纳米材料综述 论文
纳米材料论文
纳米材料论文纳米材料具有独特的尺度效应和界面效应,具备出色的物理、化学和生物学性能,在材料科学领域引起了广泛的关注和研究。
本文将针对纳米材料的合成、性质及其在各领域的应用进行综述,探讨其在未来的发展方向和前景。
一、纳米材料的合成方法纳米材料的制备方法多种多样,常见的包括溶液法、气相法、固相法和凝聚法等。
其中,溶液法是一种常用且有效的纳米材料合成方法,通过调控反应条件、控制反应物浓度和温度等因素,可以实现纳米颗粒的可控合成。
气相法则适用于制备高纯度和无杂质的纳米材料,通过在适当的温度和压力下使气体反应生成纳米材料。
固相法主要适用于制备纳米线或纳米晶,通过热处理、溶解、沉淀等方法得到纳米尺度的材料颗粒。
凝聚法则是通过凝聚剂的作用使纳米颗粒形成物质的凝聚态,如通过热处理使纳米材料形成块状材料。
二、纳米材料的性质研究纳米材料的性质研究是纳米科学和纳米技术的基础,通过对纳米材料的结构、形貌、成分和性能进行表征和分析,可以深入了解其特殊性质及其产生机制。
常用的表征手段包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)和原子力显微镜(AFM)等。
透射电子显微镜可以观察到纳米颗粒的形貌和尺寸,并通过选区电子衍射(SAED)分析纳米材料的晶体结构。
扫描电子显微镜则可以获取纳米颗粒的表面形貌和形状信息。
X射线衍射用于分析纳米材料的晶体结构和晶格常数。
原子力显微镜则可以获得纳米颗粒的表面形貌和力学性质等。
纳米材料的性质主要包括光学性质、电子性质、磁性质和力学性质等。
光学性质是纳米材料研究的重要方向之一,由于其尺寸效应和界面效应的存在,纳米材料在可见光和红外光谱范围内显示出独特的吸收、发射和散射性质。
电子性质方面,纳米材料的载流子输运性质、电学性质和电磁性质都与其尺寸和结构密切相关。
磁性是纳米材料的另一个重要性质,由于表面自旋和量子尺寸效应的存在,纳米材料具有较高的磁响应性能。
力学性质主要研究纳米材料的硬度、断裂强度和弹性模量等力学特性。
纳米材料发展综述
纳米材料发展综述原来绝缘的氧化物在纳米化后会呈现出一定的导电性;铁磁性材料在纳米级下,其矫顽力比宏观材料提高了3一4个数量级,小于10nm时矫顽力变为零,成为顺磁性材料[s];纳米相陶瓷在室温下有良好的韧性,二氧化铁陶瓷甚至于在18OC发生弯曲而不产生裂纹,而烧结温度降低几百度;纳米相的有微孔的陶瓷小球的吸附力是普通净化剂三氧化铝的20倍;掺有纳米粒子的有机材料耐磨性可提高3~5倍,介电性也大大增加;陶瓷中掺人氧化物的纳米粒子,可提高致密度困;金属纳米粒子掺人陶瓷中可提高陶瓷的力学性能;纳米级的碳管有导电性和半导体性,具有半导体异质结的作用和库仑阻塞效应,强度是钢的几百倍,比重只有钢的六分之一……三、纳米材料的应用随着纳米科技的发展,利用纳米材料特异的光尹电、磁、热、声、力、化学和生物学性能,纳米材料已被广泛应用于宇航、电子、化工、冶金、军事、核工业、医学和生物工程等国民经济发展的许多领域。
不仅在高科技领域有不可替代的作用,也为传统产业带来生机和活力。
4.1催化剂材料中的应用纳米粒子作为催化剂,有着许多优点。
首先是粒径小,比表面积大,催化效率高。
另外,纳米粒子生成的电子、空穴在到达表面之前,大部分不会重新结合,因此电子、空穴能够到达表面的数量多,则化学反应活性高。
如纳米级镍、铜锌混合制成的加氢反应催化剂,在相同使用条件下,其选择性比现在使用的雷尼镍(RaneyNi)高5一10倍。
纳米镍粉作为火箭固体燃料反应催化剂,将使燃烧效率提高100倍。
纳米铁粉可在几He气相热分解中起成核作用而制备出碳纤维。
Fe~(支}Ni等纳米离子可取代贵金属作汽车尾气净化的催化剂。
目前,工业上利用纳米二氧化钦一三氧化二铁作催化剂,用于废水处理(含3笼一或C几以一体系),取得了很好的效果。
陶瓷材料中的应用陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。
但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。
纳米材料综述范文
纳米材料综述范文纳米材料是自上世纪90年代以来兴起的一项新兴科技,其具有独特的物理、化学和生物性能,因此受到了广泛的关注和研究。
本文将综述纳米材料的定义、制备方法、应用领域以及潜在的风险和挑战。
首先,纳米材料是指至少在一个维度上具有纳米级尺寸(1-100纳米)的材料。
由于其尺寸处于微观和宏观之间,纳米材料往往具有与传统材料不同的物理和化学性质。
例如,纳米颗粒表面积大大增加,导致其在催化、光学和磁性等方面具有更高的活性和敏感性。
此外,纳米材料还具有较高的比表面积和功率密度,使其在能源存储、传感器和生物医学等领域有着广泛的应用前景。
纳米材料的制备方法多种多样,但可以分为两大类:自下而上和自上而下。
自下而上方法是通过控制和组装分子、原子或离子来构建纳米结构。
例如,溶液法、气相沉积和电化学沉积等方法可以制备出纳米颗粒、纳米薄膜和纳米线等结构。
自上而下方法则是通过纳米加工工艺将材料从大尺寸逐渐减小到纳米级。
常见的自上而下方法包括球磨、机械研磨和激光刻蚀等。
纳米材料具有广泛的应用领域,包括能源、环境、生物医学、电子等。
在能源领域,纳米材料被广泛应用于太阳能电池、燃料电池和储能材料中。
纳米材料的高比表面积可以提高电池的能量密度和效率。
在环境领域,纳米材料可以用于水处理、污染物检测和空气净化等方面。
例如,纳米颗粒可以作为催化剂用于有害气体的催化转化和光催化分解。
在生物医学领域,纳米材料可以用于药物输送、分子成像和组织修复等方面。
纳米颗粒可以通过控制其大小和表面修饰来实现药物的靶向输送和释放。
在电子领域,纳米材料可以用于制备纳米电子元件和纳米传感器等。
纳米材料的尺寸效应和表面效应使其在电子器件的性能和灵敏度方面具有巨大的优势。
然而,纳米材料的应用也面临着一些潜在的风险和挑战。
首先,纳米材料的生产和处理过程中可能释放出有害物质,并对环境和人体健康造成潜在风险。
此外,由于纳米材料的小尺寸和特殊性质,其对生物体的毒性和生物互作性尚不完全了解。
纳米材料综述
纳米材料综述摘要纳米技术、纳米材料在21世纪将扮演重要角色,纳米技术是当今世界最有前途的决定性技术之一。
本文综述了纳米材料的定义、历史、特性、目前应用状况和应用前景等方面,并对目前国际上对研究纳米材料研究进行分析。
Abstract nanotechnology, nanomaterials in twenty-first Century will play an important role, nanotechnology is one of the world's most promising decisive technology nowadays. This paper reviews the definition, history, characteristics of nanometer materials, the current application status and application prospects, and analysis of the current international research on research of nanometer materials.关键字纳米材料;定义;发展历史;性能;应用;前景Keywords nanometer materials;definition; development history; properties; application; prospect1.1纳米材料的定义纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
2.1发展历史纳米材料发展有三个阶段:第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。
纳米材料分散的综述
纳米材料分散的综述一、纳米材料简介纳米材料是指尺寸在纳米级别的材料,具有优异的物理、化学和机械性能。
由于其独特的性质,纳米材料在能源、环保、医疗、信息技术等领域具有广泛的应用前景。
二、纳米材料制备方法纳米材料的制备方法多种多样,主要包括物理法、化学法以及生物法。
物理法包括机械球磨法、真空蒸发法等;化学法包括溶液法、气相法等;生物法则利用生物分子的自我组装和生物模板法。
不同的制备方法适用于不同类型的纳米材料,且具有各自的优势和局限性。
三、纳米材料的应用领域纳米材料因其优异的性能被广泛应用于以下领域:1.能源领域:太阳能电池、燃料电池、储能电池等;2.环保领域:空气净化器、水处理设备等;3.医疗领域:药物输送、生物成像、癌症治疗等;4.信息技术领域:电子器件、量子计算等。
四、纳米材料的分散技术纳米材料的分散技术是实现其应用的关键。
纳米材料由于其高比表面积和表面能,容易发生团聚,因此需要对其进行分散。
分散技术可分为物理分散和化学分散。
物理分散包括机械搅拌、超声波分散等;化学分散则是利用表面活性剂或偶联剂进行分散。
五、纳米材料分散的物理化学原理纳米材料分散的物理化学原理主要包括表面能作用、静电力作用和空间位阻作用。
表面能作用是纳米材料分散的主要驱动力,静电力作用则是在带电纳米粒子间的相互作用,空间位阻作用则是利用高分子物质对纳米粒子进行稳定分散。
六、纳米材料分散的方法与技术纳米材料分散的方法与技术主要包括以下几种:1.机械搅拌分散:通过机械搅拌的方式将纳米材料分散在溶剂中,可加入适量的表面活性剂或分散剂以增强分散效果。
2.超声波分散:利用超声波的振动能将纳米材料打散在溶剂中,可有效破解团聚现象。
3.化学分散:利用化学反应改变纳米材料的表面性质,如通过偶联剂对纳米材料进行改性,使其具有更好的分散稳定性。
4.溶剂热法:在高温高压条件下,利用溶剂的性质将纳米材料溶解分散在溶剂中。
此方法可用于制备一些具有特殊性质的纳米材料。
纳米材料技术论文
纳米材料技术论文纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,下面小编给大家分享一些纳米材料技术论文,大家快来跟小编一起欣赏吧。
纳米材料技术论文篇一纳米材料综述【摘要】本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。
【关键词】纳米、纳米技术、纳米材料、纳米结构1 引言著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。
他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。
”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。
”[1]1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。
1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。
[2]2 纳米技术纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。
其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
3 纳米材料3.1纳米材料的概念纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米材料简介及应用论文
纳米材料简介及应用论文纳米材料是指在纳米尺度下具有特殊结构、特殊性能的材料。
纳米尺度是指物质尺寸在1到100纳米之间,纳米材料具有相比于相同材料的宏观尺度下的材料具有独特的物理、化学和生物学性质。
以金属纳米材料为例,纳米颗粒的尺寸远小于传统材料,其具有较大比表面积和较小的尺寸效应,从而表现出独特的性质。
例如,银纳米颗粒具有优良的导电性和抗菌性能,可以应用于抗菌包装材料和防静电涂料;金纳米颗粒具有良好的催化性能,可以应用于催化剂和传感器等领域。
纳米材料在各个领域具有广泛的应用。
在材料科学领域,纳米材料可以用于制备高性能材料,如高强度、高韧性的金属材料和高效能的电池材料。
在能源领域,纳米材料可以通过调控结构和性能来提高能源转换和储存效率。
例如,通过设计合成具有纳米尺度结构的太阳能电池材料,可以提高太阳能电池的光吸收和电子传输效率。
在生物医药领域,纳米材料可以用于生物成像、药物传递和组织工程等应用,提高生物医学治疗的效果。
一篇具有代表性的纳米材料应用论文是《纳米颗粒合成及其在催化剂领域的应用》。
该论文综述了纳米颗粒的合成方法和其在催化剂领域的应用。
该论文首先介绍了纳米颗粒的合成方法,如溶液法、气相法和固相法等。
然后,详细讨论了纳米颗粒在催化剂领域的应用。
例如,金属纳米颗粒可以用作催化剂来加快化学反应的速率。
论文还介绍了基于纳米材料的催化剂的设计原则和性能优化方法。
最后,论文对纳米颗粒合成及其在催化剂领域的应用进行了总结和展望。
这篇论文不仅对纳米颗粒的合成方法进行了系统阐述,还对其在催化剂领域的应用进行了深入的研究。
该论文的研究内容与纳米材料的特点相吻合,对于推动纳米材料的应用和进一步发展具有重要意义。
此外,通过该论文,读者可以了解到纳米材料合成和应用的最新研究进展,并为进一步开展相关研究提供了参考和指导。
纳米材料综述功能材料与应用论文(已处理)
纳米材料综述功能材料与应用论文(已处理)纳米材料综述功能材料与应用论文(已处理)纳米材料综述摘要概述了纳米材料的基本概念、分类方法及结构特征, 重点介绍了纳米材料的光谱、催化、光电化学及反应性等化学特性及应用.1、纳米材料的基本概念纳米材料是指颗粒尺寸为纳米量级 0.11 nm, 100nm 的超微粒子纳米微粒及由其聚集而构成的纳米固体材料。
纳米固体材料分为纳米晶体材料、纳米非晶态材料及纳米准晶态材料。
其中纳米晶体材料按其结构形态又可分为四类:1 零维纳米晶体, 即纳米尺寸超微粒子;2 一维纳米晶体, 即在一维方向上晶粒尺寸为纳米量级, 如一维纤维, 一维碳纳米管;3 二维纳米晶体, 即在二维方向上晶粒尺寸为纳米量级, 如纳米薄膜、涂层;4 三维纳米晶体, 指晶粒在三维方向上均为纳米尺度, 如纳米体相材料, 纳米陶瓷材料。
另外, 还有纳米复合材料, 以复合方式不同分为0-0、0-2、0-3 型复合, 即零维纳米粒子分别与纳米粒子、二维及三维材料复合而成的固体材料。
纳米材料科学是现代化学、物理学、材料学、生物学等多门学科相互交叉、相互渗透的新兴学科, 其研究内容主要包括两个方面:1 系统地研究纳米材料的性能、微结构和谱学特性,通过和常规材料对比, 找出纳米材料的特殊规律, 建立描述和表征纳米材料的新概念和新理论, 发展完善纳米材料科学体系;2 探索新的制备方法, 发展新型的纳米材料, 研究制备工艺与材料结构、性能之间的关系规律, 并拓宽其应用领域。
2、纳米材料的性质2.1、纳米微粒的结构和特性纳米粒子处于原子簇和宏观物体交界的过渡区域,是由数目很少的原子或分子组成的聚集体。
由于纳米粒子具有壳层结构。
粒子的表面原子占很大比例,并且是无序的类气状结构, 而在粒子内部则存在有序-无序结构,这与体相样品的完全长程有序结构不同。
纳米粒子的结构特征使其产生了小尺寸效应、表面界面效应、量子尺寸效应及宏观量子隧道效应,并由此派生出传统固体材料所不具备的许多特殊性质。
纳米材料研究进展综述1
纳米材料研究进展综述1纳米材料研究进展综述报告姓名:学号:班级:纳米金属材料研究进展综述摘要:纳米金属材料具有奇异的结构和特异的功能,与粗晶材料相比,其电学、热学、力学、磁学、光学等性能发生了很大变化。
本文介绍了现有纳米金属材料的相关技术,对一些主要的制备工艺作了一定的阐述。
关键词:纳米材料;表征方法;制备方法;应用引言:在充满活力的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对金属材料提出更高的要求,元器件的智能化、小型化、集成化等要求材料的尺寸越来越小;航空航天、新型军事装备及先进制造技术对材料性能的要求也越来越高。
新材料的创新及在此基础上诱发的新技术和新产品的创新是未来10年对社会发展、经济振兴、国力增强最具影响力的研究领域,纳米材料将是起重要作用的关键材料之一。
在金属材料生产中利用纳米技术,有可能将材料成分和组织控制得极其精密和细小,从而使金属的力学性能和功能特性得到飞跃提高。
纳米金属材料是当今新材料研究领域中最具活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最活跃、最接近应用的组成部分。
纳米金属材料是20世纪80年代开发的一种高新材料,是指晶粒尺寸小于100nm的金属材料,包括纳米金属粉末和纳米金属结构材料。
纳米金属材料可用作石油化工的催化剂,部分纳米金属功能材料可取代昂贵的铂族金属,并广泛用作超细金属导电胶、超低温热交换器以及复合材料的优良添加剂,用途十分广泛。
本文介绍了纳米金属材料研究的一些方向,制备方法及其研究进展,最后介绍了纳米金属材料的一些相关应用。
1.国内外纳米金属研究现状20世纪90年代以来,纳米金属材料技术的发展取得了惊人的进步,可称得上是金属材料领域的“新一代工业革命”。
纳米金属材料研究所取得的巨大成就及对科学、社会各个领域的影响和渗透一直引人注目,在未来高新技术发展中也占有重要地位,主要原因是它具有奇异的特性及产业化的大好前景。
纳米材料论文优秀9篇
纳米材料论文优秀9篇摘要:本文主要研究了污染物的光催化降解原理,进一步分析了光催化纳米材料在环境保护工作中的应用,同时对于光催化纳米材料的应用趋势和方向也进行了必要的研究,希望对这一工作的开展提供一定的指导作用。
关键词:光催化;纳米材料;环境保护;工业废水和废气中都含有较多的毒害物质,比如有机磷农药或是二氯乙烯等,这些物质对于人体的影响都是十分明显的。
传统的水处理方式,比如吸附法、混凝法等方法在现阶段实际应用环节中仍然存在较大的困难,效果并不理想,所以在今后的实际发展过程中就需要不断探索和获取一种经济、合理的方式,实现对传统方法处理后水中的残留物质进行更有效的降解。
1976年,科学家在对紫外线光照射下对纳米TiO2进行了研究,发现这种方式可以将难以降解的有机化合物多氯联苯脱氯进行有效降解。
当前,已经发现超过3000余种难降解的有机化合物都可以借助此种方式进行降解,尤其是水中有机污染物浓度较低或是其他降解方式不佳的时候,这项技术更是能发挥出前所未有的技术优势。
一、光催化纳米材料光催化的纳米材料采用的绝大多数都是金属氧化物或是硫化物等半导体材料,是一种特殊的电子结构。
和金属相比,这种半导体存在明显的不连续性,在对电子的低能价带进行填满的过程中会和空的高能导带存在明轩的禁带,所以当二者产生的能量大于光照射的时候,在价带上的电子就会被转移到导带上,最终在半导体表面形成具备高活性的电子[1]。
二、光催化降解原理在光催化反应中,获取光激发所出现的空穴,和对给体或是受体产生的作用也是有效的。
所以在实际工作中为了确保光催化反应能更有效的进行,就应该适当降低电子和空穴之间的简单复合。
三、光催化纳米材料在环保中的应用(一)光催化纳米技术在污水处理中的应用传统的水处理方式中可以对污水中出现的悬浮物质或是泥沙等大颗粒的污染物进行去除,但是对于浓度较低的可溶性物质却很难进行有效的处理,并且由于这项工作的工作效率比较低,花费的经济成本比较高,所以很多时候并不能进行有效的处理。
毕业论文(设计)纳米材料之综述
纳米材料之综述摘要:概述了纳米科技的内涵、纳米材料的特性、表征技术、制备及其应用。
并结合国内外对纳米材料的应用情况,概述了其研究进展。
关键词:纳米科技,纳米材料特性,表征,制备,研究进展Review of nanometer materials Abstract: The concept of nanotechnology and the strange characteristic, characterization, preparation and application of nano materials are summarized. Its development is prospected based on the situation at home and abroad.Key words: nanotechnology, characteristic , characterization,preparation,application引言:纳米科技是20世纪80年代末、90年代初逐步发展起来的新兴学科领域,它是在纳米尺度(0.1nm-100nm)上研究物质的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术。
纳米材料是指晶粒和晶界等显微结构能到达纳米级尺度水平的材料,而纳米粒子是加工和制造纳米材料的原料。
由于材料的超细化,其表面的电子结构和晶体结构发生变化,产生了表面效应、小尺寸效应、量子效应和宏观量子隧道效应,从而使得纳米材料在磁性、非线性光学、光发射、光吸收、光电导、导热性、催化、化学活性、敏感特性、电学即力学方面表现出独特的性能,并在这些领域得到很好的应用。
纳米材料的化学组成及其结构是决定其性能和应用的关键因素。
因此在原子尺度和纳米尺度对纳米材料进行表征是非常重要的。
纳米材料的表征方法很多,发展也很快,而且往往需要多种表征技术相结合,才能得到可靠的信息,这大大地推动了纳米材料科学的发展。
纳米材料研究综述
纳米材料研究综述纳米材料是一种具有尺寸在纳米尺度范围内的材料,具有独特的物理、化学以及材料性质。
纳米材料研究是当代材料科学研究中的热点领域之一、本文将从纳米材料的定义、制备方法以及应用领域等方面进行综述。
纳米材料的定义是材料的至少一个尺寸小于100纳米。
纳米尺度效应的出现使得纳米材料具有与传统材料不同的特殊性质。
例如,纳米材料的比表面积大幅度增加,使得其具有更强的化学活性。
此外,量子尺寸效应的出现使得纳米颗粒具有特殊的电子以及光学性质。
纳米材料的制备方法多种多样,包括物理、化学和生物制备方法。
物理制备方法主要通过物理手段调控材料尺寸,如烧结、溅射、气相沉积等。
化学制备方法则是利用化学反应控制纳米材料的合成,如溶胶凝胶法、水热合成法和化学气相沉积法等。
生物制备方法则是利用生物体内的生物功能来制备纳米材料,例如利用微生物、草莓等生物体合成金属纳米颗粒。
纳米材料在许多领域具有广泛应用。
在材料领域,纳米材料的使用可以显著改善材料的性能,如提高材料的强度、硬度、导电性和光学性能。
在能源领域,纳米材料的应用可以提高能源传递效率,如利用纳米材料制备高效的太阳能电池和储能材料。
在医学领域,纳米材料可以用于药物的传递和缓释,实现精准治疗。
此外,纳米材料还广泛应用于传感器、催化剂以及环境保护等领域。
然而,纳米材料的应用也存在一定的挑战和问题。
首先,纳米材料的制备方法需要更高的技术要求和设备,成本较高。
其次,纳米材料的毒性和环境影响等问题也需要引起重视。
此外,纳米材料的稳定性和长期储存等问题也需要进一步研究。
总的来说,纳米材料研究是一个具有广泛前景和挑战的领域。
对纳米材料的研究不仅可以深入了解物质的基本属性,还可以为新材料的设计与合成提供理论指导。
随着纳米材料研究的不断深入,其在各个领域的应用也将进一步扩展和发展。
纳米材料论文
纳米材料论文1. 引言纳米材料是指颗粒尺寸在1到100纳米之间的材料。
由于其独特的物理、化学和生物特性,在生物医学、电子学、光学、催化、能源和环境等领域都有广泛的应用。
本文主要讨论纳米材料在生物医学中的应用,包括纳米药物、纳米传感器和纳米影像等。
2. 纳米药物纳米药物是利用纳米技术制备的药物。
由于其比传统药物具有更好的溶解度、更高的生物利用度和更好的组织靶向性,所以在临床上具有广泛的应用。
2.1 纳米粒子药物纳米粒子药物是指将药物包裹在纳米粒子中制成的药物。
通过调整纳米粒子的大小、表面性质和结构等,可以控制纳米粒子的药物释放和药效增强效应。
纳米粒子药物可以通过口服、皮肤贴片、吸入等多种给药途径实现治疗效果。
2.2 纳米胶束药物纳米胶束药物是指将药物包裹在由表面活性剂构成的胶束中的药物。
由于纳米胶束具有良好的亲水性,所以可以在药物分子表面形成保护层,有效提高药物的稳定性和生物利用度。
2.3 纳米酶学药物纳米酶学药物是指将纳米颗粒与酶催化剂结合制成的药物。
由于纳米颗粒具有高比表面积和体积效应,所以可以大幅提高酶的活性和稳定性,从而提高治疗效果。
3. 纳米传感器纳米传感器是利用纳米技术制备的传感器。
由于其基于纳米粒子、纳米线等纳米材料的特殊物理和化学特性,所以可以对化学、生物等环境参数进行高灵敏度、高分辨率、实时性、选择性的检测。
3.1 纳米材料传感器纳米材料传感器是指利用纳米颗粒、纳米线等纳米材料作为传感元件的传感器。
由于纳米材料具有高比表面积和特殊结构,所以可以大幅提高传感器的灵敏度和选择性,实现高精度的检测。
3.2 生物传感器生物传感器是指利用生物分子(如酶、抗体等)作为传感元件的传感器。
由于纳米材料可以提高生物分子的检测灵敏度和选择性,所以在临床诊断、环境检测等领域有广泛的应用。
4. 纳米影像纳米影像是指利用纳米材料作为影像剂,从而实现对生物组织、细胞、分子等的高分辨率、高敏感度、非损伤性的成像。
纳米材料综述 论文
纳米材料综述1 引言纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。
它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。
前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。
1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。
Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。
1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。
从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。
在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构.在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。
一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。
2 纳米材料特性一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。
当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。
这种现象称为“纳米效应”。
纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
纳米材料的应用的研究综述
纳米材料的应用的研究综述摘要: 纳米材料是当今材料学科发展领域最重要的前沿研究课题,本文简要介绍纳米材料的性能和实际应用以及纳米材料的发展前景。
关键词:纳米材料应用发展前景纳米材料是用纳米这么小的微粒制成的粒径为1nm-100nm的纳米粉,直径为1nm-100nm的纳米线,厚度为1nm-100nm的纳米簿膜,并且出现纳米效应的材料。
纳米材料研究是目前材料科学研究的一个热点,其相应发展起来的纳米技术被公认为是21世纪最具有前途的科研领域。
因此,本人根据众多学者对纳米材料的研究成果,借鉴他们的成功经验,就纳米材料各方面的性能在实际中的应用做一些简要介绍并浅谈纳米材料的发展前景。
本文主要查阅近几年关于纳米材料相关研究的文献期刊。
纳米材料的特殊性能纳米材料的特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显差异,主要是由纳米材料的下列效应引起:小尺寸效应(体积效应);表面与界面效应;量子尺寸效应(久保效应);宏观量子隧道效应;库仑堵塞与量子隧穿;介电限域效应由于这些效应,纳米材料表现出许多优于同组分的晶态或非晶态的性能。
如熔点下降、强烈的化学活性和催化活性及特殊的光学、电学、磁学和力学及烧结性能。
纳米材料的应用下面简单介绍纳米材料在生活中的实际应用:1、超微传感器传感器是纳米微粒最有前途的应用领域之一。
纳米微粒的特点如大比表面积、高活性特异物性、极微小性等与传感器所要求的多功能、微型化、高速化相互对应。
2、催化剂在化学工业中,将纳米微粒用做催化剂,是纳米材料大显身手的又一方面。
如超超细的铂粉、碳化钨粉是高效的氢化催化剂;超细的镍粉、银粉的轻烧结体作为化学电池、燃料电池和光化学电池中的电极可以增大与液相或气体之间的接触面积,增加电池效率,有利于小型化。
3、医学、生物工程尺寸小于10纳米的超细微粒可以在血管中自由移动,在目前的微型机器人世界里,最小的可以注入人的血管,它一步行走的距离仅为5纳米,机器人进行全身健康检查和治疗,包括疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可以吞噬病毒,杀死癌细胞。
纳米材料论文(优秀5篇)
纳米材料论文(优秀5篇)摘要:目前世界上上转换纳米荧光材料正处在发展阶段,材料的选择和合成有待于深入细致的研究。
本文对上转换发光纳米晶的选择和合成做了系统的讨论。
关键词:纳米材料发光材料上转换发光荧光材料双光子吸收纳米晶1.引言近年来,人们开始对荧光标记材料产生了浓厚的兴趣,特别是随着纳米技术的发展,能够进行生物标记的无机纳米晶成为人们追逐的热点,但是由于生物背底同样会产生荧光从而对荧光检测形成干扰,于是不会产生背底干扰的稀土上转换纳米发光标记材料引起了人们的注意。
1.1纳米材料简介纳术概念是1959年木,诺贝尔奖获得着理查德。
费曼在一次讲演中提出的。
他在“There is plenty of room at thebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。
他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。
20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(STM),原子力显微镜(AFM)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。
其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0A。
纳米科学与技术(Nano-ST)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。
关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。
在这里就不一一介绍了。
1.2上转换纳米材料介绍稀土上转换发光材料通过多光子机制把长波辐射转换成短波辐射称为上转换。
所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。
纳米材料综述
纳米材料综述
纳米材料是指至少有一个尺寸在1-100纳米之间的材料,具有独特的物理、化
学和生物学特性。
纳米材料的发展已经引起了广泛的关注,因为它们在许多领域都具有巨大的潜力,包括材料科学、生物医学、能源和环境等。
首先,纳米材料在材料科学领域具有重要意义。
由于其尺寸在纳米级别,纳米
材料具有更大的比表面积和更多的表面活性位点,这使得它们在传统材料所无法实现的性能上具有巨大优势。
例如,纳米材料可以具有更高的强度、硬度和韧性,同时还可以表现出独特的光学、电子和磁性能。
因此,纳米材料已经被广泛应用于传感器、催化剂、电子器件等领域,并且在材料设计和合成方面取得了重要的突破。
其次,纳米材料在生物医学领域也展现出了巨大的潜力。
由于其尺寸与生物分
子和细胞相近,纳米材料可以被设计成具有特定的生物相容性和靶向性,从而可以用于药物传递、医学影像和组织工程等应用。
此外,纳米材料还可以被用于治疗癌症、感染和炎症等疾病,为生物医学领域带来了新的治疗手段和诊断方法。
另外,纳米材料在能源和环境领域也具有重要意义。
由于其特殊的结构和性能,纳米材料可以被用于太阳能电池、储能设备、污染物处理等领域,为可持续能源和环境保护提供了新的解决方案。
例如,纳米材料可以提高光电转换效率、增加电池储能密度,同时还可以被用于吸附和催化分解有害气体和水污染物。
总的来说,纳米材料具有广泛的应用前景和重要的科学意义。
随着纳米技术的
不断发展和进步,相信纳米材料将会在更多领域展现出其独特的价值,为人类社会的发展和进步做出更大的贡献。
纳米材料的制备技术综述
纳米材料的制备技术综述纳米材料的制备技术,听上去是不是有点高大上?其实也没那么神秘,咱们聊聊就能搞懂。
说实话,纳米这个词说得多了,很多人可能还不太明白,啥叫“纳米”?其实就是非常非常小的东西,咱们说得简单点,就是比我们眼睛能看到的还要小得多得多的小东西。
要是你拿个针尖放大个几百倍,可能就能看到这些纳米级的玩意儿。
为什么大家对这些小东西这么感兴趣呢?因为它们能做的事儿太牛了!从医学到能源,从环境保护到电子产品,几乎无所不能。
不过,要把这些纳米材料做出来,可不是随便乱搞的事儿,它需要技术、需要工艺,得讲究“心思”。
现在就让咱们来聊聊这些技术。
想要制备纳米材料,最常见的办法之一就是化学气相沉积(CVD)。
这个名字听起来挺吓人,其实不难懂,就是把一些气体材料,通过加热、反应等方式,沉积到一个表面上,最后变成纳米级的薄膜、颗粒什么的。
说白了,就是通过“气体变成固体”这件事儿,把小小的东西固定下来。
要是你还记得小时候吹过的泡泡,那泡泡里的水蒸气凝结成液滴差不多,CVD的原理就有点像这个。
只不过它可不是吹泡泡那么简单,而是需要高温、特殊的气氛、精准的控制,才能让这些纳米材料顺利“成型”。
是不是有点神奇?再来说说溶胶凝胶法,这也是一种特别有意思的技术。
其实它的名字就告诉你大概是怎么回事:先把一些材料溶解在液体里,形成溶胶,然后通过化学反应把它们凝结成固体,也就是纳米材料。
这个方法简单来说就像做菜一样,先把材料“泡”在液体中,激活它们,让它们变得“活跃”,然后等到合适的时机,它们就会自己变成纳米颗粒,接着凝聚成你想要的形态。
你要是做过豆腐脑,就知道这个道理。
豆腐脑一开始也是液体,经过“老母鸡”和大豆的“配合”,慢慢变成了一个个嫩滑的块状物。
这种方法不需要特别复杂的设备,也能做到高质量的纳米材料,所以很多研究者都喜欢用它。
再说说球磨法,简单说就是用机械力把大颗粒的材料磨成小颗粒。
你可以想象一台超级强力的“搅拌机”,把大块的材料放进去,几千转的高速旋转让它们变得越来越小,最后变成纳米级别的颗粒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料综述
1 引言
纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。
它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。
前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。
1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。
Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。
1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。
从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。
在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构.
在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。
纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。
纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。
其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。
一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。
2 纳米材料特性
一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。
当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。
这种现象称为“纳米效应”。
纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
2.1表面效应
纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。
随着粒径变小,表面原子所占百分数将会显著增加。
当粒径降到1 nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。
由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。
2.2小尺寸效应
由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。
对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质:
1)特殊的光学性质:纳米金属的光吸收性显著增强。
粒度越小,光反射率越低。
所有的金属在超微颗粒状态都呈现为黑色。
尺寸越小,颜色愈黑。
金属超微颗粒对光的反射率通常可低于l%,约几微米的厚度就能完全消光。
相反,一些
非金属材料在接近纳米尺度时,出现反光现象。
纳米TiO2、纳米SiO2、纳米Al2O3等对大气中紫外光很强的吸收性。
2)热学性质的改变:固态物质超细微化后其熔点显著降低。
当颗粒小于10 nm 量级时尤为显著。
例如,金的常规熔点为1064C℃,当颗粒尺寸减小到2 nm尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。
3)特殊的磁学性质:小尺寸的超微颗粒磁性与大块材料显著的不同,大块的纯铁矫顽力约为80A/m,而当颗粒尺寸减小到20 nm以下时,其矫顽力可增加1千倍,当颗粒尺寸约小于6 nm时,其矫顽力反而降低到零,呈现出超顺磁性。
利用磁性超微颗粒具有高矫顽力的特性,已做成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡等。
利用超顺磁性,人们已将磁性超微颗粒制成用途广泛的磁性液体。
4)特殊的力学性质:纳米材料的强度、硬度和韧性明显提高。
纳米铜的强度比常态提高5倍;纳米金属比常态金属硬3~5倍。
纳米陶瓷材料具有良好的韧性,因为纳米材料具有大的界面,界面的原子排列相当混乱,原子在外力变形的条件下很容易迁移,因此表现出甚佳的韧性与一定的延展性。
氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。
2.3宏观量子隧道效应
对超微颗粒而言,大块材料中连续的能带将分裂为分立的能级;能级间的间距随颗粒尺寸减小而增大。
当热能、电场能或者磁场能比平均的能级间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,称之为量子尺寸效应。
例如,导电的金属在超微颗粒时可以变成绝缘体,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子尺寸效应的宏观表现。
一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,它们可以穿越宏观系统的势垒而产生变化,称之为宏观量子隧道效应。
这一效应与量子尺寸效应,确立了现存微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。
3 纳米材料制备
3.1 物理合成法
1)喷雾法喷雾法是将溶液通过各种物理手段雾化,再经物理、化学途径而转变为超细微粒子。
2)喷雾干燥法将金属盐溶液送入雾化器,由喷嘴高速喷入干燥室获得金属盐的微粒,收集后焙烧成超微粒子,如铁氧体的超微粒子可采用此种方法制备。
3)喷雾热解法金属盐溶液经压缩空气由贲嘴喷出而雾化,喷雾后生成的液滴大小随着喷嘴而改变,液滴受热分解生成超微粒子。
例如,将
Mg(NO3)2-Al(NO3)3的水溶液与甲醇混合喷雾热解(T=800°C)合成镁铝尖晶石,产物粒径为几十纳米。
等离子喷雾热解工艺是将相应溶液喷成雾状送入等离子体尾焰中,热解生成超细粉末。
等离子体喷雾热解法制得的二氧化锆超细粉末分为两级:平均尺寸为20~50 nm的颗粒及平均尺寸为1 mm的球状颗粒。
3.2 化学合成法
1)等离子体制备纳米粉末技术等离子体作为物质存在的一种基本形态,由于在地球上很难自然存在,通常条件下,人们使电流通过气体,这样就可以使气体这个良好的绝缘体携带充分的电荷,从而形成“电击穿”,产生等离子体。
带电的
气体可以是氧化性气体、还原性气体和中性气体等。
热等离子体作为高温气体具有高电导率、热导率,高粘度和高温度梯度,材料处于等离子体中,将迅速分解成自由原子、离子和电子,这种处于高激发态的物质通过“淬冷”导致具有独特性质的超细粉体和晶体的核化与生长。
天然气加空气的燃烧产物与空气电弧加热器在不同的工作温度条件下加热效率的比较,电弧加热器的加热效率可几倍于用天然气的加热效率,这样就可以弥补电能与一次能源的差价。
2)化学气相沉淀法一种或数种反应气体通过热、激光、等离子体等而发生化学反应析出超微粉的方法,叫做化学气相沉积法。
由于气相中的粒子成核及生长的空间增大,制得的产物粒子细,形貌均一,交具有良好的单分散度,而制备常常在封闭容器中进行,保证了粒子具有更高的纯度。
CVD技术更多的应用于陶瓷超微粉的制备,如AlN,SiN,SiC,其中源材料为气体或易于气化,沸点低的金属化合物。
3)共沉淀法在含有多种阳离子的溶液中加入沉淀剂,使金属离子完全沉淀的方法称为共沉淀法。
共沉淀法可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体。
以CrO2为晶种的草酸沉淀法,制备了La、Ca、Co、Cr掺杂氧化物及掺杂BaT-iO3等。
以Ni(NO3)2·6H2O溶液为原料、乙二胺为络合剂,NaOH为沉淀剂,制得Ni(OH)2超微粉,经热处理后得到NiO超微粉。
4)均匀沉淀法在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中的沉淀均匀出现,称为均匀沉淀法。
本法克服了由外部向溶液中直接加入沉淀剂而造成沉淀剂的局部不均匀性。
5)溶剂热合成法用有机溶剂代替水作介质,采用类似水热合成的原理制备纳米微粉。
非水溶剂代替水,不仅扩大了水热技术的应用范围,而且能够实现通常条件下无法实现的反应,包括制备具有亚稳态结构的材料。
6)溶胶-凝胶法溶胶-凝胶法广泛应用于金属氧化物纳米粒子的制备。
前驱物用金属醇盐或非醇盐均可。
方法实质是前驱物在一定条件下水解成溶胶,再制成凝胶,经干燥纳米材料热处理后制得所需纳米粒子。
4 结束语
纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从历史的角度看:上世纪70年代重视微米科技的国家如今都已成为发达国家。
当今重视发展纳米技术的国家很可能在21世纪成为先进国家。
纳米技术对我们既是严峻的挑战,又是难得的机遇。
必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。
整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。
参考文献:
1.孙红庆.科技天地—计划与市场探索[M],2001/05
2.肖建中.材料科学导论[M].北京:中国电力出版社,2001,4 3~5 0.
3.张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002:112~121.
4.吴天诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社,2003:1~1 0.。