武汉大学量子力学-2004真题

合集下载

量子力学习题集及解答

量子力学习题集及解答

量子力学习题集及解答目录第一章量子理论基础 (1)第二章波函数和薛定谔方程 (5)第三章力学量的算符表示 (28)第四章表象理论 (48)第五章近似方法 (60)第六章碰撞理论 (94)第七章自旋和角动量 (102)第八章多体问题 (116)第九章相对论波动方程 (128)第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhc h eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当 A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。

[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★)(★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。

这个公式就是斯忒蕃——玻耳兹曼公式。

其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y ⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe e x dx e x e x dx e x x xx xx66660=-=+-=∞∞--∞-⎰xx x e dx e xe又因无穷级数 ∑∞==144901n nπ故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y c h k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。

量子力学真题和答案解析

量子力学真题和答案解析

量子力学真题和答案解析是物理学中的一个重要分支,研究微观领域的宇宙现象和微观粒子的行为规律。

具有复杂的数学理论基础,因此在学习和研究过程中常常会遇到各种难题和问题。

为了更好地理解和应用,解析真题和答案是非常重要的一步。

首先,解析真题前,我们需要了解一些基本概念和原理。

描述了微观粒子的行为,其中最基本的概念是量子态和波函数。

量子态描述了粒子的所有性质,而波函数则是的核心数学工具,用于描述粒子的状态和演化规律。

在研究真题时,我们需要仔细分析题目中给出的信息和条件。

通常,题目会给出一些实验或者观测结果,然后要求利用所学知识来推断和解释这些结果。

这就需要我们从题目中提取关键信息,并应用的原理进行分析。

解析真题时,我们可以采用逐步推导的方法。

首先,根据题目中给定的信息,我们可以确定所研究系统的量子态。

然后,根据波函数的演化规律,我们可以利用薛定谔方程或者时间演化算符来推导出系统的时间演化。

最后,我们可以根据所给条件和结果来验证和解释我们的推导和计算结果。

在解析真题时,我们还需要注意一些常见的问题和误区。

首先,是一种概率性理论,因此我们无法准确预测每一次实验的结果。

我们只能给出在大量重复实验中的平均结果。

其次,波函数的坍缩现象是的核心特征之一。

在测量时,波函数会坍缩到某一特定的量子态,从而给出确定的结果。

最后,量子纠缠是中的一个重要现象。

它描述了在某些情况下,两个或多个微观粒子之间存在着密切的关联,无论它们之间的距离有多远。

总结一下,解析真题和答案是学习和研究的重要一步。

我们需要了解的基本概念和原理,并且可以采用逐步推导的方法来分析和解决问题。

我们还需要注意中的一些常见问题和误区,以便更好地理解和应用的原理和概念。

通过解析真题和答案,我们可以提高对的理解,并且能够更好地应用于实际问题和研究中。

量子力学经典题目及解答

量子力学经典题目及解答

8 a1
a2
a3
2 a1
a2
a3
第一章
补充:1.设 1 af1(x)ei(x和t) 2 bf2 (x)ei分(x别t表) 示
微观粒子的两个可能状态,求当粒子处于叠加态 1 2
时的相对几率分布。a,b为复常数, f1, f2为实函数。 解: 2 1 2 2 af1ei( xt) 2 bf2ei( xt) 2
n1
x
2
, px
h
x
n1h , 2a1
同理, py n2h / 2a2, pz n3h / 2a3 n1, n2, n3 1, 2,3
E
p2
2
1
2
(
px2
py2
pz2 )
h2
2
(
n1 2a1
)2
( n2 2a2
)2
( n3 2a3
)2
E h2 [( n1 )2 ( n2 )2 ( n3 )2 ] 2 2 [( n1 )2 ( n2 )2 ( n3 )2 ]
1
hv kT
1 c2
v T
d
c1v3dv ec2v/T 1
c1v3dv c2v /T
c1 c2
Tv2dv
----R-J公式
2.由玻尔角动量量子化条件导出氢原子能级公式 En
解: 角动量量子化条件,
es2 r2
Ln
v2
r
rnv
(向心力)
(1) (2)
r * (2) :
es2
(v2
)
(1)
(
的两组超越方程,经图解法求出束缚态的 后, k,可由(15)
得 2.8出分对子应间的的能范级德瓦E。n耳斯力所产生的势能可以近似的表示为

量子力学试题含答案

量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。

2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。

3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。

4.量子力学中力学量用 厄米 算符表示。

5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。

6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。

7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。

8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。

9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。

10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。

二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。

2004全国高考试题湖北卷理综

2004全国高考试题湖北卷理综

2004年普通高等学校招生全国统一考试理科综合能力测试第Ⅰ卷(选择题 共126分)本卷共21题,每题6分,共126分。

以下数据可供解题时参考:原子量;C 17 N 14 O 16 Na 23 Mg 24 P 31 Cl 35.5 K 39 Ca 40 Fe56l .下列关于光合作用强度的叙述,正确的是A .叶片从幼到老光合作用强度不变B .森林或农田中植株上部叶片和下部叶片光合作用强度有差异C .光合作用强度是由基因决定的,因此是固定不变的D .在相同光照条件下,各种植物的光合作用强度相同2.某生物的体细胞染色体数为2n 。

该生物减数分裂的第二次分裂与有丝分裂相同之处是A .分裂开始前,都进行染色体的复制B .分裂开始时,每个细胞中的染色体数都是2nC .分裂过程中,每条染色体的着丝点都分裂成为两个D .分裂结束后,每个子细胞的染色体数都是n3.用一定量的甲状腺激素连续饲喂正常成年小白鼠4周,与对照组比较,实验组小白鼠表现为A .耗氧量增加、神经系统的兴奋性降低B .耗氧量增加、神经系统的兴奋性增强C .耗氧量减少、神经系统的兴奋性降低D .耗氧量减少、神经系统的兴奋性增强 4.下列属于生态系统食物同特征的是A .一种生物只能被另一种生物捕食B .食物链的环节数是无限的C .一种生物可能属于不同的营养级D .食物网上的生物之间都是捕食关系5.用动物细胞工程技术获取单克隆抗体,下列实验步骤中错误..的是) A .将抗原注入小鼠体内,获得能产生抗体的B 淋巴细胞 B .用纤维素酶处理B 淋巴细胞与小鼠骨髓瘤细胞C .用聚乙二醇作诱导剂,促使能产生抗体的B 淋巴细胞与小鼠骨髓瘤细胞融合D .筛选杂交瘤细胞,并从中选出能产生所需抗体的细胞群,培养后提取单克隆抗体 6.在pH =l 含+2Ba 离子的溶液中,还能大量存在的离子是A .-2AlOB .-ClOC .-ClD .-24SO7.物质的量浓度相同的下列溶液中,符合按pH 由小到川匝序排列的是A .Na 2CO 3 NaHCO 3 NaCl NH 4ClB .Na 2CO 3 NaHCO 3 NH 4Cl NaClC .(NH 4)2SO 4 NH 4Cl NaNO 3 Na 2SD .NH 4Cl (NH 4)2SO 4 Na 2S NaNO 3 8.已知(l ))g (O 21)g (H 22+ =H 2O (g ) △H 1=a kJ ·1mol -(2))g (O )g (H 222+ =2H 2O (g ) △H 2=b kJ ·1mol - (3))g (O 21)g (H 22+=H 2O (l ) △H 3=c kJ ·1mol -(4))g (O )g (H 222+ =2H 2O (l ) △H 4=d kJ ·1mol - 下列关系式中正确的是 A . a <c <0 B .b >d >0C .2a =b <0D .2c =d >09.将0.l mol ·1L -醋酸溶液加水稀释,下列说法正确的是A .溶液中c (H +)和c (-OH )都减小B .溶液中c (H +)增大C .醋酸电离平衡向左移动D .溶液的pH 增大 10.下列叙述正确的是A .同温同压下,相同体积的物质,它们的物质的量必相等B .任何条件下,等物质的量的乙烯和一氧化碳所含的分子数必相等C .1L 一氧化碳气体一定比1L 氧气的质量小D .等体积、等物质的量浓度的强酸中所含的H +数一定相等 11.若1 mol 某气态烃C x H y 完全燃烧,需用3 mol O 2,则A .x = 2,y =2B .x = 2,y =4C .x = 3,y =6D .2=3,y =8 12.下列分子中,所有原子不可能...共处在同一平面上的是 A .C 2H 2 B .CS 2 C .NH 3 D .C 6H 6 13.常温下,下列各组物质不能用一种试剂通过化学反应区别的是A .MnO 2 CuO FeOB .(NH 4)2SO 4 K 2SO 4 NH 4ClC .AgNO 3 KNO 3 Na 2CO 3D .Na 2CO 3 NaHCO 3 K 2CO3 14.现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n 的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的1n 1-。

武汉大学量子力学期末试卷

武汉大学量子力学期末试卷

武汉大学量子力学期末试卷武汉大学物理科学与技术学院2012-2013(二)《量子力学》课程期末考试试题A卷学号:姓名:专业:得分:一、单选题(每题2分,共50分)1. 由氢原子理论知,当大量氢原子处于n=3的激发态时,原子跃迁将发出( C )。

A.一种波长的光B.两种波长的光C.三种波长的光D.连续光谱2. 根据玻尔氢原子理论,巴耳末线系中谱线最小波长与最大波长之比为( A )。

A. 5/9B. 4/9C. 7/9D. 2/93. 下列各组量子数中,可以描述原子中电子的状态的一项是( B )。

A. n=2,l=2,ml = 0, ms = 1/2B. n=3,l=1,ml = -1,ms = -1/2C. n=1,l=2,ml = 1, ms = 1/2D. n=1,l=0,ml = 1, ms = -1/24. 一价金属钠原子,核外共有11个电子。

当钠原子处于基态时,根据泡利不相容原理,其价电子可能取的量子态总数为( D )。

A. 2B. 8C. 9D. 185. 下列哪种论述不是定态的特点( C )A.几率密度和几率流密度矢量都不随时间变化.B.几率流密度矢量不随时间变化.C.任何力学量的平均值都不随时间变化.D.定态波函数描述的体系一定具有确定的能量.6. 在一维无限深势阱中运动的粒子,其体系的( D )A.能量是量子化的,而动量是连续变化的.B.能量和动量都是量子化的.C.能量和动量都是连续变化的.D.能量连续变化而动量是量子化的.7. 在极坐标系下,氢原子体系在不同球壳内找到电子的几率为( D )8. 在极坐标系下,氢原子体系在不同方向上找到电子的几率为( D )9. F 和G 是厄密算符,则( D )必为厄密算符. ?GF 必为厄密算符.(FG+GF)必为厄密算符. (FG?GF)必为厄密算符10. 氢原子能级的特点是( D )A.相邻两能级间距随量子数的增大而增大.B.能级的绝对值随量子数的增大而增大.C.能级随量子数的增大而减小.D.相邻两能级间距随量子数的增大而减小.11. .一维自由粒子的运动用平面波描写,则其能量的简并度为( B ). B. 2. C. 3. D. 4.drr r R D rdr r R C r r R B rr R A nl nl nl nl 222222)(.)(.)(.)(.12. 下列波函数为定态波函数的是( C )A. ψ2B. ψ1和ψ2C. ψ3D. ψ3和ψ413. 设ψ1(x)和ψ2(x)分别表示粒子的两个可能运动状态,则它们线性迭加的态c 1ψ1+ c 2ψ2的几率分布为( D )14. 设ψ(x)=δ(x),在x?x+dx 范围内找到粒子的几率为( D )A.δ (x )B.δ (x)dxC.δ2(x)D.δ2(x)dx15. 用波尔-索末菲(Bohr-Sommerfeld)的量子化条件得到的一维谐振子的能量为(n = 0,1,2,L )( C )A. En=n?ω .B. En=(n+1/2) ?ωC. En = (n+1)?ω .D. En= 2n?ω .16. X 射线康普顿散射证实了( C )A.电子具有波动性.B.光具有波动性.C.光具有粒子性.D. 电子具有粒17.有关微观实物粒子的波粒二象性的正确表述是( C )2*12*1*21*212222112*1212222112*121222211222211.2...ψψψψψψψψψψψψψψψψC C C C C C D C C C C C C C C C B C C A ++++++++A.波动性是由于大量的微粒分布于空间而形成的疏密波.B.微粒被看成在三维空间连续分布的某种波包.C.单个微观粒子具有波动性和粒子性.D. A, B, C.都对18.力学量算符在自身表象中的矩阵表示是( A )A. 以本征值为对角元素的对角方阵. B 一个上三角方阵.C.一个下三角方阵.D.一个主对角线上的元素等于零的方阵.19. 波函数Ψ1 、Ψ2=CΨ1,C为任意常数,(D )A. Ψ1与Ψ2描写粒子的状态不同.B. Ψ1与Ψ2所描写的粒子在空间各点出现的几率的比是1: C .C. Ψ1与Ψ2所描写的粒子在空间各点出现的几率的比是1:|C|2D. Ψ1与Ψ2所描写粒子的状态相同.20.戴维森和革末的电子晶体衍射实验的实验证实了( A )A. 电子具有波动性.B. 光具有波动性.C. 光具有粒子性.D. 电子具有粒子性21. 下面哪个实验现象不能说明电子自旋的存在( C )A. 原子光谱精细结构B.反常塞曼效应C. 光的康普顿散射D.斯特恩-盖拉赫实验22. 体系处于ψ=c1Y11+c2Y10 态中,则ψ( B )A.是角动量平方算符、角动量Z 分量算符的共同本征函数.B.是角动量平方算符的本征函数,不是角动量Z分量算符的本征函数.C.不是角动量平方算符的本征函数,是角动量Z分量算符的本征函数.D.不是角动量平方算符的本征函数,也不是角动量Z 分量算符的本23. 下列实验哪个不能证明辐射场的量子化( D )A 、光电效应B 、原子光吸收C 、黑体辐射D 、电子晶体衍射24. 对易关系[x , p x ]等于( A )B.?i ?C.? ?25. 全同粒子体系中,其哈密顿具有交换对称性,其体系的波函数( C )A.是对称的.B.是反对称的.C.具有确定的对称性.D.不具有对称性二、两个电子的自旋取向分别在x 和y 轴的正向,请问系统处于两电子自旋三重态态的几率有多大(12分)三、三维转子的哈密顿为:其中I 和Δ都是转动惯量,分如下两种情况求体系能量本征值(1)、Δ=0(6分)(2)、Δ不为0,但相对I 是小量,给出能量本征值近似值,精度达到Δ的一次方。

量子力学练习题

量子力学练习题

量子力学练习题随着科学技术的不断进步,量子力学作为近代物理学的基石,在我们生活中扮演着越来越重要的角色。

量子力学的概念和理论模型不仅用于解释微观世界的现象,还应用于信息处理、材料科学等领域。

为了加深对量子力学的理解,本文将为读者提供一些量子力学练习题,请认真思考并尽力解答。

题目一:平面上的单粒子态考虑一个二维平面上的单粒子,其波函数为Ψ(x, y)。

假设该波函数可以展开为以下形式:Ψ(x, y) = A(xe^(-λx) + ye^(-λy))其中,A和λ均为实常数。

1. 请计算波函数Ψ(x, y)的归一化常数A。

2. 求解波函数Ψ(x, y)对应的概率密度函数|Ψ(x, y)|^2。

3. 计算算符x和y对该波函数的期望值<x>和<y>。

题目二:自旋1/2粒子的测量考虑一个自旋1/2粒子,其自旋算符的本征态为|+⟩和|-⟩,对应自旋向上和向下的状态。

现在进行如下测量:1. 如果对该粒子的自旋以z方向为测量方向,求测量得到自旋向上状态的概率。

2. 假设在z方向上测量得到自旋向上状态后,立即进行对z方向自旋的再次测量,求再次测量得到自旋向上状态的概率。

3. 如果对该粒子的自旋以任意方向为测量方向,求测量得到自旋向上状态的概率。

题目三:简谐振子的能量本征态考虑一个一维简谐振子,其能量本征态可由波函数Ψ_n(x)表示,n 为非负整数。

波函数Ψ_n(x)的表达式为:Ψ_n(x) = N_n H_n(x) e^(-x^2/2)其中,N_n为归一化常数,H_n(x)为Hermite多项式。

1. 请计算波函数Ψ_0(x)的归一化常数N_0。

2. 求解波函数Ψ_1(x)对应的薛定谔方程解,并给出其归一化常数N_1。

3. 计算简谐振子的能量本征值E_n,其中n = 0, 1, 2。

题目四:双缝干涉实验考虑一个双缝干涉实验,光源发射频率为f,波速为v。

光通过双缝后形成干涉条纹,条纹之间的间距为d。

华中师范大学量子力学期末试卷二

华中师范大学量子力学期末试卷二

华中师范大学 2004 –2005 学年第二学期期末考试试卷(B 卷)课程名称 量子力学 课程编号 50112200 任课教师 贾亚一、计算题:(共4题,1题20分,2题15分3题15分,4题20分)1. 在zS ˆ表象中,求自旋算符S ˆ在}cos ,cos ,{cos γβα=n 方向投影算符γβαcos ˆcos ˆcos ˆˆˆz y x n S S S n S S ++=⋅= 的本征值和相应的本征态。

解:在z S ˆ表象中nS ˆ的矩阵表示为 ⎪⎪⎭⎫⎝⎛+-=γβαβαγcos cos cos cos cos cos 2ˆi i S n(1)则nS ˆ的本征方程为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-+-b a b a i i λγβαβαγcos cos cos cos cos cos(2)a 、b 不全为零的条件是久期方程)(cos cos cos cos cos cos =+-+--λγβαβαλγi i(3) 解之得1cos cos cos 2222=++=γβαλ,1±=λ(4)故,n S ˆ的本征值为 2±=n S将本征值代入(2)式,可得2 =n S 时的本征函数为 ⎪⎪⎪⎭⎫⎝⎛---=+1cos 1cos cos 2cos 1γβαγψi ; 2 -=n S 时的本征函数为 ⎪⎪⎪⎭⎫⎝⎛+--+=-1cos 1cos cos 2cos 1γβαγψi 。

2.质量为μ的粒子束被球壳δ势场散射,)()(0a r V r V -=δ,在高能近似下,用玻恩近似计算散射振幅和微分截面。

解:散射振幅的玻恩近似公式为q r d r r rV q f sin )(2)(02⎰∞-= μθ(1) 其中2sin2θk q =,θ为散射角。

利用δ函数的积分性质,由(1)式可得2s i n2)2s i n 2s i n (2s i n 2)(22020θθμμθka ka a V qa a V f ⋅-=-= (2) 微分截面为qa qa V f 24422022sin 4)()( μθθσ==在高能近似下:1>>ka ,有1>>θka ,)2sin 2sin(θka 随θ变化而迅速振荡,其平方可按21对待。

武汉大学近十年量子力学部分考研真题的分类解析

武汉大学近十年量子力学部分考研真题的分类解析

武汉大学近十年量子力学部分考研真题的分类解析摘要:量子力学是大学物理学本科学生的必修课,同时它也是国内许多知名高校的物理学研究生入学考试的必考科目。

本文将武汉大学2002年—2011年的非相对论量子力学考研真题分八大类解析,给出了标准解法。

并在此基础上提炼出解题模型,提高了运用量子力学的理论解决问题的能力。

关键词:量子力学;考研真题;模型目录前言: (1)1 真题的分类解析 (1)1.1 一维散射问题 (1)1.1.1 阶梯势垒的散射 (1)1.1.2 δ势的散射 (3)1.2一维束缚定态问题 (3)1.2.1无限深势阱求解 (4)1.2.2 δ势求解 (4)1.2.3 初值问题求解 (5)1.2.4 傅立叶变换的应用 (7)1.3 三维束缚态问题 (8)1.3.1 无限深球方势阱基态求法 (8)1.3.2 盒子势求解 (9)1.4 两个角动量算符有关题目求解 (10)1.4.1 轨道角动量算符 (10)1.4.2 自旋角动量算符 (12)1.5 不确定关系的应用 (13)1.6 表象理论相关习题求解 (15)1.7 近似理论的应用 (16)1.7.1 非简并定态微扰 (17)1.7.2 简并定态微扰 (18)1.7.3 变分法 (19)1.8 多体问题——全同性原理的应用 (20)2 重要解题模型 (21)2.1 一维无限深势模型 (21)δ势模型 (21)2.2 ()x2.3 盒子势模型 (21)2.4 中心力场模型 (22)2.5 平面转子模型 (22)2.6 空间转子模型 (22)3 总结 (22)致谢: (22)参考文献: (23)前言:量子力学自诞生以来便显示出强大的生命力,它是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础。

基于这点,国内各大高校的研究生入学考试都将其设为必考科目。

2024年高考物理量子力学基本概念历年真题

2024年高考物理量子力学基本概念历年真题

2024年高考物理量子力学基本概念历年真题前言:物理学作为自然科学的一大重要学科,旨在研究物质和能量的基本规律。

而在物理学的发展历程中,量子力学被公认为是最重要的一门学科之一。

量子力学是研究微观领域的物理学,描述了微观世界的粒子行为和其相互作用。

2024年高考物理试题中涉及到了量子力学的基本概念,本文将就这些历年真题进行讨论和解答。

一、波粒二象性在量子力学中,波粒二象性是非常核心的概念。

当我们观察到物质的一些性质时,它们表现出波动性;而在其他情况下,它们则表现出粒子性。

这种既是波又是粒子的性质被称为波粒二象性。

以2018年高考真题为例,第15题要求学生分析光电效应的实验结果。

根据实验结果,光子的能量与光子的频率成正比,而与光子的强度无关。

这个现象很好地解释了光的波动性,即能量与频率的关系,也可以通过光子的粒子性来解释光电效应中的能量转移。

这个问题的答案是C项,即光的粒子性和波动性。

二、波函数和波包波函数是量子力学中的一个重要概念,用来描述量子系统的状态。

根据时间演化,波函数可以发散为多个波包,波包是波函数的叠加态。

波包具有局部化的特性,可以用来描述粒子的位置和动量。

以2019年高考真题为例,第17题要求学生根据波函数图像确定波包的含义。

从图像可以看出,波包在空间上是局部化的,因此可以推断波包对应着一个局部化的粒子,即粒子在空间上具有一定的位置。

三、量子力学的不确定性原理不确定性原理是量子力学的重要原理之一,由海森堡提出。

不确定性原理指出,在同一时间,无法同时准确地测量一个粒子的位置和动量。

这是由于测量的过程会对粒子的状态产生干扰,导致无法同时得到准确的位置和动量信息。

以2020年高考真题为例,第18题要求学生分析电子的位置和动量的可同时确定性。

根据不确定性原理,我们可以得出结论:电子的位置和动量不能同时准确地测量。

因此,这个问题的答案是B项,即位置和动量的不确定性。

四、量子力学的超导和超流超导和超流是量子力学中的重要现象。

《量子力学》题库

《量子力学》题库

《量子力学》题库一、简答题1 试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为: ων ==h Ek nhp ==ˆλ其物理意义是把微观粒子的波动性和粒子性联系起来。

等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长则是描述波的特性的量。

2 简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波?答:波函数的统计解释是:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

按这种解释,描写粒子的波是几率波。

3 根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。

答:根据量子力学中波函数的几率解释,因为粒子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。

4 设描写粒子状态的函数ψ可以写成2211ϕϕψc c +=,其中1c 和2c 为复数,1ϕ和2ϕ为粒子的分别属于能量1E 和2E 的构成完备系的能量本征态。

试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。

答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。

或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系部分地处于态1ϕ、2ϕ中。

在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为21c 和22c 。

5 什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。

在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。

6 什么是全同性原理和泡利不相容原理?两者的关系是什么? 答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。

武汉大学2004试卷

武汉大学2004试卷

武汉大学2004—2005学年度第二学期2003 人文试验班《西方哲学史》试卷(A)学号姓名院(系)分数一、填空。

(每空 0.5 分,共 10 分)1、毕达哥拉斯学派提出万物的本原是________;他们认为具体事物是对数的________,这一观点影响到后来的柏拉图。

2、赫拉克利特说神就是永恒的流转着的________,命运就是那循着相反的途程创生万物的________。

3、高尔吉亚针对爱利亚派提出了三个命题,这三个命题是:无物存在,__________________, __________________。

4、亚里士多德的四因是指:________,_______,________,________。

5、伊壁鸠鲁认为,原子除了有________的差别之外,其运动还有________的特点,马克思认为这样一来就高扬了个体能动性和自由意志。

6、________,________,________被黑格尔统称为希腊化时期的三个“自我意识的哲学”。

这三派都追求心灵的宁静。

7、基督教哲学的发展大体上可以分为两个阶段。

即早期的________哲学与后期的________哲学(大致以公元 11 世纪为界)。

前者以柏拉图主义为基础而后者则以亚里士多德主义为基础。

8、奥古斯丁认为,自亚当和夏娃因罪被贬之后,现实世界就被划分成两座城:________和________。

9、奥卡姆剃刀原则的内容是______________________。

二、名词解释。

(5 题选做 4 题,每小题 3 分,共 12 分)1、阿基里斯追龟悖论2、人是万物的尺度3、中庸(亚里士多德)4、本体论(亚里士多德)5、唯名论与实在论三、简述与简答。

(6 题选做 4 题,每小题 3 分,共 12 分)1、简述米利都学派学说的进展。

2、一般认为,德谟克利特的原子是打碎了的巴门尼德的存在。

为什么会这样说?能不能说恩培多克勒的“四根”与阿那克萨哥拉的“种子”也是打碎了的巴门尼德的存在呢?为什么?3、简述苏格拉底“自知其无知”说。

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案一、(20分)已知氢原子在0=t 时处于状态 21310112(,,0)()()()010333x x x xψϕϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中,)(x n ϕ为该氢原子的第n 个能量本征态。

求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数。

解 已知氢原子的本征值为42212n e E nμ=-, ,3,2,1=n (1)将0=t 时的波函数写成矩阵形式()()()231133(,0)23x x x x ϕϕψϕ⎛⎫+ ⎪⎪= ⎪-⎪⎝⎭(2)利用归一化条件()()()()()()232***23112211233d 3332312479999x x cx x x x x ccϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++=⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()232311133(,0)23x x x x x x x ϕψϕ⎛⎫⎫+⎪+⎪ ⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭(4)能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E === (5)能量平均值为()123442241207774111211612717479504E E E E e eμμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦(6)自旋z 分量的可能取值为,22-,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-= ⎪ ⎪⎝⎭⎝⎭(7)自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=- ⎪⎝⎭ (8)0>t 时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎛⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤⎪- ⎪⎢⎥⎣⎦⎝⎭(9)二. (20分) 质量为m 的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x ax V x x V ,00 ,0.0若已知该粒子在此势阱中有一个能量20V E -=的状态,试确定此势阱的宽度a 。

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案

2004年量子力学期末试题及答案一、(20分)已知氢原子在0=t 时处于状态21310112(,,0)()()()010333x x x x ψϕϕ⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中,)(x n ϕ为该氢原子的第n 个能量本征态。

求能量及自旋z 分量的取值概率与平均值,写出0>t 时的波函数。

解 已知氢原子的本征值为42212n e E n μ=-, ,3,2,1=n (1)将0=t 时的波函数写成矩阵形式()()()23113(,0)23x x x x ϕψϕ⎛⎫+ ⎪ ⎪= ⎪- ⎪⎝⎭(2) 利用归一化条件()()()()()()232***23112211233d 3332312479999x x c x x x x x c cϕϕϕϕ∞-∞⎛⎫+ ⎪⎛⎫ ⎪+-⋅ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭⎛⎫=++= ⎪⎝⎭⎰ (3)于是,归一化后的波函数为()()()()()()23231113(,0)23x x x x x x x ϕψϕ⎫⎫+⎪⎪⎪⎪==⎪⎪- ⎪⎪⎝⎭⎝⎭(4) 能量的可能取值为123,,E E E ,相应的取值几率为()()()123412,0;,0;,0777W E W E W E ===(5) 能量平均值为()123442241207774111211612717479504E E E E e e μμ=++=⎡⎤-⨯+⨯+⨯=-⎢⎥⎣⎦ (6)自旋z 分量的可能取值为,22-,相应的取值几率为1234,0;,0277727z z W s W s ⎛⎫⎛⎫==+==-=⎪ ⎪⎝⎭⎝⎭ (7) 自旋z 分量的平均值为()340727214z s ⎛⎫=⨯+⨯-=- ⎪⎝⎭(8)0>t 时的波函数()()()223311i i exp exp (,)i exp x E t x E t x t x E t ψ⎫⎡⎤⎡⎤-+-⎪⎢⎥⎢⎥⎣⎦⎣⎦⎪= ⎪⎡⎤ ⎪- ⎪⎢⎥⎣⎦⎝⎭(9)二. (20分) 质量为m 的粒子在如下一维势阱中运动()00>V()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x V x x V ,00 ,0.0 若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。

量子力学试题

量子力学试题

量子力学试题(共21页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--量子力学试题(一)及答案一. (20分)质量为m 的粒子,在一维无限深势阱中()⎩⎨⎧><∞≤≤=a x x a x x V ,0 ,0,0中运动,若0=t 时,粒子处于 ()()()()x x x x 3212131210,ϕϕϕψ+-=状态上,其中,()x n ϕ为粒子能量的第n 个本征态。

(1) 求0=t 时能量的可测值与相应的取值几率;(2) 求0>t 时的波函数()t x ,ψ及能量的可测值与相应的取值几率 解:非对称一维无限深势阱中粒子的本征解为()xan a x n n m a E n n πϕπsin 2,3,2,1 ,22222===(1) 首先,将()0,x ψ归一化。

由12131212222=⋅⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛c 可知,归一化常数为 1312=c 于是,归一化后的波函数为 ()()()()x x x x 3211331341360,ϕϕϕψ++-=能量的取值几率为 ()()()133;134;136321===E W E W E W 能量取其它值的几率皆为零。

(2) 因为哈密顿算符不显含时间,故0>t 时的波函数为()()()()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=t E x t E x t E x t x 332211i exp 133i exp 134i exp 136, ϕϕϕψ(3) 由于哈密顿量是守恒量,所以0>t 时的取值几率与0=t 时相同。

二. (20分)质量为m 的粒子在一维势阱()⎪⎩⎪⎨⎧>≤≤-<∞=a x a x V x x V ,00,0.0 中运动()00>V ,若已知该粒子在此势阱中有一个能量2V E -=的状态,试确定此势阱的宽度a 。

量子力学总结 习题 考卷及答案

量子力学总结 习题 考卷及答案

第一章⒈玻尔的量子化条件,索末菲的量子化条件。

⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。

⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。

表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=h ν。

表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。

⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。

这种电子称之为光电子。

⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。

若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。

②光电子的能量只与光的频率有关,与光的强度无关。

光的强度只决定光电子数目的多少。

⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子。

爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。

⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。

②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。

⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。

⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;②波长增量Δλ=λ-λ随散射角增大而增大。

⒖量子现象凡是普朗克常数h在其中起重要作用的现象⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性⒘与运动粒子相联系的波称为德布罗意波或物质波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档