的价带:价带是指半导体或绝缘体中,在0K时能被电子占满的最高能带。
9、禁带宽度:禁带宽度是指导带的最低能级和价带的最高能级之间的能。
10、带隙:带隙是导带的最低点和价带的最高点的能量之差。
11、宽禁带半导体材料:一般把禁带宽度E g≥ 2.3 eV的半导体材料归类为宽禁带半导体材料。
12、绝缘体的能带结构:绝缘体中导带和价带之间的禁带宽度比较大,价带电子难以激发并跃迁到导带上去,导带成为电子空带,而价带成为电子满带,电子在导带和价带中都不能迁移。
13、杂质能级:杂质能级是指半导体材料中的杂质使严格的周期性势场受到破坏,从而有可能产生能量在带隙中的局域化电子态,称为杂质能级。
14、替位式杂质:杂质原子进入半导体硅以后,杂质原子取代晶格原子而位于晶格点处,称为替位式杂质。
15、间隙式杂质:杂质原子进入半导体以后,杂质原子位于晶格原子间的间隙位置,称为间隙式杂质。
16、施主杂质比晶格主体原子多一个价电子的替位式杂质,它们在适当的温度下能够释放多余的价电子,从而在半导体中产生非本征自由电子并使自身电离。
半导体名词解释
ACTIVE AREA主动区(工作区)主动晶体管(ACTIVE FRANSISTOR)被制造的区域即所谓的主动区(active area)在标准之MOS制造过程中ACTIVE AREA是由,一层氮化硅光罩及等接氮化硅蚀刻之后的局部特区氧化(LOCOS OXIDATION)所形成的,而由于利用到局部场氧化之步骤.所以Active AREA 会受到鸟嘴(BIRD’S BEAK)之影响而比原先之氮化硅光罩所定义的区域来得小以长0.6UM 之场区氧化而言大概会有O.5 UM之BIRD'S BEAK存在也就是说ACTIVE AREA比原在之氮化硅光罩定义之区域小O.5UMAcetone丙酮1.丙碗是有机溶剂的一种,分子式为CH30HCH32.性质:无色,具剌激性薄荷臭味之液体3.用途:在FAB内之用途,主要在于黄光室内正光阻之清洗、擦拭4﹒毒性:对神经中枢具中度麻醉性,对皮肤粘膜具轻微毒性,长期接触会引起皮肤炎,吸入过量之丙酮蒸气会刺激鼻、眼结膜、咽喉粘膜、甚至引起头痛、念心、呕吐、目眩、意识不明等。
5﹒允许浓度:1000ppmADI显影后检查After Developing Inspection之缩写目的:检查黄光室制程;光阻覆盖→对准→曝光弓显影。
发现缺点后,如覆盖不良、显影不良‥‥等即予修改(Rework)﹒以维产品良率、品质。
方法:利用目检、显微镜为之。
AEI蚀刻后检查1. AEI 即After Etching Inspection,在蚀刻制程光阻去除、前反光阻去除后,分别对产品实施主检或抽样检查。
2. AEI之目的有四:2-1提高产品良率,避免不良品外流。
2-2达到品质的一致性和制程之重复性。
2-3显示制程能力之指针。
2-4防止异常扩大,节省成本3. 通常AEI检查出来之不良品,非必要时很少做修改。
因为重去氧化层或重长氧化层可能造成组件特性改变可靠性变差、缺点密度增加。
生产成本增高,以及良率降低之缺点。
什么是半导体
什么是半导体?
半导体是一种介于导体(如金属)和绝缘体(如塑料)之间的材料。
在半导体中,电子的导电能力介于导体和绝缘体之间,即在一定条件下,半导体可以导电,但在其他条件下则表现为绝缘。
这种特性使得半导体在电子器件中具有重要的应用价值。
半导体的导电性质可以通过外加电场、温度或光照等外部条件进行控制,这种控制能力是现代电子器件的基础。
半导体的导电性主要依赖于两种载流子:电子和空穴。
在纯净的半导体中,电子和空穴的数量相等,因此其导电性较弱。
但通过在半导体中引入杂质或施加外部电场,可以改变电子和空穴的浓度,从而调节半导体的导电性能。
半导体在电子技术中有广泛的应用,包括但不限于:
1. **集成电路(IC)**:半导体晶体管的集成电路是现代电子产品的核心,如微处理器、存储器等。
2. **光电子器件**:半导体的光电特性使其用于光电二极管、激光器、光伏电池等。
3. **传感器**:利用半导体的电阻、电容或光电效应制作的传感器,用于测量温度、压力、光照等物理量。
4. **太阳能电池**:利用半导体材料的光电转换效应制作的太阳能电池,将光能转化为电能。
5. **电子管件**:半导体二极管、三极管等在电路中用于整流、
放大、开关等功能。
6. **发光二极管(LED)**:通过半导体材料的电致发光特性制作的LED,用于照明、显示等。
7. **光伏电池**:半导体材料制成的光电池,可以将光能转化为电能,用于太阳能发电等。
总的来说,半导体是现代电子技术的基础,其特性和应用推动了信息技术、通信技术、能源技术等领域的发展和进步。
半导体相关的名词解释
半导体相关的名词解释引言在当今高科技时代,半导体技术得到了广泛应用,成为现代社会的重要支柱。
然而,对于普通大众来说,半导体技术可能还比较陌生。
因此,本文将为您解释一些半导体相关的名词,帮助您更好地了解这一领域的知识。
一、半导体半导体是指电阻介于导体与绝缘体之间的物质,其电导率介于导体与绝缘体之间。
它的特殊之处在于,其导电性能可以通过施加外加电场或温度的改变而发生显著变化。
半导体材料常用的有硅(Silicon)和锗(Germanium),其在电子学和光电子学等领域具有广泛的应用。
二、PN结PN结是半导体器件中常见的一种结构,由P型(正型)半导体和N型(负型)半导体结合而成。
P型半导体中的“P”代表的是正电荷载体空穴(holes),而N型半导体中的“N”代表的是负电荷载体电子。
PN结的作用是将半导体划分为两个区域,形成电场和不同的导电性质,常用于二极管和晶体管等电子元件中。
三、二极管二极管是半导体器件中最简单也是最基本的一种。
它由PN结组成,电流在正向偏置(即P端为正,N端为负)时能够被导通,而在反向偏置时则能够阻断电流的流动。
二极管常用于电路中的整流和信号检测等功能。
四、晶体管晶体管是一种三端的半导体器件,由PNP或NPN三层结构组成。
它是电子技术领域的重要基石,被广泛应用于放大、开关、模拟信号处理和数字信号处理等电路中。
晶体管的工作原理是利用电场和电子流控制电流的放大和传输。
五、集成电路集成电路是将大量的晶体管、二极管和其他元件集成在一起的电路。
与传统的离散式电路相比,集成电路具有体积小、功耗低和可靠性高的优点。
它是现代电子设备的核心组成部分,广泛应用于计算机、手机、电视等电子产品中。
六、半导体光电子学半导体光电子学是指将半导体材料应用于光电子技术的领域。
在半导体材料中,电子和空穴之间的能级距离较小,因此半导体具有良好的光电转换特性。
半导体激光器、光电二极管和太阳能电池等都是半导体光电子学领域的重要应用。
半导体名词解释
1. 何谓PIE? PIE的主要工作是什幺?答:Process Integration Engineer(工艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。
2. 200mm,300mm Wafer 代表何意义?答:8吋硅片(wafer)直径为 200mm , 直径为 300mm硅片即12吋.3. 目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm的wafer工艺?答:当前1~3厂为200mm(8英寸)的wafer, 工艺水平已达0.13um 工艺。
未来北京厂工艺wafer将使用300mm(12英寸)。
4. 我们为何需要300mm?答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加2.25倍,芯片数目约增加2.5倍5. 所谓的0.13 um 的工艺能力(technology)代表的是什幺意义?答:是指工厂的工艺能力可以达到0.13 um的栅极线宽。
当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。
6. 从0.35um->0.25um->0.18um->0.15um->0.13um 的technology改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。
从0.35um -> 0.25um -> 0.18um -> 0.15um -> 0.13um 代表着每一个阶段工艺能力的提升。
7. 一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type),何谓N, P-type wafer?答:N-type wafer 是指掺杂 negative元素(5价电荷元素,例如:P、As)的硅片, P-type 的wafer是指掺杂 positive 元素(3价电荷元素, 例如:B、In)的硅片。
半导体名词解释
1. 何谓PIE? PIE的主要工作是什幺?答:Process Integration Engineer(工艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。
2. 200mm,300mm Wafer 代表何意义?答:8吋硅片(wafer)直径为 200mm , 直径为 300mm硅片即12吋.3. 目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm的wafer工艺?答:当前1~3厂为200mm(8英寸)的wafer, 工艺水平已达0.13um工艺。
未来北京厂工艺wafer将使用300mm(12英寸)。
4. 我们为何需要300mm?答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加2.25倍,芯片数目约增加2.5倍5. 所谓的0.13 um 的工艺能力(technology)代表的是什幺意义?答:是指工厂的工艺能力可以达到0.13 um的栅极线宽。
当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。
6. 从0.35um->0.25um->0.18um->0.15um->0.13um 的technology改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。
从0.35um -> 0.25um -> 0.18um -> 0.15um -> 0.13um 代表着每一个阶段工艺能力的提升。
7. 一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type),何谓 N, P-type wafer?答:N-type wafer 是指掺杂 negative元素(5价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂 positive 元素(3价电荷元素, 例如:B、In)的硅片。
半导体名词解释
1. 何谓PIE? PIE的主要工作是什幺?答:Process Integration Engineer(工艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。
2. 200mm,300mm Wafer 代表何意义?答:8吋硅片(wafer)直径为 200mm , 直径为 300mm硅片即12吋. 3. 目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来的Fab4(四厂)采用多少mm的wafer工艺?答:当前1~3厂为200mm(8英寸)的wafer, 工艺水平已达0.13um工艺。
未来厂工艺wafer将使用300mm(12英寸)。
4. 我们为何需要300mm?答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加2.25倍,芯片数目约增加2.5倍5. 所谓的0.13 um 的工艺能力(technology)代表的是什幺意义?答:是指工厂的工艺能力可以达到0.13 um的栅极线宽。
当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。
6. 从0.35um->0.25um->0.18um->0.15um->0.13um 的technology改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。
从0.35um -> 0.25um -> 0.18um -> 0.15um -> 0.13um 代表着每一个阶段工艺能力的提升。
7. 一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type),何谓 N, P-type wafer?答:N-type wafer 是指掺杂 negative元素(5价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂 positive 元素(3价电荷元素, 例如:B、In)的硅片。
半导体名词解释
1. 何谓PIE? PIE 的主要工作是什幺?答:Process Integration Enginee工r( 艺整合工程师), 主要工作是整合各部门的资源, 对工艺持续进行改善, 确保产品的良率(yield)稳定良好。
2. 200mm,300mm Wafer 代表何意义?答:8 吋硅片(wafer)直径为200mm , 直径为300mm 硅片即12 吋.3. 目前中芯国际现有的三个工厂采用多少mm 的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm 的wafer 工艺?答:当前1~3 厂为200mm(8英寸)的wafer, 工艺水平已达0.13um 工艺。
未来北京厂工艺wafer 将使用300mm(12英寸)。
4. 我们为何需要300mm?答:wafer size 变大,单一wafer 上的芯片数(chip)变多,单位成本降低200→300 面积增加 2.25倍,芯片数目约增加 2.5倍5. 所谓的0.13 um 的工艺能力(technology代)表的是什幺意义?答:是指工厂的工艺能力可以达到0.13 um 的栅极线宽。
当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。
6. 从0.35um->0.25um->0.18um->0.15um->0.13um的technology改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。
从0.35um -> 0.25um -> 0.18um -> 0.15um-> 0.13um 代表着每一个阶段工艺能力的提升。
7. 一般的硅片(wafer)基材(substrate可)区分为N,P 两种类型(type),何谓N, P-type wafer?答:N-type wafer 是指掺杂negative元素(5 价电荷元素,例如:P、As)的硅片, P-type 的wafer 是指掺杂positive 元素(3 价电荷元素, 例如:B、In)的硅片。
半导体物理名词解释
(1)晶态:固体材料中的原子有规律的周期性排列,或称为长程有序。
(2)非晶态:固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
(3)准晶态:介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
(4)单晶:原子呈周期性排列的晶体。
(5)多晶:由许多取向不同的单晶体颗粒无规则堆积而成的固体材料。
(6)原子价键:主要的原子价键有共价键、离子键、π键和金属键。
(7)共价键与非极性共价键:共价键是相邻原子间通过共用自旋方向相反的电子对电子云重叠)与原子核间的静电作用形成的,成键的条件是成键原子得失电子的能力相或是差别较小,或者是成键原子一方有孤对电子(配位体),另一方有空轨道(中心离如果相邻原子吸引电子的能力是一样的,则共用电子对不会发生偏移,这样的共价就是非极性共价键。
共价键的数目遵从8-N原则(8)空穴:光激发或热激发等激发因素会使原子键断裂而释放出电子,在断键处少掉1个电子,等效于留下一个带(+q)电量的正电荷在键电子原来所在的位置,这就是空穴(9)半导体的载流子:有两种载流子,带负电的电子和带正电的空穴。
(10)基态:在0K下,半导体中的电子空穴对产生之前的固体所处的状态。
(11)激发态:电子空穴对产生之后的固体所处的状态(12)光激发:光照产生电子空穴对的过程。
(1)量子:热辐射的粒子形态。
(2)德布罗意波长:普朗克常量与粒子的动量p的比值。
(3)海森伯堡测不准原理:对于同一粒子,不可能同时确定其坐标和动量。
(4)量子化能级:束缚态粒子的分立的能级。
(5)波粒二象性:微观粒子有时表现为波动形态,而电磁波有时表现为粒子形态。
(6)光生载流子:光照产生的载流子。
(7)热生载流子:热激发产生的载流子(8)半导体能带结构:分为E-k图和E-x图。
(9)导带:价带上能量最低的允带(10)价带:价电子所在的允带。
(11)禁带:导带底与价带顶之间的能量区域(12)禁带宽度:导带底与价带顶之间的能量差。
半导体名词解释
5.所谓的um 的工艺能力(technology)代表的是什幺意义?答:是指工厂的工艺能力可以达到um 的栅极线宽。
当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。
6.从>>>> 的technology 改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。
从-> -> -> -> 代表着每一个阶段工艺能力的提升。
7.一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type ),何谓N, P-type wafer?答:N-type wafer是指掺杂negative 元素(5价电荷元素,例如:P、As)的硅片,P-type的wafer是指掺杂positive 元素(3价电荷元素,例如:B、In)的硅片。
8.工厂中硅片(wafer )的制造过程可分哪几个工艺过程(module)?答:主要有四个部分:DIFF(扩散)、TF(薄膜)、PHOTO光刻)、ETCH(刻蚀)。
其中DIFF又包括FURNACES管)、WET湿刻)、IMP(离子注入)、RTP快速热处理)。
TF包括PVD物理气相淀积)、CVD化学气相淀积)、CMP化学机械研磨)。
硅片的制造就是依据客户的要求,不断的在不同工艺过程(module)间重复进行的生产过程,最后再利用电性的测试,确保产品良好。
9.一般硅片的制造常以几P 几M 及光罩层数(mask layer)来代表硅片工艺的时间长短,请问几P几M及光罩层数(mask layer)代表什幺意义?答:几P几M代表硅片的制造有几层的Poly(多晶硅)和几层的metal(金属导线). 一般的逻辑产品为1P6M( 1层的Poly 和6层的metal)。
而光罩层数(mask layer )代表硅片的制造必需经过几次的PHOT Q光刻).10.Wafer 下线的第一道步骤是形成start oxide 和zero layer? 其中start oxide 的目的是为何?答:①不希望有机成分的光刻胶直接碰触Si表面。
半导体名词解释
突变结近似:认为从中性半导体区到空间电荷区的空间电荷密度有一个突然的不连续。
内建电势差:热平衡状态下pn结内p区与n区的静电电势差。
耗尽层电容:势垒电容的另一种表达。
耗尽区:空间电荷区的另一种表达。
超突变结:一种为了实现特殊电容-电压特性而进行冶金结处高掺杂的pn结,其特点为pn结一侧的掺杂浓度由冶金结处开始下降。
势垒电容(结电容):反向偏置下pn结的电容。
线性缓变结:冶金结两侧的掺杂浓度可以由线性分布近似的pn结。
冶金结:pn结内p型掺杂与n型掺杂的分界面。
单边突变结:冶金结一侧的掺杂浓度远大于另一侧的掺杂浓度的pn结。
反偏:pn结的n区相对于p区加正电压,从而使p区与n区之间势垒的大小超过热平衡状态时势垒的大小。
空间电荷区:冶金结两侧由于n区内施主电离和p区内受主电离而形成的带净正电与负电的区域。
空间电荷区宽度:空间电荷区延伸到p区与n区内的距离,它是掺杂浓度与外加电压的函数。
变容二极管:电容随着外加电压的改变而改变的二极管。
第八章雪崩击穿:电子和(或)空穴穿越空间电荷区时,与空间电荷区内原子的电子发生碰撞产生电子-空穴对,在pn结内形成一股很大的反偏电流,这个过程就成为雪崩击穿。
载流子注入:外加偏压时,pn结体内载流子穿过空间电荷区进入p区或n区的过程。
临界电场:发生击穿时pn结空间电荷区的最大电场强度。
扩散电容:正偏pn结内由于少子的存储效应而形成的电容。
扩散电导:正偏pn结的低频小信号正弦电流与电压的比值。
扩散电阻:扩散电导的倒数。
正偏:p区相对于n区加正电压。
此时结两侧的电势差要低于热平衡时的值。
产生电流:pn结空间电荷区内由于电子-空穴对热产生效应形成的反偏电流。
长二极管:电中性p区与n区的长度大小少子扩散长度的二极管。
复合电流:穿越空间电荷区时发生复合的电子与空穴所产生的正偏pn结电流。
反向饱和电流:pn结体内的理想反向电流。
短二极管:电中性p区与n区中至少有一个区的长度小于少子扩散长度的pn结二极管。
半导体名词解释
1说明布拉菲点阵和晶体结构的关系答:晶体的原子或分子在空间的分布具有周期性,这种分布可看成是由若干个原子或离子构成的重复单元(即基元)在三维空间的周期性的分布,把基元抽象为一个空间几何点,称之为阵点。
阵点在空间的周期性分布构成布拉菲点阵。
晶体结构=基元+布拉菲点阵2原胞:整个晶体可以通过由结点构成的某一单元沿空间三个不同方向各按一定的距离作周期性地平移而构成,这个重复单元就称为原胞或晶胞,平移一定的距离称为晶格的周期。
说明原胞和晶胞的关系答:构成布拉菲点阵的最小的平行六面体称为原胞。
能充分体现布拉菲点阵的对称性的重复单元称为晶胞热缺陷:当温度T不等于0K时,晶体中格点上原子发生热振动有几率离开格点位置而成为间隙原子和空位,即缺陷。
热缺陷为点缺陷,包括:弗仑克尔缺陷-原子脱离格点后,同时形成空格点和间隙原子,空格点等于间隙原子数。
肖脱基缺陷-晶体内部格点上的原子跑到晶体表面,形成空格点。
间隙原子-晶体表面原子跑到晶体内部晶格间隙位置,形成间隙原子。
离子晶体正负离子交替排列在晶格格点上,依靠离子键原子晶体原子共价键金属失去价电子的离子实金属键分子分子和饱和原子范德瓦尔斯力晶面与晶列指数2.电子有效质量的意义是什么?它与能带有什么关系?答:有效质量概括了晶体中电子的质量以及内部周期势场对电子的作用,引入有效质量后,晶体中电子的运动可用类似于自由电子运动来描述。
有效质量与电子所处的状态有关,与能带结构有关:(1)、有效质量反比于能谱曲线的曲率;(2)、有效质量是k的函数,在能带底附近为正值,能带顶附近为负值。
(3)、具有方向性---沿晶体不同方向的有效质量不同。
只有当等能面是球面时,有效质量各向同性。
导体半导体绝缘体能带结构的差异导体:有未被填满的价带。
绝缘体:价带全部被电子填满,禁带上面的导带是空带,且禁带宽度较大。
半导体:价带全部被电子填满,禁带上面的导带是空带,但禁带宽度相对较小。
施主杂质:V A族杂质在硅、锗中电离时,能够释放电子而产生导电电子并形成正电中心施主能级Ed:被施主杂质束缚的多余的一个价电子状态对应的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ACTIVE AREA主动区(工作区)主动晶体管(ACTIVE FRANSISTOR)被制造的区域即所谓的主动区(active area)在标准之MOS制造过程中ACTIVE AREA是由,一层氮化硅光罩及等接氮化硅蚀刻之后的局部特区氧化(LOCOS OXIDATION)所形成的,而由于利用到局部场氧化之步骤.所以Active AREA 会受到鸟嘴(BIRD’S BEAK)之影响而比原先之氮化硅光罩所定义的区域来得小以长0.6UM 之场区氧化而言大概会有O.5 UM之BIRD'S BEAK存在也就是说ACTIVE AREA比原在之氮化硅光罩定义之区域小O.5UMAcetone丙酮1.丙碗是有机溶剂的一种,分子式为CH30HCH32.性质:无色,具剌激性薄荷臭味之液体3.用途:在FAB内之用途,主要在于黄光室内正光阻之清洗、擦拭4﹒毒性:对神经中枢具中度麻醉性,对皮肤粘膜具轻微毒性,长期接触会引起皮肤炎,吸入过量之丙酮蒸气会刺激鼻、眼结膜、咽喉粘膜、甚至引起头痛、念心、呕吐、目眩、意识不明等。
5﹒允许浓度:1000ppmADI显影后检查After Developing Inspection之缩写目的:检查黄光室制程;光阻覆盖→对准→曝光弓显影。
发现缺点后,如覆盖不良、显影不良‥‥等即予修改(Rework)﹒以维产品良率、品质。
方法:利用目检、显微镜为之。
AEI蚀刻后检查1. AEI 即After Etching Inspection,在蚀刻制程光阻去除、前反光阻去除后,分别对产品实施主检或抽样检查。
2. AEI之目的有四:2-1提高产品良率,避免不良品外流。
2-2达到品质的一致性和制程之重复性。
2-3显示制程能力之指针。
2-4防止异常扩大,节省成本3. 通常AEI检查出来之不良品,非必要时很少做修改。
因为重去氧化层或重长氧化层可能造成组件特性改变可靠性变差、缺点密度增加。
生产成本增高,以及良率降低之缺点。
Air Shower空气洗尘室进入洁净室之前,须穿无尘衣,因在外面更衣室之故﹒无尘衣上沽着尘埃,故进洁净室之前﹒须经空气喷洗机将尘埃吹掉。
Alignment对准目的:在IC的制造过程中,必须经过6至10次左右的对准、曝光来定义电路图案,对准就是要将层层图案精确地定义显像在芯片上面。
方法:利用芯片上的对准键﹒一般用十字键﹒和光罩上的对准键合对为之方式:1.人眼对准,2.用光、电组合代替人眼,即机械式对准。
ALLOY/Sinter融合ALLOY之目的在使铝与硅基(SILICON SUBSTRATE)之接钢有OHMIIC特性,即电压与电流成线性关系。
ALLOY也可降低接触的阻力值。
AL/SI铝/硅靶此为金属溅镀时所使用的一种金属合金材料利用AR游离的离子,让其撞击此靶的表面,把AL/SI的原子撞击出来,而镀在芯片表面上,一般使用之组成为AL/SI(1%),将此当做组件与外界导线连接。
AL/SI/CU铝/硅/铜金属溅镀时所使用的原料名称,通常是称为TARGET,其成份为0.5% 铜,1% 硅及98.5%铝,一般制程通常是使用99%铝1%硅.后来为了金属电荷迁移现象(ELEC TROMIGRATION) 故渗加0.5%铜降低金属电荷迁移ALUMINUM铝此为金属溅镀时,所使用的一种金属材料,利用AR离子,让其撞击此种材料做成的靶表面﹒把AL原子撞击出来,而镀在芯片表面上,将此做为组件与外界导线之连接。
ANGLE LAPPING角度研磨ANGLELAPPING 的目的是为了测量JUNCTION的深度,所作的芯片前处理,这种采用光线干涉测量的方法就称之ANAGLE LAPPING。
公式为Xj = /NF,即JUNCTION深度等于入射光波长的一半与干涉条纹数之乘积。
但渐渐的随着VLSI组件的缩小,准确度及精密度都无法因应,如SRP(SPREADING RESISTANCE PRQBING) 也是应用﹒ANGLE LAPPING 的方法作前处理,采用的方法是以表面植入浓度与阻质的对应关系求出JUNCTION的深度,精确度远超过入射光干涉法。
ANGSTROM埃是一个长度单位,其大小为1公尺的佰亿分之一,约人的头发宽度之伍拾万分之一。
此单位常用于IC制程上,表示其层(如SiO2,POLY,SIN‥)厚度时用。
APCVD (ATMOSPRESSURE)常压化学气相沉积APCVD 为ATMOSPHERE(大气), PRESSURE (压力), CHEMICAL (化学), V APOR(气相) 及DEPOSITION (沉积) 的缩写,也就是说,反应气体(如SIH4(g),PH3(g), B2H6和O2(g)) 在常压下起化学反应而生成一层固态的生成物(如BPSG)于芯片上。
As75砷.自然界元素之一。
由33个质子﹒42个中子及75个电子所组成。
.半导体工业用的砷离子(As+)可由AsH气体分解而得到。
.As是N-type dopant常用做N-.场区﹒空乏区﹒及S/D植入。
Ashing, Stripping电浆光阻去除l.电浆光阻去除,就是以电浆(Plasma)的方式﹒将芯片表面之光阻加以去除。
2. 电浆光阻去除的原理﹒系利用氧气在电浆中所产生之自由基(Radical)与光阻(高分子的有机物)发生作用,产生挥发性的气体,再由邦浦抽走,达到光阻去除的目的。
反应机构如下示:O + PR→ CO2 ; H2O ; Polymer fragments,---3. 电浆光阻去除的生产速率(throughput)通常较酸液光阻去除为慢﹒但是若产品经过离子植入或电浆蚀刻后﹒表面之光阻或发生碳化或石墨化等化学作用,整个表面之光阻均已变质,若以硫酸吃光阻﹒无法将表面已变质之光阻加以去除﹒故均必须先以电浆光阻去除之方式来做。
Assembly晶粒封装以树脂或陶瓷材料﹒将晶粒包在其中﹒以达到保护晶粒,隔绝环境污染的目的,而此一连串的加工过程﹒即称为晶粒封装(Assembly)。
封装的材料不同,其封装的作法亦不同,本公司几乎都是以树脂材料作晶粒的封装﹒制程包括:芯片切割→晶粒目检→晶粒上「架」(导线架,即Leadframe) →焊线→模压封装→稳定烘烤(使树脂物性稳定) →切框、弯脚成型→脚沾锡→盖印→完成。
以树脂为材料之IC﹒通常用于消费性产品﹒如计算机、计算横。
而以陶瓷作封装材料之IC ﹒属于高信赖度之组件,通常用于飞弹、火箭等较精密的产品上。
Back Grinding晶背研磨利用研磨机将芯片背面磨薄以便测试包装,着重的是厚度、均匀度、及背面之干净度。
一般6吋芯片之厚度约20 mil—30 mil左右,为了便于晶粒封装打线,故须将芯片厚度磨薄至10 mil--15mil左右。
Bake, Soft bake, Hard bake烘培、软烤、预烤烘烤(Bake):在机集成电路芯片的制造过程中,将芯片置于稍高温(60ºC~250ºC)的烘箱内或热板上均可谓之烘烤。
随其目的不同,可区分为软烤(Soft bake)与预烤(Hard bake)。
软烤(Soft bake) :其使用时机是在上完光阻后,主要目的是为了将光阻中的溶剂蒸发去除,并且可增加光阻与芯片之附着力。
预烤(Hard bake):又称为蚀刻前烘烤(pre-etch bake),主要目的为去除水气,增加光阻附着性,尤其在湿蚀刻(wet etching)更为重要,预烤不全常会造成过蚀刻。
BF2二氟化硼.一种供做离子植入用之离子。
.BF2+是由BF3气体经灯丝加热分解成:B10,B11,F19,B10 BF2,B11F2经Extraction拉出及质谱磁场分析后而得到。
.是一种p-type离子,通常用做VT植入(层)及S/D质植入。
BOAT晶舟BOAT原意是单木舟。
在半导体IC制造过程中,常需要用一种工具作芯片传送,清洗及加工,这种承载芯片的工具,我们称之为BOAT。
一般BOAT有两种材质,一是石英,另一是铁氟龙。
石英BOAT用在温度较高(大于300°C)的场合。
而铁氟龙BOAT则用在传送或酸处理的场合。
B. O. E.缓冲蚀刻液B. O. E.是HF与NH4F依不同比例混合而成。
6:1 BOE蚀刻即表示HF: NH4F =l:6的成份混合而成。
HF为主要的蚀刻液,NH4F则做为缓冲剂使用。
利用NH4F固定[H']的浓度,使之保持一定的蚀刻率。
HF会侵蚀玻璃及任何硅石的物质,对皮肤有强烈的腐蚀性,不小心被溅到,应用大量冲洗。
Bonding Pad焊垫焊垫--晶粒用以连接金线或铝线的金属层。
在晶粒封装(Assembly)的制程中,有一个步骤是作"焊线";即是用金线(塑料包装体)或铝线(陶瓷包装体)将晶粒的线路与包装体之各个接脚依焊线图(Bonding Diagram)连接在一起,如此一来,晶粒的功能才能有效地用。
由于晶粒上的金属线路的宽度及间隙都非常窄小(目前TI-Acer的产品约是0.5微米左右的线宽或间隙) ,而用来连接用的金线或铝线其线径目前由于受到材料的延展性及对金属接线强度要求的限制,祇能做到1.0-1.3mill (25.4~33微米)左右。
在此情况下﹒要把二、三十微米的金属线直接连接到金属线路间距只有0.5微米的晶上,一定会造成多条铝路的桥接,故晶粒上的铝路,在其末端皆设计成一个4mil见方的金属层,此即为焊垫,以作为接线用。
焊垫通常分布在晶粒之四个周边上(以利封装时的焊线作业),其形状多为正方形,亦有人将第一焊线点做成圆形,以资识别。
焊垫因为要作接线﹒其上的护层必须蚀刻掉,故可在焊垫上清楚地看到"开窗线"。
而晶粒上有时亦可看到大块的金属层,位于晶粒内部而非四周,其上也看不到开窗线,是为电容。
Boron硼.自然界元素之一,由五个质子及六个中子所组成、所以原子量是11。
另外有同位素,是由5个质子及5个中子所组成,原子量是10,(B10),自然界中这两种同位素之比例是4:1,可由磁场质谱分析中看出。
.是一种p-type离子(B11+),用来做场区、井区、VT及S/D植入。
BPSG含硼及磷的硅化物BPSG乃介于POL Y之上,METAL之下,可做为上下二层绝缘之用,加硼、磷,主要目的在使回流后的STEP较平缓,以防止METAL LINE溅镀上去后,造成断线。
BREAKDOWN VOLTAGE崩溃电压反向P-N接面组件所加之电压为P接负而N接正,如为此种接法则当所加电压通在某个特定位以下时反向电流很小,而当所加电压大于此特定位后,反向电流会急遽的增加,此特定值也就是吾人所谓的崩溃电压(BREAKDOWN VOLTAGE)一般吾人定义反向P+-N接面之反向电流为1UA时之电压为崩溃电压在P+-N或为N +- P之接回组件中崩溃电压,随着N(或者P)之浓度之增加而减小。