加热炉前馈--串级控制系统要点
管式加热炉温度前馈-反馈控制系统设计解析
过程控制课程设计报告管式加热炉温度前馈-反馈控制系统设计学生:专业:自动化班级:重庆大学自动化学院2012年10目录前言 (1)1 管式加热炉系统描述 (1)1.1 管式加热炉的一般结构 (1)1.2 管式加热炉传热方式 (2)1.3 管式加热炉工艺流程 (2)1.4 主要控制参数、操作参数及影响因素 (2)2 方案设计 (3)2.1 方案一 (3)2.2 方案二 (4)3 管式加热炉温度控制系统模型的建立 (4)3.1 前馈-反馈控制系统传递函数 (4)3.2 过程响应分析 (6)3.3 PID控制算法 (7)3.4 PID 控制各参数的作用 (8)4 MATLAB/Simulink仿真 (8)4.1 用ITAE 方法设计控制器 (8)4.2 用Ziegler-Nichols方法设计控制器 (10)5 基于MATLAB/Simulink的仿真 (12)5.1 前馈-反馈控制与单回路控制模型的比较 (12)5.2 基于ITAE方法的仿真模型 (13)5.2.1 ITAE的PI控制模型仿真 (13)5.2.2 ITAE的PID控制模型仿真 (14)5.3基于Ziegler-Nichols方法的仿真模型 (14)5.3.1 Ziegler-Nichols的PI控制仿真模型 (14)5.3.2 Ziegler-Nichols的PID控制仿真模型 (15)6 报告总结 (15)参考文献 (16)前言管式加热炉是石油炼制、化纤工业、石油化工和化学行业主要的工艺设备之一,作用是将物料加热至工艺所要求的温度,具有操作方便, 自动化水平高, 加工成本低, 传热效率高等优点。
1967年4月,世界上第一台步进梁式加热炉由美国米兰德公司设计而成,之后,日本中外炉公司设计的世界上第二座步进梁式加热炉于1967年5月投产。
70年代末,发达工业国家己经进入大型连续加热炉计算机控制的实用阶段,但控制策略还主要局限于燃烧控制。
加热炉温度串级控制系统设计
加热炉温度串级控制系统设计摘要:温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中。
结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性。
关键词:干扰串级控制主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade control system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLAB-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (6)2.3方案选择 (7)3、串级控制系统的特点 (8)4. 温度控制系统的分析与设计 (9)4.1控制对象的特性 (9)4.2主回路的设计 (10)4.3副回路的选择 (10)4.4主、副调节器规律的选择 (10)4.5主、副调节器正反作用方式的确定 (10)5、控制器参数的工程整定 (12)6 、MATLAB系统仿真 (13)6.1系统仿真图 (13)6.2副回路的整定 (15)6.3主回路的整定 (16)7.设计总结 (18)【参考文献】 (19)1.前言随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。
加热炉出口温度与燃料油压力串级控制系统
项目三 串级控制系统
串级控制系统
内容提要
本项目讲述以提高系统控制质量为目的的串 级控制系统。主要介绍了串级控制系统的组成原 理与结构,系统特点,应用范围、串级控制方案 的设计原则,最后介绍了串级控制系统的投运步 骤和参数整定方法。
项目三 串级控制系统
在简单反馈回路中增加了计算环节、控制环 节或其他环节的控制系统统称为复杂控制系统。 复杂控制系统的种类较多,按其所满足的控制要 求可分为两大类:
从上述分析中可以看出,在串级控制系统中,由于引入了一 个副回路,因而能及早克服从副回路进入的二次扰动对主变量的 影响,又能保证主变量在其他扰动(一次扰动)作用下能及时加 以控制,因此能大大提高系统的控制质量,以满足生产的要求。
项目三 串级控制系统
3.2 串级控制系统的特点
从总体来看,串级控制系统仍然是一个定值控制系统。 但是和简单控制系统相比,串级控制系统在结构上增加了一 个与之相连的副回路,因此具有很多特点,如下所述。
图3.3 加热炉温度串级控制系统方框图
项目三 串级控制系统
3.1.2 串级控制系统的结构
1.方框图 串级控制系统是一种常用的复杂控制系统,它是根据系统
结构命名的。串级控制系统由两个控制器串联连接组成,其中一 个控制器的输出作为另一个控制器的设定值。 如图3.4所示,为串级控制系统的通用原理方框图。由该图 可以看出,串级控制系统在结构上具有以下特征: (1)将原被控对象分解为两个串联的被控对象; (2)中间变量为副被控变量,称为副控制系统; (3)以原对象的输出信号为主被控变量,构成一个主控制系 统,称为主控制系统、主回路或主环; (4)主控制系统中控制器的输出信号作为副控制系统控制器 的设定值; (5)主回路是定值控制系统,副回路是随动控制系统。
加热炉温度串级控制系统设计
加热炉温度串级控制系统设计摘要:温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中。
结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性。
关键词:干扰串级控制主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade control system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLAB-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (6)2.3方案选择 (7)3、串级控制系统的特点 (8)4. 温度控制系统的分析与设计 (9)4.1控制对象的特性 (9)4.2主回路的设计 (10)4.3副回路的选择 (10)4.4主、副调节器规律的选择 (10)4.5主、副调节器正反作用方式的确定 (10)5、控制器参数的工程整定 (12)6 、MATLAB系统仿真 (13)6.1系统仿真图 (13)6.2副回路的整定 (15)6.3主回路的整定 (16)7.设计总结 (18)【参考文献】 (19)11.前言随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。
串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统
1、串级控制系统
串级控制系统是应用最早,效果最好,使 用最广泛的一种复杂控制系统,它的特点 是两个调节器相串联,主调节器的输出作 为副调节器的设定,当对象的滞后较大, 干扰比较剧烈、频繁时,可考虑采用串级 控制系统。
1、基本概念
串级控制系统(Cascade Cont ro1System)是一 种常用的复杂控制系统,它根据系统结构
主回路(外回路):断开副调节器的反馈回路 后的整个外回路。
副回路(内回路):由副参数、副调节器及所 包括的一部分对象所组成的闭合回路(随
动回路)
主对象(惰性区):主参数所处的那一部分工 艺设备,它的输入信号为副变量,输出信 号为主参数(主变量)。
副对象(导前区):副参数所处的那一部分工 艺设备,它的输入信号为调节量,其输出 信号为副参数(副参数 将要达到危险值时,就适当降低生产要求, 让它暂时维持生产,并逐渐调整生产,使 之朝正常工况发展。能实现软限控制的控 制系统称为选择性控制系统,又称为取代 控制系统或超驰控制系统。
通常把控制回路中有选择器的控制系统称 为选择性控制(selective control)系统。选择 器实现逻辑运算,分为高选器和低选器两 类。高选器输出是其输入信号中的高信号, 低选器输出是其输入信号中的低信号。
控制系统一般又可分为简单控制系统和复 杂控制系统两大类,所谓复杂,是相对于 简单而言的。凡是多参数,具有两个以上 变送器、两个以上调节器或两个以上调节 阀组成多回路的自动控制系统,称之为复 杂控制系统。
目前常用的复杂控制系统有串级、比值、 前馈-反馈、选择性、分程以及三冲量等, 并且随着生产发展的需要和科学技术进步, 又陆续出现了许多其他新型的复杂控制系 统。
路外,使调整k时不影响控制回路稳定性。
加热炉控制系统要点
加热炉控制系统要点1.温度控制:加热炉是用来提供高温环境的设备,因此温度控制是其最基本的功能。
控制系统应该能够根据工艺要求对加热炉的温度进行精确控制。
这可以通过在炉内安装温度传感器,并与控制系统连接来实现。
控制系统应该能够读取传感器的数据,并根据预设的温度范围来调节炉内的加热设备。
2.压力控制:加热炉在工作过程中需要维持一定的内部压力,以保证炉内温度的稳定性和燃烧效果。
控制系统应该能够监测加热炉内的压力,并通过调节进气和排气量来维持压力在合适的范围内。
3.燃料供给控制:加热炉的燃料供给对于平稳的燃烧效果至关重要。
控制系统应该能够监测燃料的流量和压力,并根据需要进行精确的控制。
例如,在炉内温度过低时,控制系统应该能够增加燃料供给来提高温度。
4.温度保护:加热炉的操作范围必须在安全范围内,超过限定的高温范围可能导致炉子损坏或者危险。
因此,控制系统应该具备温度保护功能,一旦温度超过设定范围,就应该自动切断加热设备的电源,并发出警报信号,以防止事故的发生。
5.远程监控和控制:加热炉控制系统应该具有远程监控和控制的功能,方便工作人员在不同的位置对炉子进行实时监测和操作。
通过与计算机或者移动设备相连,工作人员可以远程监控加热炉的运行状态,并对其进行必要的调整和控制。
6.数据记录和分析:加热炉控制系统应该能够将每次加热过程的相关数据进行记录,并能够生成相应的报表和图表。
这些数据可以用于对加热炉的性能进行分析和评估,有助于改进和优化生产过程。
7.系统安全性:加热炉控制系统应该具备一定的安全性能,以避免操作失误和不当操作引发的事故。
例如,可以设置密码保护功能,只有经过授权的人员才能对控制系统进行操作。
此外,还可以设置紧急停机按钮等安全装置,以便在紧急情况下快速切断炉子的电源。
综上所述,一个优秀的加热炉控制系统应该具备温度、压力和燃料供给等参数的精确控制能力,同时具备远程监控和数据分析功能。
通过有效地控制加热炉的操作,可以提高生产效率,保证产品质量,提升安全性能。
管式加热炉温度温度串级控制系统的设计说明
管式加热炉温度温度串级控制系统的设计说明一、引言二、系统结构温度串级控制系统主要由上位机、温度传感器、控制器、执行机构等组成。
1.上位机:负责启动和监控系统运行,提供温度设定值和参考模型,按照系统控制算法生成控制指令发送给下位控制器。
2.温度传感器:负责实时采集管式加热炉内的温度数据,并将其传输给控制器进行处理。
3.控制器:根据上位机提供的设定值和参考模型,根据传感器采集到的温度数据进行处理,生成控制指令并发送给执行机构。
4.执行机构:根据控制器发送的控制指令,调节管式加热炉内的加热功率或其他参数,以实现温度控制。
三、温度控制策略1.温度设定值的调整:上位机会根据需要设定管式加热炉内的目标温度,并将其发送给控制器。
控制器会根据设定值和参考模型,生成合适的控制指令来调节温度。
2.温度比例控制:控制器会根据当前温度和设定值之间的差异,生成一个控制量来调节加热功率,使加热炉内的温度趋近于设定值。
3.温度积分控制:为了消除静态误差,控制器会根据温度偏差的积分值生成一定的控制量,以提高系统的稳定性。
4.温度微分控制:为了快速响应温度变化,控制器还会根据温度变化的速率生成相应的控制量。
四、系统性能指标1.温度响应时间:系统需要具备较快的响应时间,即加热炉内的温度能够尽快达到设定值。
2.温度稳定度:系统应当保持较好的温度稳定度,即经过一定时间后,温度偏差应尽可能小。
3.抗干扰能力:系统需要具备较好的抗干扰能力,对于外界干扰因素的影响应尽可能小。
五、系统设计优化1.选择合适的温度传感器:合适的温度传感器能够提供准确的温度数据,为控制系统提供可靠的输入信号。
2.高性能控制器的选择:通过选用性能较好的控制器,能够提高控制系统的稳定性和响应速度。
3.优化控制策略:通过合理选择温度比例、积分和微分参数,能够提高控制系统的性能。
4.加入滤波器和抗干扰装置:通过加入合适的滤波器和抗干扰装置,能够降低系统对外界干扰的敏感度,提高系统的抗干扰能力。
加热炉的控制系统
蒸汽
FT 101 LI 101
LC 101
PF
Pc
给水
30
方框图
R+
-
Gc
C2
C1
GV
Gm
U G ff
GPD
GPC
Y
双冲量控制的另一种形式
蒸汽
FT
锅炉
LI 101
气包
101
+
LC 101
缺点:因控制阀的非线性,很难做到稳态补偿 不能克服给水量的扰动
4、三冲量控制
水位、负荷、给水流量的复合控制系统 方案一:
FT 102
给水
32
4.6.3 燃烧系统控制 1、控制系统的目的 ①保证锅炉出口蒸汽压力稳定 ②保持燃料良好地燃烧 ③保持炉膛负压不变 ④维持喷嘴背压在一定范围内 2、蒸汽压力控制和燃料与空气的比值控制 压力对燃料量的单回路控制适用于负荷及燃料波动较小的场合 燃料量波动较大时,可采用压力对燃料量的串级控制
C1、C2 :加法器的系数。C2 的正、负取决于阀的特性
锅炉 气包
气关阀:负荷 给水量 P0 C2 应取“-”
气开阀:负荷 给水量 P0 C2 应取“+”
C2 :根据阀的特性数据计算 现场凑试,在只有负荷干扰的条件下, 调整到水位基本不变
C1:可取1,也可小于1
C0 :在正常负荷下,C0 与C2PF 近似或正好抵消
Gd (s)
TC 101
FT
TT
101
101
Gd (s)
TC
101
FT
101
TT
101
前馈主要克服进料流量的干扰
加热炉出口温度与炉膛温度串级控制系统设计培训资料
加热炉出口温度与炉膛温度串级控制系统设计第一章系统分析与控制方案的确立1.系统分析图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。
加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
被加热物料图1.1加热炉出口温度系统由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。
2.串级控制系统的设计加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。
在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。
由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。
为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。
图1.2加热炉出口温度串级控制系统结构图串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的过渡过程。
由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如图1.3所示。
图1.3 加热炉出口温度串级控制系统结构方框图(1) 主被控参数的选择主控制器副控制器调节阀炉膛出口温度主检测、变送仪副检测、变送仪表应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量的参数。
加热炉前馈--串级控制系统资料
1.1 概述在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的。
例如在砂浆工艺中,使浆液的温度保持恒定值,对保持浆液粘度和浓度不变,进行均匀上浆是十分重要的,这就需要对加热介质的温度进行连续的测量和控制;另外,由于砂浆机中蒸气压力和卷绕速度的变化使烘干温度变化很大,因此,测量和控制烘筒的温度非常重要。
加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。
在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。
为此,可靠的温度的监控在工业中是十分必要的。
加热炉是钢铁企业热轧生产过程的关键设备之一,其性能直接影响到加热炉的能耗和最终钢材产品质量钢坯成材率、轧机设备寿命以及整个主轧线的有效作业率.加热炉控制系统对加热炉的控制系统来讲占有很重要的地位,它对于坯料加热温度的均匀,温度控制的准确,合理进行燃烧,节约燃料,减少有害气体对环境的污染都有重要意义单回路控制系统解决了大量的定值控制问题。
随着现代工业生产规模越来越大,复杂程度越来越高,产品质量要求也越来越高,简单控制系统已经不能满足这些要求。
前馈—串级控制系统是工业生产中很常见的一种系统,它将前馈控制和反馈控制结合起来,组成前馈—反馈复合控制系统。
这样既发挥了前馈控制即使克服主要干扰被控参数影响的优点,又保持了反馈控制能抑制各种干扰的优势,同时也降低了对前馈控制器的要求,便于工程上的实现。
172.1方案选定2.1.1 简单控制系统加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。
因此,常选原料油出口温度()11θ为被控参数、燃料流量为控制变量,构成如图2.1所示的温度控制系统。
影响原料油出口温度()11θ的干扰有原料油流量1()f t 、原料油入口温度2()f t 、燃料压力3()f t 、燃料压力4()f t 等。
加热炉出口温度与炉膛温度串级控制系统设计
加热炉出口温度与炉膛温度串级控制系统设计一、引言加热炉是一种常用于工业生产中的设备,其作用是通过燃烧燃料加热空气或其他介质,使其达到所需温度。
加热炉的出口温度和炉膛温度是评估加热炉性能的关键指标。
为了提高加热炉的控制精度和稳定性,需要设计出一个合理的加热炉出口温度与炉膛温度串级控制系统。
二、串级控制系统的基本原理串级控制系统是一种将两个或以上的控制回路串接在一起,将一个控制器的输出作为另一个控制器的输入,通过不同层次的控制,实现对被控对象的精确控制。
在加热炉出口温度与炉膛温度串级控制系统中,可以将炉膛温度作为外环控制,将加热炉出口温度作为内环控制。
三、串级控制系统的设计步骤1.确定控制目标:在此串级控制系统中,控制目标是将加热炉出口温度控制在一定范围内,并同时保持炉膛温度稳定。
2.确定输入变量和输出变量:输入变量为控制器输出信号,输出变量为加热炉出口温度。
3.系统的数学模型:确定加热炉出口温度与炉膛温度之间的动态关系,建立数学模型。
可以采用传统的PID控制器或者现代控制理论中的模型预测控制等方法。
4.设计外环控制器:外环控制器根据炉膛温度的反馈信号调整燃料供给,以控制炉膛温度的稳定性。
5.设计内环控制器:内环控制器根据外环控制器的输出信号和加热炉出口温度的反馈信号调整燃料供给,以控制加热炉出口温度。
6.仿真与优化:使用仿真软件对设计的串级控制系统进行仿真,观察系统的响应特性,并根据实际需求进行调整和优化。
7.实际系统应用:将优化后的串级控制系统应用到实际加热炉中,并进行调试和验证。
四、串级控制系统的优势1.提高控制精度:串级控制系统将控制精度分为两个层次进行控制,可以快速响应外环控制器的调整,从而提高系统的控制精度。
2.提高稳定性:串级控制系统通过多层次的控制,减少了外界扰动对系统稳定性的影响。
3.提高动态响应速度:串级控制系统可以根据内环的控制效果对外环的控制进行调整,从而实现更快的动态响应。
加热炉温度串级控制系统说明书
设计说明书1加热炉的简介1.1加热炉的基本构成与组成加热炉是一种直接受热加热设备主要用于加热气体或液体,所用燃料通常有燃料油和燃料气。
加热炉的传热方式以辐射传热为主。
加热炉一般由辐射室、余热回收系统、对流室、燃烧器和通风系统等五部分组成。
(1)辐射室:通过火焰或高温烟气进行辐射传热的部分。
这部分直接受火焰冲刷,温度很高(600-1600℃),是热交换的主要场所(约占热负荷的70-80%)。
(2)余热回收系统:用以回收加热炉的排烟余热。
有空气预热方式和废热锅炉方式两种方法。
(3)对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。
(4)燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油燃烧器,燃料气燃烧器和油一气联合燃烧器。
(5)通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式和强制通风方式。
其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。
1.2加热炉温度控制系统工作原理加热炉温度控制系统原理图控制原理图如上所示,加热炉的主要任务是把物料加热到一定温度,以保证下一道工序的顺利进行。
燃料油经过蒸汽雾化后在炉膛中燃烧,物料流过炉膛四周的排管中,就被加热到出口温度。
在燃料油管道上装设一个调节阀,物用它来控制燃油量以达到所需出口温度T1的目的。
1.3加热炉出口温度控制系统设计目的及意义加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于加热炉具有强耦合、大滞后等特性,控制起来非常复杂。
同时,近年来能源的节约、回收和合理利用日益受到关注。
加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。
因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。
另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。
1.4加热炉温度控系统工艺流程及控制要求加热炉的主要任务是把原制油或重油加热到一定温度,以保证下一道工序(分馏或裂解)的顺利进行。
加热炉前馈串级控制系统
加热炉前馈--串级控制系统加热炉前馈-串级控制系统是一种先进的控制系统,主要用于加热炉的温度控制。
这种控制系统能够有效地提高加热炉的温度控制精度,减少能源浪费,提高生产效率。
下面将对这种控制系统进行详细的介绍。
一、前馈控制系统前馈控制系统是一种开环控制系统,它通过测量输入信号的变化,提前对输出信号进行控制,以达到减少干扰信号对系统的影响。
在加热炉控制系统中,前馈控制系统可以用来提前控制加热炉的输出,以达到防止因外部干扰引起的温度波动。
前馈控制系统的核心是前馈控制器,它根据输入信号的变化,产生相应的控制信号,以控制加热炉的输出。
前馈控制器通常采用PID控制算法,通过对输入信号的变化进行比例、积分和微分处理,产生相应的控制信号。
二、串级控制系统串级控制系统是一种闭环控制系统,它由两个控制器串联组成,一个控制器的输出作为另一个控制器的输入。
在加热炉控制系统中,串级控制系统可以用来提高温度控制的精度和稳定性。
串级控制系统的核心是两个控制器,一个是内环控制器,另一个是外环控制器。
内环控制器根据加热炉的当前温度和设定温度的差异,产生相应的控制信号,以控制加热炉的输出。
外环控制器则根据加热炉的输出和目标值的差异,产生相应的控制信号,以调整内环控制器的设定值。
三、加热炉前馈-串级控制系统加热炉前馈-串级控制系统结合了前馈控制系统和串级控制系统的优点,能够更有效地提高温度控制的精度和稳定性。
在加热炉前馈-串级控制系统中,前馈控制器通过对输入信号的变化进行预测,提前控制加热炉的输出。
串级控制器则通过内环控制器和外环控制器的串联,实现对加热炉温度的精确控制。
具体来说,前馈控制器根据加热炉的输入信号(如燃料流量、空气流量等)的变化,预测出加热炉的温度变化趋势,并提前调整加热炉的输出。
然后,内环控制器根据加热炉的当前温度和设定温度的差异,产生相应的控制信号,以控制加热炉的输出。
同时,外环控制器根据加热炉的输出和目标值的差异,产生相应的控制信号,以调整内环控制器的设定值。
加热炉串级控制系统课程设计
串级控制系统采用两套检测变送器和两个调节器,前一个调节器的输出作为后一个调节器的设定,后一个调节器的输出送往调节阀。
前一个调节器称为主调节器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个调节器称为副调节器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。
二次扰动:作用在副被控过程上的,即包括在副回路范围内的扰动。
关键词:串级控制主调节器 PID控制反馈1 串级控制系统的优点及如何设计 (1)1.1 串级控制系统原理图、结构框图 (1)1.2 串级控制系统的工作过程 (2)2 管式加热炉的设计 (3)2.1 系统设计与对比 (3)2.1.1 两种单回路控制系统 (3)2.1.2 串级控制管式加热炉整体设计 (4)2.1.3 管式加热炉出口温度串级控制系统的方框图 (5)2.2 副回路的设计与副参数的选择 (5)2.3 主、副调节器调节规律的选择 (5)2.4 主、副调节器正反作用方式选择 (6)2.4主、副调节器选用 (6)2.5 主、副电路检测变送器的确定 (7)2.5.1 温度检测元件 (7)2.5.2 温度变送器 (8)2.6 调节阀的确定 (9)3 系统参数整定 (9)4 串级控制系统的控制效果 (10)4.1 迅速克服进入副回路的二次干扰 (10)4.2 提高了系统的工作频率 (11)4.3 对负荷剧烈变化的适应能力 (12)小结与体会 (13)参考文献 (14)管式加热炉温度串级控制系统设计1 串级控制系统的优点及如何设计1.1 串级控制系统原理图、结构框图图1-1系统原理图串级控制系统与简单控制系统的主要区别是,串级控制系统在结构上增加了一个测量变速器和一个调节器,形成了两个闭合回路,其中一个称为副回路,一个称为主回路。
加热炉温度串级控制系统设计
加热炉温度串级控制系统设计引言:加热炉是工业生产中常用的设备之一,用于加热物体到目标温度。
为了确保加热炉的温度能够稳定地达到所需温度并且尽量减小温度误差,本文将就一种串级控制系统的设计进行阐述。
串式控制系统使用了两组控制器,一个主控制器 (Master Controller) 和一个从控制器 (Slave Controller),通过对系统的不同层次进行控制,实现了温度的快速、准确地调节。
本文将针对主控制器和从控制器的设计进行详细说明。
一、主控制器设计:主控制器的作用是通过对从控制器的输出进行调节,以实现加热炉温度的稳定。
主控制器采用PID控制算法,其中P代表比例控制,I代表积分控制,D代表微分控制。
PID控制算法充分考虑了温度调节系统的动态和静态特性,并能够在不同的工作条件下自动调整参数,以保证系统的稳定性和快速响应。
在主控制器设计中,首先需要确定温度传感器的位置,将温度传感器安装在加热炉的合适位置,以获取准确的温度信息。
接下来,需要对主控制器的参数进行设置。
主控制器的参数设置对系统的稳定性和响应时间有着重要影响。
在设置主控制器的参数时,可以采用经验法或者试探法。
经验法是根据历史数据和经验对主控制器参数进行初始化,然后通过不断实际运行和调节参数,直到系统达到理想状态。
试探法则是在实际运行过程中,逐步调节参数,观察系统响应并作出相应调整。
两种方法都可以达到主控制器参数的最优化,但试探法的调试过程可能会相对较长。
二、从控制器设计:从控制器的作用是根据主控制器的输出对加热炉的加热功率进行调节。
从控制器也采用PID控制算法来实现。
从控制器的设计需要考虑如下因素:1.从控制器对主控制器的输出进行调节,以实现稳定的加热功率控制。
根据实际需要和经验,设置从控制器的参数,使得从控制器能够快速、准确地响应主控制器的输出。
2. 考虑到加热炉的动态特性,可以利用先进的控制算法,如模型预测控制 (Model Predictive Control)等,将从控制器的参数调整为非线性和时变的。
管式加热炉出口温度串级控制系统设计报告
管式加热炉出口温度串级控制系统设计报告本文将详细介绍管式加热炉出口温度串级控制系统的设计方案。
1.系统结构管式加热炉出口温度串级控制系统的结构由两个级联的控制回路组成。
第一个回路为内环控制回路,负责控制燃烧系统的燃气量和进气量,以达到对加热炉温度的快速调节。
第二个回路为外环控制回路,负责控制进料速度和加热炉的出口温度。
2.内环控制回路设计内环控制回路采用比例-积分(PI)控制器。
控制器的输入信号为加热炉温度偏差,输出信号为燃气量和进气量的调节量。
采用PI控制的主要原因是为了避免过度调节,保证系统的稳定性。
3.外环控制回路设计外环控制回路以内环控制回路的调节量作为输入信号,输出信号为进料速度的调节量。
为了达到出口温度的稳定性,可以采用模糊控制器。
模糊控制器的输入信号为加热炉温度偏差和燃气量的调节量,输出信号为进料速度的调节量。
4.控制算法设计内环控制回路采用PI控制算法。
PI控制器的参数调节可以根据系统的响应速度和稳定性进行优化。
外环控制回路采用模糊控制算法。
模糊控制器的参数调节可以通过模糊化和解模糊化的方式进行,以适应不同的工况。
5.控制器实现控制器可以采用嵌入式系统实现。
嵌入式控制器可以根据实时的温度和燃气量数据进行计算和控制,以实现对加热炉温度的稳定控制。
6.系统优化系统的优化可以通过参数调节和控制策略的优化来实现。
参数调节可以通过系统的建模和仿真分析来进行,以找到最优的控制参数。
控制策略的优化可以通过实时监测和调整来实现,以适应不同的工况和控制要求。
总结:通过设计一个管式加热炉出口温度串级控制系统,可以实现对加热炉温度的稳定控制。
内环控制回路负责快速调节温度,外环控制回路负责稳定控制温度。
通过控制算法的设计和优化,可以实现系统的稳定性和响应速度的改善。
通过嵌入式控制器的实现,可以实时计算和控制温度的调节量。
最后,通过参数调节和控制策略的优化,可以进一步提高系统的效果。
加热炉温度串级控制系统设计
加热炉温度串级控制系统设计摘要:温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
生产自动控制过程中,随着工艺要求,安全、经济生产不断提高的情况下,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中。
结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性。
关键词:干扰串级控制主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with goodanti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade control system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLAB-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (3)2、整体方案设计 (4)2.1方案比较 (4)2.2方案论证 (7)2.3方案选择 (8)3、串级控制系统的特点 (9)4. 温度控制系统的分析与设计 (10)4.1控制对象的特性 (10)4.2主回路的设计 (11)4.3副回路的选择 (11)4.4主、副调节器规律的选择 (11)4.5主、副调节器正反作用方式的确定 (12)5、控制器参数的工程整定 (13)6 、MATLAB系统仿真 (14)6.1系统仿真图 (14)6.2副回路的整定 (16)6.3主回路的整定 (17)7.设计总结 (19)【参考文献】 (20)1.前言随着我国国民经济的快速发展,加热炉的使用围越来越广泛。
加热炉温度串级控制系统
加热炉温度串级控制系统首先,我们需要设计主控制器。
主控制器主要控制主燃料供给。
我们可以采用比例-积分-微分(PID)控制算法来设计主控制器。
PID控制器的输出是由三个部分组成的,分别是比例部分、积分部分和微分部分。
比例部分通过计算设定值与实际值之间的差异来产生控制输出,积分部分通过对偏差的积分来产生控制输出,微分部分通过对偏差变化率的微分来产生控制输出。
为了设计主控制器,我们首先需要确定PID控制器的参数。
这可以通过试验和经验来确定。
接下来,我们需要设计从控制器。
从控制器主要控制辅助燃料供给。
从控制器的设计原理与主控制器相似,也可以采用PID控制算法。
然而,由于从控制环的响应速度通常比主控制环慢,从控制器的参数可能需要进行调整。
设计从控制器时,我们需要考虑主控制器和从控制器之间的互动。
为了避免两个控制环之间的相互影响,我们可以采用串联结构。
在串联结构中,主控制器的输出作为从控制器的输入。
这样,主控制器和从控制器之间的影响可以得到较好的隔离。
另外,对于加热炉温度串级控制系统,还需要考虑测量系统。
测量系统主要负责测量加热炉的温度,并将测量结果反馈给控制器。
在设计测量系统时,我们需要选择适当的传感器,并根据测量结果进行合理的滤波处理,以减小测量误差和噪声的影响。
最后,为了验证加热炉温度串级控制系统的性能,我们可以进行模拟和实验验证。
可以利用数学模型进行仿真,评估控制系统的性能指标,如稳态误差、超调量和响应时间等。
同时,可以在实际加热炉上进行试验,验证控制系统在实际工作条件下的稳定性和鲁棒性。
总的来说,加热炉温度串级控制系统的设计包括主控制器的设计、从控制器的设计、主控制器和从控制器之间的互动设计以及测量系统的设计。
通过合理设计和调整控制器参数,并进行模拟和实验验证,可以实现加热炉温度的精确控制,提高生产效率和产品质量。
浅析过热汽温串级控制的控制方案
浅析过热汽温串级控制的控制方案早晨的阳光透过窗帘的缝隙,洒在办公室的角落,我泡了一杯清茶,打开电脑,准备开始写作。
关于过热汽温串级控制的控制方案,这个话题已经在我脑子里转了好多遍了,今天终于要把它梳理出来了。
先来说说什么是过热汽温串级控制。
简单来说,它就是通过控制过热器的出口温度,保证蒸汽温度在合理的范围内,防止过热器内部出现水滴,从而保证蒸汽质量。
那么,我们就来聊聊控制方案。
一、方案设计原则1.稳定性:确保过热器出口温度在设定值附近波动,避免出现大幅度波动。
2.可靠性:控制系统要具备较强的抗干扰能力,保证在各种工况下都能稳定运行。
3.实时性:控制系统要能够实时监测过热器出口温度,快速响应。
4.经济性:在满足控制要求的前提下,尽量降低设备成本和运行成本。
二、方案组成1.控制器:采用先进的PID控制算法,实现过热器出口温度的精确控制。
2.传感器:选用高精度的温度传感器,实时监测过热器出口温度。
3.执行器:选用快速响应的调节阀,实现对过热器入口蒸汽流量的调节。
4.人机界面:用于显示过热器出口温度、调节阀开度等参数,方便操作员实时监控。
三、控制策略1.主控制策略:采用PID控制算法,根据过热器出口温度与设定值的偏差,自动调节调节阀开度,使过热器出口温度稳定在设定值附近。
2.串级控制策略:在主控制策略的基础上,引入前馈控制。
当过热器入口蒸汽流量发生变化时,前馈控制会根据入口蒸汽流量的变化,提前调整调节阀开度,以减小过热器出口温度的波动。
3.限幅控制策略:为防止过热器出口温度过高或过低,设置上下限幅值。
当过热器出口温度超过上限幅值时,自动关闭调节阀;当过热器出口温度低于下限幅值时,自动开启调节阀。
四、实施方案1.硬件配置:根据方案组成,选择合适的控制器、传感器、执行器和人机界面等设备,进行硬件连接。
2.软件编程:根据控制策略,编写控制程序,实现过热器出口温度的自动控制。
3.系统调试:在设备安装完毕后,进行系统调试,确保控制系统稳定可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 概述在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的。
例如在砂浆工艺中,使浆液的温度保持恒定值,对保持浆液粘度和浓度不变,进行均匀上浆是十分重要的,这就需要对加热介质的温度进行连续的测量和控制;另外,由于砂浆机中蒸气压力和卷绕速度的变化使烘干温度变化很大,因此,测量和控制烘筒的温度非常重要。
加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。
在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。
为此,可靠的温度的监控在工业中是十分必要的。
加热炉是钢铁企业热轧生产过程的关键设备之一,其性能直接影响到加热炉的能耗和最终钢材产品质量钢坯成材率、轧机设备寿命以及整个主轧线的有效作业率.加热炉控制系统对加热炉的控制系统来讲占有很重要的地位,它对于坯料加热温度的均匀,温度控制的准确,合理进行燃烧,节约燃料,减少有害气体对环境的污染都有重要意义单回路控制系统解决了大量的定值控制问题。
随着现代工业生产规模越来越大,复杂程度越来越高,产品质量要求也越来越高,简单控制系统已经不能满足这些要求。
前馈—串级控制系统是工业生产中很常见的一种系统,它将前馈控制和反馈控制结合起来,组成前馈—反馈复合控制系统。
这样既发挥了前馈控制即使克服主要干扰被控参数影响的优点,又保持了反馈控制能抑制各种干扰的优势,同时也降低了对前馈控制器的要求,便于工程上的实现。
172.1方案选定2.1.1 简单控制系统加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。
因此,常选原料油出口温度()11θ为被控参数、燃料流量为控制变量,构成如图2.1所示的温度控制系统。
影响原料油出口温度()11θ的干扰有原料油流量1()f t 、原料油入口温度2()f t 、燃料压力3()f t 、燃料压力4()f t 等。
该系统根据原料油出口温度1t θ()变化来控制燃料阀门开度,通过改变燃料流量将原油出口温度控制在规定的数值上,是一个简单控制系统。
图2.1 加热炉出口单回路温度控制系统由图2.1可知,当燃料压力或燃料热值变化时,先影响炉膛温度,然后通过传热过程逐渐影响原料油的出口温度。
从燃料流量变化经过三个容量后,才引起原料油出口温度变化,这个通道时间常数很大,约有15min ,反应缓慢。
而温度控制器1T C 是根据原料油的出口温度1()t θ与设定值的偏差进行控制。
当燃料部分出现干扰后,图2.1所示的控制系统并不能及时产生控制作用,克服干扰对被控参数1()t θ的影响,控制质量差。
当生产工艺对原料油出口温度1()t θ要求严格时,上述简单控制系统很难满足要求。
燃料在炉膛燃烧后,首先引起炉膛温度2()t θ变化,再通过炉膛与原料油的温差将热量传给原料油,中间还要经过原料油管道管壁。
显然,燃料量变化或燃料热值变化,首先使炉膛温度发生改变。
如果以炉膛温度作为被控参数组成单回路控制系统,会使控制通道容量滞后减少,时间常数约为3min ,对来自燃料的干扰3()f t 、4()f t 的控制作用比较及时,对应的控制系统如图2.2所示。
但问题是炉膛温度2()t θ毕竟不能真正代表原料油出口温度1()t θ,即使炉膛温度恒定,原料油本身的流量或入口温度变化仍会影响原料油出口温度,这是因为来自原料油的干扰1()f t 、2()f t 并没有包含控制系统(反馈回路)之内,控制系统不能克服1()f t 、2()f t 对原料油出口温度的影响,控制效果仍达不到生产工艺要求。
图2.2 加热炉炉膛温度控制系统2.1.2 前馈--串级控制系统如果将上面两种控制系统的优点——温度控制器1T C 对被控参数1()t θ的精确控制、温度控制器2T C 对来自燃料的干扰3()f t 、4()f t 的及时控制结合起来,先根据炉膛温度2()t θ的变化,改变燃料量,快速消除来自燃料的干扰3()f t 、4()f t 对炉膛温度的影响;然后再根据原料油出口温度1()t θ与设定值的偏差,改变炉膛温度控制器2T C 的设定值,进一步控制燃料量,以保持原料油出口温度恒定,这样就构成了以原料油出口温度为主要被控参数,以炉膛温度为辅助被控参数的串级控制系统。
在以这个串级控制系统作为反馈回路,将前馈和反馈相加的信号作为炉膛温度控制器的设定值,组成相加型前馈和串级反馈的控制系统。
这样干扰3()f t、4()f t对原油出口温度的影响主要由炉膛温度控制器(构成的控制回路进行校正;由原料油出口温度控制器)构成的控制回路克服干扰1()f t、2()f t对原料油出口温度1()tθ的影响,并对其他干扰所引起的1()tθ的偏差进行校正。
综上所述,由于加热炉动态性复杂,存在多种扰动,简单控制系统难以满足控制要求,所以采用前馈--串级控制系统。
第3章加热炉前馈--串级控制系统的设计和器件选择前馈--串级控制系统的串级系统采用两套检测变送器和两个控制器,前一个控制器的输出作为后一个控制器的设定,后一个控制器的输出送往控制阀。
前一个控制器称为主控制器,它所检测和控制的变量称主变量(主被控参数),即工艺控制指标;后一个控制器称为副控制器,它所检测和控制的变量称副变量(副被控参数),是为了稳定主变量而引入的辅助变量。
串级部分包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副控制器、控制阀和副过程构成;主回路由主变量检测变送、主控制器、副控制器、控制阀、副过程和主过程构成。
前馈—串级控制系统的前馈系统采用一个控制器和一个变送器,当系统出现扰动时,立即将其测量出来,通过前馈控制器,根据扰动量的大小改变控制变量,以抵消扰动对被控参数的影响。
图3.1加热炉出口温度前馈--串级控制系统图3.2加热炉出口温度前馈--串级控制系统结构框图3.1前馈--串级控制系统的串级系统一、主回路设计主回路设计就是确定被控参数,根据被控参数与生产过程的关系,被控参数的选择通常有两种方法。
一种是选择能直接返应生产过程中产品产量和质量,易于测量的参数作为被控参数,称为直接参数法。
但有时由于缺乏检测直接反映产品质量参数的有效手段,无法对产品质量参数进行直接检测,这时可以选择与质量指标有单值对应关系、易于测量的变量作为被控参数,间接反映产品质量、生产过程的实际情况。
二、副回路的设计与副参数的选择副回路的选择是确定副回路的被控参数,串级系统的特点主要来源于它的副回路,副回路的参数选择一般应遵行下面几个原则:(1)主、副参数有对应关系。
即通过调整副参数能有效地影响主参数,副参数的变化应反映主参数的变化趋势、并在很大程度上影响主参数;其次,选择的副参数必须是物理上可测的;另外,由副参数所构成的副回路,控制通道尽可能短,控制过程时间常数不能太大,时间滞后小,以便使等效过程时间常数显著减小,提高整个系统的工作频率,加快控制过程反应速度,改善系统控制品质。
(2)副参数的选择必须使副回路包含变化剧烈的主要干扰,并尽可能多包含一些干扰。
在选择副参数时一定要把主要干扰包含在副回路中,并力求把更多的干扰包含在副回路中,但也不是副回路包含的干扰越多越好,因为副回路包含的干扰越多,其控制通道时间常数必然越大,响应速度变慢,副回路快速克服干扰的能力将受到影响。
所以在选择副参数时,应在副回路反应灵敏与包含较多干扰之间进行合理的平衡。
(3)副参数的选择应考虑主、副回路中控制过程的时间常数的匹配,以防“共振”的发生。
在串级控制系统中,主、副回路中控制过程的时间常数不能太接近,一方面是为了保证副回路具有较快的反应能力,另一方面由于在串级控制系统中,主、副会理密切相关,如果主、副回路中的时间常数比较接近,系统一旦受到干扰,就有可能产生“共振”,使控制质量下降,甚至使系统因震荡而无法工作。
在选择副参数时,应注意使主、副回路中控制过程的时间常数之比为3~10,以减少主、副回路的动态联系、避免“共振”。
(4)应注意工艺上的合理性和经济性。
三、主、副控制器控制规律的选择在串级控制系统中,主,副控制器起的作用不同。
主控制器起定值控制作用,副控制器起随动控制作用,这是选择控制器规律的基本出发点。
主被控参数是工艺操作的主要指标,允许波动范围很小,一般要求无静差,因此,主控制器应选PI或PID控制规律。
副被控参数的设置是为了克服主要干扰对主参数的影响,因而可以允许在一定范围的变化,并允许有静差。
为此,副控制器选择P控制规律。
四、主、副控制器正、反作用方式的确定在串级控制系统中,主、副控制器正、反作用方式的选择原则是使整个系统构成负反馈。
串级控制系统中,主、副控制器的正反作用的选择方法是:首先根据工艺要求决定控制阀的气开、气关形式,并决定副控制器的正反作用;然后再依据主、副过程的正、反形式最终确定主控制器的正、反作用方式。
由图3.2可以得到,从生产工艺安全出发,燃料油控制阀选用气开式,即一旦出现故障或气源断气,控制阀应完全关闭,切断燃料油进入加热炉,确保设备安全。
对于副控制器,当炉膛温度升高时,测量信号增大、为保证副回路为负反馈,此时控制阀应关小,要求副控制器输出信号减小。
按照测量信号增大,输出信号减小的原则要求,副控制器应为反作用方式。
对于主控制器,当副参数升高时,主参数也升高,故主控制器应为反作用方式。
五、前馈--串级控制系统的串级系统的控制过程1、主被控变量:加热炉出口温度2、副被控变量:炉膛温度K>0。
3、控制阀:从安全角度考虑,选择气开控制阀,vK>0。
4、副被控对象:控制阀打开,燃料油流量增加,炉膛温度升高,因此,2p5、副控制器:为保证负反馈,应满足222c v p m K K K K >0。
因2m K >0,应选2c K >0,即选择反作用控制器。
6、主被控对象:当炉膛温度升高时,出口温度升高,因此,1p K >0。
7、主控制器:为保证负反馈,应满足111c p m K K K >0。
因1m K >0,应选1c K >0。
即选用反作用控制器。
8、主控方式更换:由于副控制器是反作用控制器,因此,主控制器从串级切换到主控制时,主控制器的作用方式不更换,保持原来的反作用方式。
该串级控制系统的控制过程如下:当扰动或负荷变化使炉膛温度升高时,因副控制器是反作用,因此,控制器输出减小,控制阀是气开型,从而控制阀开度减小,燃料量减小,使炉膛温度下降;同时,炉膛温度升高,使出口温度升高,通过反作用的主控制器,使副控制器的设定降低,通过副控制回路的控制,减小燃料量,减低炉膛温度,进而降低出口温度,以保持出口温度恒定。