线性相位FIR数字滤波器设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、设计目的
1.掌握窗函数法设计FIR滤波器的原理和方法,观察用几种常用窗函数设计的
FIR数字滤波器技术指标;
2.掌握FIR滤波器的线性相位特性;
3.了解各种窗函数对滤波特性的影响。
二、设计原理
如果所希望的滤波器的理想频率响应函数为H d(e j J,则其对应的单位脉冲
1
响应为h d(n)=——f H (e恋)e j^dB,用窗函数W N(n)将h d(n)截断,并进行加权处 2兀7
理,得到实际滤波器的单位脉冲响应h(n)=h d(n)w N(n),其频率响应函数为
N _!
H (e j ^ h(n)e」n。如果要求线性相位特性,贝U h(n)还必须满足
nM
h(n)= h(N-1- n)。可根据具体情况选择h(n)的长度及对称性。
可以调用MATLAB工具箱函数firl实现本实验所要求的线性相位FIR-DF
的设计,调用一维快速傅立叶变换函数fft来计算滤波器的频率响应函数。
fir1是用窗函数法设计线性相位FIRDF
hn=fir1(N, wc, ‘ ftype ' , window)
fir1实现线性相位FIR滤波器的标准窗函数法设计。
hn=fir1(N,wc)可得到6 dB截止频率为wc的N阶(单位脉冲响应h(n)长度为
N+1)FIR低通滤波器,默认(缺省参数windows)选用hammiing窗。其单位脉冲响应
h(n)满足线性相位条件:h(n)=h(N-1-n)
其中wc为对n归一化的数字频率,OW wc< 1。
当wc= [wc1, wc2]时,得到的是带通滤波器。
hn=fir1(N,wc, ' ftype ')
当ftype=high时,设计高通FIR
当ftype=stop时,设计带阻FIR滤波器。
应当注意,在设计高通和带阻滤波器时,阶数N只能取偶数(h(n)长度N+1
为奇数)。不过,当用户将N设置为奇数时,fir1会自动对N加1。
hn=fir1(N,wc,window)可以指定窗函数向量window。如果缺省window参数,则
fir1默认为hamming窗。可用的其他窗函数有Boxcar, Hanning, Bartlett, Blackman, Kaiser和Chebwin 窗。例如:
hn=fir1(N,wc,bartlett(N+1))使用Bartlett 窗设计;
hn=fir1(N,wc,chebwin(N+1,R))使用Chebyshev窗设计。
hn=fir1(N,wc, 'type',window)通过选择wc、ftype 和window 参数(含义同上),
三、详细设计步骤
1、用窗函数法设计一个线性相位FIR低通数字滤波器FIR低通数字滤波器指标为:
'p =0.2二s =0.4 二R p=1dB 数字通带截止频率(弧度)数字阻带截止频率(弧度)通带衰减(dB)
A s = 50d
B 阻带衰减(dB)
因为衰减为50dB,所以选择海明窗。
过渡带宽为Ws —Wp=0.2 n,由公式N > 6.6 n - 0.2 n =33,所以N=34。
所以程序如下:
N=34;
Wc=pi/5; %通带截止频率wc=Wc/pi;%频率归一化h=fir1(N,wc);
[H,m]=freqz(h,[1],1024,'whole'); % 频率响应mag=abs(H);
db=20*log10((mag+eps)/max(mag));
pha=a ngle(H);
subplot(2,2,1)
n=0:N;
stem( n,h,'.')
axis([0 N -0.1 0.3])
hold on n=0:N; x=zeros(N+1); plot (n ,x,'-') hold off
xlabel('n') ylabel('h(n)') title(' 实际低通滤波器的h(n)')
subplot(2,2,2) plot(m/pi,db) axis([0 1 -100 0]) xlabel('w/pi') ylabel('dB') title(' 副频衰减特性') grid on
subplot(2,2,3) plot(m,pha) hold on n=0:7;
x=zeros(8); plot(n,x,'-') hold off axis([0 3.15 -4 4])
xlabel('频率(rad)')
ylabel('相位(rad)')
title('相频特性')
subplot(2,2,4) plot(m,mag) axis([0 6.15 0 1.5]) xlabel('频率W(rad)') ylabel('幅值')
title('幅频特性')
实际低通滤波器的h
(n)
J3
副频衰减特性
频率(「ad)频率W (「ad)
2、用窗函数法设计一个线性相位FIR高通数字滤波器。
要求:
FIR高通数字滤波器指标为:
■•p=0.5二数字通带截止频率(弧度)
■•u=0.3二数字阻带截止频率(弧度)
R p=1dB 通带衰减(dB)
A s =40d
B 阻带衰减(dB)
因为衰减为40dB,所以选择汉宁窗。
过渡带宽为Wp —Ws=0.2 n,由公式N > 6.2 n - 0.2 n =31,所以N=32。
程序如下:
N=32;
Wc=pi/2;
wc=Wc/pi;%频率归一化
h=fir1(N,wc, 'high', Hanning(N+1));
[H,m]=freqz(h,[1],1024,'whole'); % 频率响应mag=abs(H);
db=20*log10((mag+eps)/max(mag));
pha=a ngle(H);
subplot(2,2,1)
n=0:N;
stem( n,h,'.')
axis([0 N -0.1 0.3])
hold on
n=0:N-1;
x=zeros(N);
plot (n ,x,'-')
hold off xlabel(' n')
ylabel('h( n)')