电动车两档变速器换挡机构设计毕业设计(论文)

合集下载

电动车两档变速器换挡机构设计

电动车两档变速器换挡机构设计

电动车两档变速器换挡机构设计概述电动车的变速器是控制电动车动力输出的重要组成部分。

在传统的燃油车中,变速器的作用是根据驾驶情况和车辆负载的不同来调整发动机的转速和车轮的转速比。

而在电动车中,由于电机的特性和输出方式的不同,变速器则起到了控制电机转速和车轮转速之间的匹配的作用。

本文将从电动车两档变速器换挡机构的设计方面进行探讨,介绍其基本原理和关键技术,以及设计时需考虑的因素。

基本原理电动车的两档变速器主要是通过调整电机转速和车轮转速之间的转速比来实现换挡的目的。

一般情况下,电动车的低速档用于提供较大的起步力,适用于起步和爬坡等较大负载情况;高速档则用于提供较高的车速,适用于平路和高速行驶。

在换挡过程中,换挡机构需要通过控制离合器的工作状态来实现不同档位之间的平稳切换。

换挡机构一般包括选择器、离合器和齿轮组成的主要部件。

关键技术1.选择器设计:选择器是控制离合器工作状态的重要部件,需要具备精确的操作性能和可靠的工作寿命。

其设计时需考虑到各个档位之间的切换关系和机构的结构设计,以保证换挡的平稳和快速。

2.离合器设计:离合器是完成换挡过程的关键部件,其设计需要考虑到离合器的承载能力、工作可靠性和寿命等因素。

同时,离合器的设计还需与电动车的特性相匹配,以提高整车的动力输出效率。

3.齿轮设计:齿轮的选择和设计对于变速器的性能有着重要影响。

在电动车的两档变速器中,齿轮的设计需要考虑到档位的变化范围和车辆的使用条件,以保证换挡的平稳和可靠性。

设计考虑因素在进行电动车两档变速器换挡机构的设计时,需考虑以下因素:•动力输出需求:根据电动车的使用需求和性能要求来确定换挡机构的设计方案。

•空间和重量限制:电动车换挡机构需要在有限的空间内完成设计,并尽可能减轻整车的重量。

•换挡平稳性:换挡机构的设计要保证在不同路况和负载下,换挡过程能够平稳、快速地完成,避免对车辆和驾驶员造成不良影响。

•可靠性和寿命:换挡机构的设计需考虑到零件的可靠性和寿命,以确保整个系统的稳定性和长期使用性能。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计
我们需要了解行星齿轮自动变速器的基本原理。

行星齿轮系统由太阳齿轮、行星齿轮和载星齿轮组成。

太阳齿轮是由电机驱动的输入轴,行星齿轮与太阳齿轮相连接,并绕着太阳齿轮旋转。

载星齿轮与行星齿轮相连,并且作为输出轴与车轮相连。

通过控制行星齿轮的转动,可以实现不同档位的变速。

在纯电动汽车的两挡行星齿轮自动变速器中,首先需要确定太阳齿轮的大小和齿数。

根据电动车的功率和最大扭矩要求,可以确定太阳齿轮的大小。

然后,根据太阳齿轮和行星齿轮的大小关系,确定行星齿轮和载星齿轮的大小。

接下来,需要选择合适的齿轮比。

齿轮比是指太阳齿轮和行星齿轮之间的齿数比例。

通常情况下,一挡和二挡应具有不同的齿轮比,以提供不同的变速比。

可以通过计算得出合适的齿轮比,使得太阳齿轮和载星齿轮的转速满足所需的变速比。

还需要考虑变速器的控制系统。

变速器的控制系统可以根据驾驶员的需求和车辆的工况来自动调整变速比。

通过感知车辆的加速度、转速和扭矩等参数,控制系统可以实现自动换挡和平稳的变速过程。

还需要考虑变速器的材料选择和制造工艺。

由于纯电动汽车的驱动力较大,变速器的零部件需要选用高强度和耐磨损的材料。

制造工艺也需要考虑到变速器的精度和可靠性要求。

纯电动汽车的两挡行星齿轮自动变速器的结构设计涉及到齿轮大小、齿轮比、控制系统和制造工艺等多个方面。

通过合理的设计和选择,可以实现高效、平稳和可靠的变速性能,提升纯电动汽车的驾驶体验。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计1. 变速器的基本原理和结构变速器是汽车传动系统的重要组成部分,它能够通过改变汽车发动机输出轴和车轮之间的传动比来实现汽车的加速、减速和行驶。

在纯电动汽车中,由于电机的特性和传动系统的设计,常用的变速器结构是行星齿轮自动变速器。

行星齿轮自动变速器是一种复杂的机械传动系统,由太阳轮、行星轮、外齿圈、离合器、湿式多片离合器和液压控制装置等部件组成。

它的工作原理是通过改变太阳轮、行星轮和外齿圈之间的组合关系来实现不同的传动比,从而达到变速的目的。

行星齿轮自动变速器的工作原理主要包括以下几个部分:(2)外齿圈的定位和控制:外齿圈是由外齿和外齿轴组成的部件,它可以通过液压控制装置来实现定位和控制。

在不同的工况下,外齿圈可以和太阳轮或者行星轮组合,从而改变传动比。

(3)湿式多片离合器的控制:湿式多片离合器是由摩擦片、摩擦板和液压控制装置组成的部件,它可以通过控制液压腔压力来实现离合和结合。

在变速器工作过程中,湿式多片离合器可以实现不同部件之间的相对运动和传动比的变化。

3. 变速器的结构设计要求根据纯电动汽车的特点和发展趋势,变速器的结构设计需要满足以下几个重要的要求:(1)紧凑型设计:由于纯电动汽车的电池和电机布局的限制,变速器的尺寸和重量需要做到尽可能的小和轻。

变速器的结构设计需要尽可能的紧凑,减少部件数量和占用空间。

(2)高效率和长寿命:为了提高纯电动汽车的能效和运行稳定性,变速器的结构设计需要考虑到传动效率和使用寿命。

通常情况下,采用高强度材料和精密加工工艺可以提高变速器的传动效率和使用寿命。

(3)舒适性和智能化:随着汽车科技的不断进步,用户对汽车的舒适性和智能化要求越来越高。

变速器的结构设计需要考虑到变速过程的平稳性和自动化程度,满足用户的驾驶和乘坐需求。

(1)太阳轮和行星轮的布置:在变速器中可以将太阳轮设置在中心位置,行星轮设置在外围位置。

这样可以减少变速器的尺寸和重量,提高传动效率和使用寿命。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计纯电动汽车(BEV)的发展日渐火热,而自动变速器是汽车的核心部件之一,对车辆的性能和驾驶体验有着至关重要的影响。

本文将着重探讨纯电动汽车两挡行星齿轮自动变速器的结构设计。

一、纯电动汽车自动变速器的必要性在传统的内燃机汽车中,变速器的作用是在发动机转速与车轮转速之间建立合适的传动比,以适应不同车速和扭矩需求。

而在纯电动汽车中,电动机通常是直接连接到车轮,因此变速器并不是必需的。

为了改善汽车的性能和节能性,一些纯电动汽车仍然配备了自动变速器。

自动变速器可以通过改变电动机的转矩输出和车辆速度之间的关系,提高汽车的加速性能和能效。

二、两挡行星齿轮自动变速器的结构1. 变速器主体结构两挡行星齿轮自动变速器由主体结构、齿轮传动系统、离合器、液压控制系统和电子控制系统等组成。

变速器主体结构通常由铝合金压铸件制成,既保证了强度和刚性,又减轻了重量。

主体结构内部设计了丝杠、轴承、轴承座等组件,支撑着齿轮传动系统和液压控制系统的安装。

2. 齿轮传动系统两挡行星齿轮自动变速器采用行星齿轮传动系统。

其中包括太阳轮、行星轮、行星架和外接齿轮,通过不同的组合方式实现不同的变速比。

这种齿轮传动系统结构紧凑,传动效率高,适合于电动汽车的应用。

3. 离合器两挡行星齿轮自动变速器还配置了电控多片湿式离合器,用于实现变速器的换挡操作。

离合器通过电子控制系统的信号来进行开合,使得不同行星齿轮组与电动机的连接和断开变得更加精准和可靠。

4. 液压控制系统变速器液压控制系统负责控制变速器内部各个液压执行元件的动作,如离合器的开合、齿轮组的换挡等。

液压控制系统通过电控单元接收电子控制系统的信号,依据车速、油门开度、电池状态等参数来调整变速器的工作状态,从而实现最佳的变速效果。

电子控制系统是自动变速器的智能控制中心,通过传感器采集车辆各项参数,并根据预设的控制逻辑来指挥液压控制系统的动作。

电子控制系统还与车辆整车控制系统进行信息交互,实现变速器与车辆其他系统的协调工作。

电动车两档变速器设计开发

电动车两档变速器设计开发

电动车两档变速器设计开发夏致斌【摘要】A type of transmission is designed for electromobile, and it is taken parameter matching design to the drive motor. According to the demand of power and economy of mobile, it is optimized the design for the gear ratio of drive system, and established the shift control artifice on principle of efficient operation of the electrical motor. Comparing testing with electromobile which has fixed ratio reducer, the energy consumption of the electromobile with two speed transmission is reduced 6% and limited driving distance is extended 7%.%设计了一款电动车用变速器,对驱动电机进行参数匹配设计。

依据整车动力性和经济性的要求,对传动系统的速比进行了优化设计,制定了以电机高效运行为原则的换挡控制策略,并与采用固定速比减速器的电动汽车进行了对比验证试验,整车的能耗降低了6%,续驶里程延长了7%。

【期刊名称】《汽车实用技术》【年(卷),期】2014(000)011【总页数】4页(P40-43)【关键词】电动汽车;驱动电机;变速器;传动速比【作者】夏致斌【作者单位】湖南汽车工程职业学院,湖南株洲 412001【正文语种】中文【中图分类】U462.2CLC NO.:U462.2Document Code:AArticle ID:1671-7988(2014)11-40-04电动汽车以可再生清洁的电能为动力,克服了传统内燃机汽车的环境污染和资源短缺问题;电动汽车牵引电机相对传统内燃机具有较宽的工作范围,并且电机低速时恒转矩和高速时恒功率的特性更适合车辆运行需求[1]。

纯电动汽车两挡自动变速器研究开发

纯电动汽车两挡自动变速器研究开发

纯电动汽车两挡自动变速器研究开发纯电动汽车是未来汽车领域的发展趋势,越来越多的汽车制造商也开始投入到该领域的研究和开发中。

而纯电动汽车使用的电动机与传统的燃油发动机有很大的不同,需要更加先进的自动变速器以满足其特殊的需求。

与传统的液力自动变速器相比,两挡自动变速器成为了纯电动汽车的上佳选择。

两挡自动变速器是指具备两个驱动档位(前进和倒车)的自动变速器。

相比于传统的液力自动变速器,两挡自动变速器构造更为简单,润滑和维护成本更低,可以更好地满足纯电动汽车的轻量化和低成本特点。

同时,两挡自动变速器换挡更加平稳,驾驶者可以感受到更加顺滑的行驶体验。

然而,两挡自动变速器也存在着不足之处。

首先,其只有两个驱动档位,无法满足传统自动变速器多档速的需求。

其次,部分纯电动汽车采用了单速传动系统,无需采用变速器,因此两挡自动变速器在该类车型上无法应用。

为了满足纯电动汽车的需求,两挡自动变速器的开发需要解决以下几个关键技术问题:1.转矩转速特性的匹配问题。

纯电动汽车的电动机转矩特性与传统燃油汽车存在很大不同,因此需要对两挡自动变速器进行特殊的转矩转速匹配设计。

2.动力输出的控制问题。

两挡自动变速器需要具备可控的动力输出能力,能够适应电动汽车的高效节能特性。

3.自动控制系统的设计问题。

两挡自动变速器需要通过自动控制系统进行换挡操作,因此需要设计完善的控制算法以确保换挡的平稳性和准确性。

总体来说,两挡自动变速器在纯电动汽车上的应用具有广阔的前景和市场潜力。

伴随着电动汽车市场的快速发展,两挡自动变速器的研究和开发也将不断推进,为纯电动汽车的发展提供创新的动力。

随着环保和能源储备等问题的日益成为全球关注的热点,电动汽车已经成为未来可持续交通发展的主流。

而在电动汽车的原理中,变速器也起到了至关重要的作用。

两挡自动变速器符合了电动汽车的特殊需求,具有良好的市场前景。

首先,两挡自动变速器的设计的确更加简单,这样可以更好地满足轻量化和低成本的目标。

电动汽车两档变速器匹配设计

电动汽车两档变速器匹配设计

电动汽车两档变速器匹配设计学生:学号:指导教师:专业:二O一四年六月Graduation Design(Thesis) of Chongqing UniversityTwo-speed Transmission Matching DesignOf Electric VehicleUndergraduate:Supervisor:Major: Mechanical Design and Manufactureand AutomationJune 2014本科学生毕业设计(论文)中文摘要摘要电动汽车是一个复杂的系统,其研制与开发是一个涉及多个学科的高科技项目。

鉴于电动汽车的主要性能指标是由最高车速、加速能力、爬坡能力和续驶里程等来表征,这些指标的高低直接与其动力传动系统优劣密切相关,因此,要提高整车的性能,就必须解决动力传动系统的问题。

目前电动汽车由于电池技术未取得实质性突破,导致整车的能量利用率、续驶里程性能参数不够理想。

在整车性能参数不变的情况下,通过两档变速器的匹配设计能够降低对于电机的要求,有效的减少成本,同时还能使得电机工作效率增加,提高能量利用率,增加续驶里程。

其主要工作内容如下:①分析了电动汽车动力传动系统的基本构成,根据汽车的基本性能要求,对驱动电机、传动系主要性能参数进行匹配研究。

并从车辆性能影响因素考虑,利用MATLAB/Simulink软件对模型进行仿真,绘制相应的规律曲线,并对模型进行优化。

②初步求得性能匹配参数后,针对变速器模型,对电动汽车的爬坡能力、最高车速等基本性能进行校核。

③校核合格后,最终得出适合给定电动汽车车型的变速器性能匹配参数,即根据动力性要求完成配齿、齿轮设计、轴设计、同步器选择、轴承设计、换档机构设计等工作;④最后根据变速器匹配参数,通过CATIA软件绘制出相应的变速器三维模型,并完成变速器某一齿轮和轴的设计图纸工作。

关键词:电动汽车,传动系统,两档变速器,匹配设计ABSTRACTThe electric vehicle is a complex system, which is a research and development of high-tech projects involving multiple disciplines. The key performance indicators of electric vehicle are the maximum speed, acceleration, gradability and the driving range etc., which are directly related to the level of the drivetrain, therefore we must solve the problem of the drivetrain for improving vehicle performance. Because the current electric vehicle battery technology is not made substantial breakthroughs, it causes that the vehicle in energy efficiency and the driving range performance parameters are not ideal. In the case of unchanged vehicle performance parameters, by using two-speed matching design of the transmission reduces requirements of the motor, which effectively reduces costs while still making the motor increase work efficiency and improve energy efficiency and increase the driving range. The main contents are as follows:①Analysis of the basic structure of the electric vehicle powertrain, matching the main study on the drive motor, drive train performance parameters according to the basic performance requirements of the vehicle. Considerations of affecting vehicle performance, using MATLAB/Simulink simulation software to model, draw the corresponding rule curve and the model optimization.②After the initial performance matching parameters obtained, the basic performance of electric vehicles such as gradability, maximum speed will be checked for transmission model.③After checking passing, eventually gets the appropriate matching performance of the transmission for a given electric vehicle models, next accomplishes selection of teeth number, gear design, shaft design, simultaneous selection, bearing design and the shift mechanism design based on power requirements.④Finally, draws the corresponding three-dimensional model of the transmission by CATIA software according to the matching transmission parameter and accomplishes a gear and shaft design drawings of the transmission.Key words:e lectric vehicle, powertrain, two-speed transmission, matching design目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1研究背景 (1)1.2电动汽车自动变速器 (2)1.2.1自动变速器概述及选型 (2)1.2.2自动变速器国内外研究现状 (4)1.3论文的主要内容 (5)1.3.1课题研究的目的及意义 (5)1.3.2课题研究的内容 (5)2 电控机械式自动变速器设计 (7)2.1变速器设计基本方案 (7)2.1.1给定的整车参数 (7)2.1.2给定的理想电机特性 (7)2.1.3变速器传动机构布置方案 (8)2.1.4变速器主要参数的选择 (9)2.2齿轮设计计算 (13)2.2.1各档齿轮齿数分配的分配 (13)2.2.2齿轮强度计算与校核 (15)2.3整车动力性能及动力传动系统参数匹配 (23)2.3.1电动汽车动力性能指标分析 (23)2.3.2电动汽车的驱动特性场分析 (23)2.3.3加速能力与动力传动系统参数的匹配 (25)2.3.4爬坡能力与动力传动系统参数的匹配 (27)2.3.5最高车速与动力传动系统参数的匹配 (28)2.3.6 Matlab/simulink 建模仿真 (29)2.4轴的设计计算 (31)2.4.1初选轴的直径 (31)2.4.2轴的刚度验算 (32)2.5同步器及操纵机构设计 (38)2.5.1同步器的设计 (38)2.5.2操纵机构设计 (40)2.6轴承的选择及寿命校核 (43)2.6.1输入轴轴承校核 (43)2.6.2输出轴轴承校核 (44)2.6.3中间轴轴承校核 (45)2.7 键选择及强度计算 (45)3 变速器部分三维模型及工程图 (47)3.1 齿轮模型 (47)3.1.1常啮合齿轮 (47)3.1.2一档齿轮 (47)3.1.3二档齿轮 (47)3.1.4内部齿轮啮合 (47)3.2 输出轴模型 (48)3.3 变速器整体模型 (48)3.4 变速器工程图 (48)参考文献 (49)1 绪论1.1研究背景汽车的发展面临两大考验,一是汽车对环境的污染,二是日益短缺的资源所带来的严峻考验。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计【摘要】本文主要讨论了纯电动汽车两挡行星齿轮自动变速器结构设计,通过引言部分介绍了研究背景、研究意义和研究目的。

在正文部分分析了纯电动汽车两挡行星齿轮自动变速器的基本原理、齿轮箱设计、行星齿轮系统设计、动力传递系统设计和结构优化设计。

结论部分归纳了纯电动汽车两挡行星齿轮自动变速器结构设计的重要性,探讨了未来发展方向,并对研究内容进行了总结。

该研究对提高纯电动汽车的性能和节能环保具有重要意义,为未来的汽车工程技术发展提供了有益的参考。

【关键词】纯电动汽车,两挡,行星齿轮,自动变速器,结构设计,基本原理,齿轮箱设计,动力传递系统设计,结构优化设计,重要性,未来发展方向,总结。

1. 引言1.1 研究背景现在汽车已经成为人们日常生活中不可或缺的交通工具,而随着全球对环境保护和节能减排的重视,纯电动汽车逐渐成为汽车行业的发展趋势。

而纯电动汽车的自动变速器作为其关键部件之一,对其性能和效率起着至关重要的作用。

对纯电动汽车两挡行星齿轮自动变速器的结构设计进行研究和优化,将有助于提高纯电动汽车的性能和驾驶体验,推动纯电动汽车技术的发展和普及。

本文将深入探讨纯电动汽车两挡行星齿轮自动变速器的结构设计原理及优化方向,为纯电动汽车的发展提供参考和指导。

1.2 研究意义纯电动汽车是未来汽车发展的趋势,具有零排放、低噪音和高效率的特点,因此受到越来越多消费者的青睐。

而自动变速器作为汽车的重要组成部分,对于提升驾驶舒适性和能效性起着至关重要的作用。

纯电动汽车两挡行星齿轮自动变速器结构设计的研究意义在于,可以提高变速器的效率和可靠性,进一步提升纯电动汽车的整体性能。

通过对变速器结构进行优化设计,可以实现更顺畅的动力传递,减少能量损失,延长汽车的使用寿命。

优化设计也可以减少零部件的磨损和故障率,降低维护成本,提高汽车的可靠性和稳定性。

在当前环保和节能的大环境下,纯电动汽车的发展已经成为汽车行业的主流趋势。

电动汽车两档自动变速器的设计与研究

电动汽车两档自动变速器的设计与研究

电动汽车两档自动变速器的设计与研究摘要:本文基于某电动汽车原有固定档变速器,提出了两档自动变速器的结构方案,并根据动力性和经济性指标利用MATLAB软件对其传动比进行了优化设计,最后基于UG软件建立了两档变速器的三维模型。

关键词:两档自动变速器;传动比优化;三维建模引言环境污染和资源短缺近年来成为了以内燃机为动力的汽车目前所面临的两大技术问题,而电动汽车以可再生、清洁的电能作为动力,克服了传统汽车的这些缺点,成为了目前汽车生产商研究的热点。

纯电动汽车以电动机作为动力源,具有良好的调速特性,电动机在低速时恒转矩和高速时恒功率的特性比较适合车辆的运行需求。

鉴于研发成本的考虑,众多在内燃发动机汽车基础上改造的电动汽车,大都沿用了原有变速器的一个或两个档位来传动,不利于变速器的专用化。

山东某汽车公司生产的电动汽车采用固定速比减速器,只有一个档位,使得电动机常工作在低效率区域,既浪费能源,又提高了对牵引电机的要求,还使汽车的续驶里程减少。

因此,对作为传动系统主体的变速器的研究成为改善电动汽车传动性能尤其是经济性能的主要部分。

多档化能够降低对电机的要求,扩大电动机的工作区域,通过对传动系统的控制来保证牵引电机总是能够工作在理想的区域,从而提高整车的动力性、经济性等指标。

随着生活水平的不断提高,人们对驾驶舒适感和容易度也提出了更高的要求,本文基于某电动汽车研究了一种两档无离合式自动变速器,对其传动比进行了以能量消耗最小为目标的优化,并在UG环境下对变速器进行了三维建模,为进一步的动力学仿真和试车运行提供了理论依据。

1.电动汽车两档自动变速器的设计方案档位数的增加有利于增大利用电动机最大功率的机会,提高整车的动力性和经济性,但由于电动机具有良好的调速特性,因此电动汽车的档位数不宜过多,否则会增加整车的体积和重量,降低传动效率,故本文设计两档变速,低档对应整车的起步和爬坡,高档对应整车的最大车速,这样低速档的传动比可以选择的较大,整车的牵引力也较大,动力性较强。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计【摘要】本文主要探讨纯电动汽车两挡行星齿轮自动变速器的结构设计。

在我们将介绍研究背景、研究目的和研究意义。

在我们将从电动汽车变速器概述入手,深入介绍行星齿轮自动变速器原理,重点讨论纯电动汽车两挡行星齿轮自动变速器设计要点和结构设计优化,最后进行性能测试与验证。

在我们将评估设计方案的可行性,展望未来研究方向,并对整个研究进行总结。

通过本文的研究,我们旨在提高纯电动汽车的传动效率和性能,推动电动汽车技术的发展和应用。

【关键词】纯电动汽车、两挡行星齿轮自动变速器、结构设计、设计优化、性能测试、可行性、未来展望、结论总结1. 引言1.1 研究背景随着环境污染问题日益严重和对能源消耗的担忧加剧,传统内燃机汽车逐渐不再适应当今社会的需求。

新能源汽车成为了解决这些问题的重要方向之一。

在众多新能源汽车中,纯电动汽车由于其零排放、低噪音等优点逐渐受到消费者的青睐。

纯电动汽车的发展离不开先进的变速器技术。

传统汽车一般采用机械液力变速器或自动变速器,在纯电动汽车中,对变速器的性能、体积、重量等方面提出了更高的要求。

研究并开发适用于纯电动汽车的新型变速器至关重要。

本文旨在探讨纯电动汽车两挡行星齿轮自动变速器的结构设计,通过对其原理和要点进行深入研究,为纯电动汽车变速器技术的发展提供新的思路和方法。

本研究有望为纯电动汽车的性能提升和市场应用打下坚实的基础。

部分为本文研究提供了必要的背景和动机,也为后续内容的展开奠定了基础。

1.2 研究目的本文旨在通过对纯电动汽车两挡行星齿轮自动变速器结构设计的研究,探讨其在电动汽车领域中的应用以及优化方向。

具体研究目的包括以下几点:通过深入分析和研究电动汽车变速器的概念和原理,探讨行星齿轮自动变速器在纯电动汽车中的作用和意义,进一步完善电动汽车的整体性能。

通过研究设计了解纯电动汽车两挡行星齿轮自动变速器的设计要点和结构特点,分析其与传统汽车变速器的不同之处,为纯电动汽车变速器的优化提供参考。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计随着环保意识的不断提高和国家对汽车尾气排放的严格要求,纯电动汽车成为了未来汽车发展的重要方向。

而在纯电动汽车的发展中,自动变速器的发展也同样重要。

为了满足纯电动汽车市场的需求,本文对一款纯电动汽车两挡行星齿轮自动变速器进行了结构设计。

首先,根据纯电动汽车的特点,不同于传统燃油车,其功率输出曲线平稳、升降速度要快,因此在变速器设计中需要更加注重变速平稳性和加速性能。

基于这一需求及其他技术和约束条件,该自动变速器设计了以下几个部分:输入轴、行星齿轮具、输出轴、液压控制系统和行星齿轮操纵器。

输入轴是将功率 transferred 第二个行星齿轮具,其中功率分布在两个行星齿轮具、太阳齿轮和载星齿轮之间。

两个行星齿轮具分别挂在输入轴和输出轴的两端,并通过启动停动器和一系列耐磨轴承互相配合以使合适的行星齿轮集体工作。

输出轴和行星齿轮具通过承载齿轮轴的能力来连接。

由于行星齿轮具都是自转和同轴转动的,因此若在进行最小负载变速时根据输出轴是否拖动和其速度进行自动选择行星齿轮记录功能,可以使汽车在变速时平稳过渡。

液压控制系统可以控制行星齿轮的运转,包括速度和转矩。

当转速增加或减小时,控制系统可以根据自动化程序调整行星齿轮的匹配,以使汽车在变速时平稳过渡。

同时,液压系统也可以控制前向和反向运动。

行星齿轮操纵器是人为操作的一个装置,通俗地说,就是变速杆。

当驾驶员需要变速时,需手动操作行星齿轮操纵器,使它通过选择特定的齿轮比使车辆加速或减速,从而实现变速驾驶。

总的来说,本文设计的纯电动汽车两挡行星齿轮自动变速器可在保持变速平稳性和加速性能的同时,满足纯电动汽车市场的需求。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计纯电动汽车的发展已经日渐成熟,越来越多的汽车制造商开始着手开发和生产纯电动汽车。

对于纯电动汽车来说,自动变速器的设计相当关键,能够对汽车的性能和效率产生深远的影响。

本文将对纯电动汽车的两挡行星齿轮自动变速器结构设计进行详细探讨。

我们需要了解自动变速器的基本原理。

自动变速器是一种能够根据汽车速度和驾驶需求自动调整传动比来实现变速的装置。

在传统燃油汽车中,自动变速器的设计非常复杂,通常采用液压系统和离合器来实现不同档位的变速。

但是在纯电动汽车中,传统的自动变速器并不适用,因为电动汽车的动力输出是线性的,不需要像燃油汽车那样根据转速和负载来进行变速。

在纯电动汽车中,传统的自动变速器被行星齿轮自动变速器所替代。

行星齿轮自动变速器利用行星齿轮组来实现不同档位的变速,通过调节不同齿轮组合的接合方式,从而实现不同的传动比。

行星齿轮自动变速器具有结构简单、体积小、效率高等优点,非常适合于纯电动汽车。

接下来我们将重点介绍纯电动汽车的两挡行星齿轮自动变速器的结构设计。

纯电动汽车一般只需要两挡变速,一挡用于起步和低速行驶,二挡用于高速行驶。

因此两挡行星齿轮自动变速器的设计相对简单,但也需要考虑搅速性能、结构紧凑、传动效率等因素。

首先是两挡行星齿轮自动变速器的基本结构。

两挡行星齿轮自动变速器由行星齿轮组、太阳齿轮、行星架和外壳等部件组成。

其中行星齿轮组包括一个太阳轮、几个行星轮和一个环轮,通过这些组件的灵活组合,可以实现两种不同的传动比。

在纯电动汽车中,一般采用电动马达来驱动行星齿轮组的太阳轮,通过控制电动马达的转速和方向,实现两挡变速。

其次是两挡行星齿轮自动变速器的传动原理。

在起步和低速行驶时,电动汽车需要较大的扭矩输出,因此需要较低的传动比。

这时,控制电动马达带动行星齿轮组的太阳轮,使得行星轮和环轮形成一种特定的组合,从而达到较低的传动比。

而在高速行驶时,需要较高的传动比来提高汽车的行驶速度。

电动车两档变速器换挡机构设计 (1)

电动车两档变速器换挡机构设计 (1)

HUNAN UNIVERSITY 毕业设计(论文)设计论文题目:电动车两档变速器换挡机构设计学生姓名:学生学号:专业班级:学院名称:指导老师:学院院长:2015 年5 月20 日电动车两档变速器换挡机构设计摘要变速器已经因为其对性能较大的提升逐渐成为一个电动车不可或缺的一部分,目前最常用的是AMT变速器。

本论文为此类型变速器设计一个换档机构(包括电机驱动的换挡执行机构),主要重点有:1,根据对电动汽车变速器的受力分析,对换挡机构进行结构设计,从而保证换挡机构性能,保证换挡过程中不可与其他零件产生干涉,结构紧凑。

准确地实现换挡电机对同步器的控制功能。

2,保证换挡电机符合要求。

需要计算同步器力矩和换挡力的大小,可以通过对换挡同步过程进行分析,通过约束换挡速度和拨叉行程这两个参数在合理范围内,根据不同换挡时刻主从动齿轮的转速差,由此计算出换挡力,以此为依据完成选换挡电机及传动机构的参数设计。

3,要选择合适的电动执行机构的结构形式,保证电动执行机构可以可靠平稳的换挡,并且通过结构设计对换挡过程进行优化,达到减小换挡时的冲击,保证寿命,减小换挡电机功率,减小成本的优点。

关键词:电动车两档变速器,换挡机构,结构设计,换挡过程优化,三维建模Electric car two speed transmission shift mechanism designAbstractbecause of its great performance,Transmission is becoming an integral part of an electric car, the most commonly used is the AMT transmission. this thesis is about designing a shift mechanism for this type of transmission (including amotor-driven shift actuator), the main focus are:1, based on stress analysis of electric vehicle transmission, the shift mechanism is designed to ensure that the performance of the shift mechanism to ensure that the shift process can not interfere with other parts, compact structure. Achieving the Shifting motor to control the synchronization accurately.2, to ensure the shift motor compliance with the requirements. Need to calculate the synchronization torque and the shifting power. Through an analysis of shifting during synchronization.By constraining the shifting rate and shift fork movement within reasonable limits to calculate the shifting force,depending on these,we can choose the appropriate shifting motor and shifting mechanism.3,To select the appropriate electric shifting actuator form, guarantee electric shifting actuator smooth and reliable, and by the structural design to make the shifting process optimization, to reduce the impact of the shift time to ensure longevity, reduced shift motor power,to reducing costs.Key Words:Electric car two speed transmission,Shifting mechanism,Structural Design,Shifting Process Optimization,3-dimensional modeling目录1绪论 (1)1.1 课题背景及目的 (1)1.2 国内外研究状况 (2)1.3 课题研究方法 (3)2 换挡电机执行机构设计 (4)2.1 选换挡电机执行机构结构形式 (4)2.2 换挡过程优化 (5)3 换挡电机的设计计算…………………………….……………...………………………....3.1 计算方法和主要分析思路 (10)3.2 主要设计参数 (11)3.3 换挡力的计算 (11)3.4 确定电动机型号和确定减速比 (14)3.5 对换挡行程优化的结果经行验证 (14)4 换挡机构的受力分析与设计校核 (15)4.1 蜗杆蜗杆的设计 (15)4.2 蜗轮轴的设计 (18)4.3 凸轮轴的设计 (25)4.4 换挡拨叉的设计 (30)4.5 自锁轴的设计 (36)5结论 (38)6致谢 (42)7参考文献 (43)8附录 (44)一、绪论1.1 课题研究背景及目的随着油价的不断上涨和人们对环境污染问题的日益关注,电动汽车因其安全可靠,清洁环保的特点而成为未来汽车研究和发展的重要方向。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计1. 引言1.1 纯电动汽车的发展现状纯电动汽车是一种以电能作为动力源的汽车,已经成为解决交通能源需求和环境问题的重要选择。

随着人们对环保意识的增强和对能源资源的日益紧缺,纯电动汽车的发展呈现出蓬勃的态势。

目前,全球范围内多个汽车制造商纷纷推出了纯电动汽车产品,其销量也逐年增长。

纯电动汽车具有零排放、低噪音、低运营成本等诸多优点,在城市交通和短途通勤中有着广阔的应用前景。

政府对环保汽车的支持政策也为纯电动汽车的发展提供了重要保障。

从全球范围来看,欧洲、北美、亚洲等地区都在加大对纯电动汽车的政策支持力度。

纯电动汽车在续航里程、充电设施建设、充电效率等方面仍然存在诸多挑战。

自动变速器技术的不断完善和发展将对纯电动汽车的性能提升和市场竞争力起到至关重要的作用。

纯电动汽车的发展面临着技术突破和创新的挑战,需要不断地提升自身技术水平,以满足消费者对汽车性能和便利性的需求。

1.2 自动变速器在电动汽车中的重要性在纯电动汽车中,自动变速器扮演着至关重要的角色。

与传统内燃机车辆不同,电动汽车的功率输出特性与转速曲线截然相反,其最大扭矩从启动即可提供,而非需要通过变速器传递。

自动变速器在纯电动汽车中的重要性仍然不可忽视。

自动变速器可以带来更好的车辆动态性能。

通过合理的变速逻辑设计,可以使电动汽车在不同速度和负载下都能保持最佳的动力输出,提高车辆的加速性能和行驶稳定性。

自动变速器可以提高能源利用率。

通过换挡逻辑的优化和结构的精简,可以使电动汽车在不同工况下都能以最低能耗实现最佳性能,延长电池续航里程。

自动变速器还可以提升车辆的驾驶舒适性和便利性。

驾驶员无需手动操控变速杆,车辆可以根据实时行驶情况自动选择最佳挡位,让驾驶变得更加轻松愉快。

自动变速器在纯电动汽车中的重要性不言而喻。

只有通过科学合理的设计与研究,才能更好地发挥自动变速器在电动汽车中的作用,推动电动汽车技术的不断进步与发展。

新能源电动汽车两档变速器的设计与实现

新能源电动汽车两档变速器的设计与实现

新能源电动汽车两档变速器的设计与实现一、纯电动汽车两挡自动变速器传动比优化及换挡品质研究摘要:汽车传动系统中,变速器作为关键构件,直接影响整车性能。

为了使电动汽车驱动电机的效率得到提升,对固定速比电动汽车进行改动,采用两挡传动比方案,促使驱动电机工作效率提高,进而使整车动力性能及经济性能得到提升。

主要对纯电动汽车两挡自动变速器传动比优化及换挡品质进行研究。

1、整车基本参数基于传统微型车对电动汽车进行研究,保留原车悬挂系统,动力电池采用锰酸锂电池,驱动电机采用永磁同步电机。

综合研究后,整车参数为:满载质量1 350 m/kg,机械传动效率0.9,轮胎滚动半径0.258 r/min,迎风面积1.868人/川2,空气阻力系数0.31.根据国标GB/T 28382—2012标准及市场定位,整车动力性指标如下:30 min最高车速〉80 km/儿最大爬坡速度>20%, 4%坡度的爬坡车速〉60 km/h,12%坡度的爬坡车速〉30 km/儿工况法行驶里程〉100 km。

2、驱动电机参数确定对电机进行选择时,要确保电机最大限度地工作在高效区,同时也要考虑电池组的峰值放电倍率。

2.1驱动电机功率在最高车速时计算以最高车速在水平道路上行驶,对加速阻力忽略不计,设风速为0,那么电机的输出功率即为尸二1 (第g/OOx I Q加;J 1 一名13 600 76 140 )IP1为最高车速时驱动功率;nt为机械传动效率;mg为整车满载质量;f(U)为滚动阻力系数;umax为最大车速;Cd为空气阻力系数;A为迎风面积。

其中:f (u) =1.2 (0.009 8+0.002 5[u/ (100 km/h) ]+ 0.000 4[u/ (100 km/h) ]4).按照实际需求及国际标准,选择100 km/h车速,根据式(2), 计算结果为0.015 24,代入式(1),计算结果为P1=13.2kW。

如果车速符合国家标准规定的不低于85碗勺,那么电机的功率还可以选择更小的。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计随着环保意识的增强和电动汽车市场的快速发展,纯电动汽车已经成为汽车行业的一个热门话题。

纯电动汽车相比传统燃油汽车具有零排放、节能环保等优点,越来越受到消费者的青睐。

而自动变速器作为汽车传动系统的重要组成部分,对于纯电动汽车来说同样至关重要。

在本文中,我们将讨论关于纯电动汽车两挡行星齿轮自动变速器结构设计的相关内容。

让我们来了解一下两挡行星齿轮自动变速器的基本结构。

行星齿轮自动变速器由太阳轮、行星轮、外齿圈和卫星轮等几部分组成。

太阳轮是从动轴与传动齿轮连接,外齿圈则与车轮连接,而行星轮则在太阳轮和外齿圈之间运动。

而卫星轮则通过行星轮和太阳轮的齿轮相互咬合,实现车速的变换。

整体结构简洁明了,却能完成复杂的变速功能。

在纯电动汽车的传动系统中,由于电动汽车的动力输出方式与传统汽车存在着一定的差异,因此需要对传统汽车变速器的结构进行一定的改进和优化。

由于纯电动汽车不需要离合器,因此可以将离合器的部分取消,从而降低了整个传动系统的复杂度。

纯电动汽车的传动系统对变速器的需求也有所不同。

由于电动汽车的电机具有宽电转矩特性,因此可以实现更宽的转速范围,这就要求变速器能够更加灵活地调节输出功率,以满足电动汽车在不同车速下的需求。

在两挡行星齿轮自动变速器的结构设计中,需要考虑到电动汽车的这一特点,使得变速器能够更加灵活地适应电动汽车的工况变化。

在纯电动汽车的传动系统中,为了提高整车的能效,往往需要在变速器中加入一些进阶的技术。

比如采用电动汽车动力电池的热管理技术,通过控制电池的温度,可以提高电池的循环寿命;采用智能控制技术,可以根据车辆的负载和外部环境的变化,实时调整变速器的工作状态,以确保整车的动力输出的平稳性和高效性。

在变速器的制造工艺中,也需要考虑到纯电动汽车的特性。

由于电动汽车的动力总成相较传统汽车更加紧凑,因此变速器的尺寸和重量也相应地需要进行调整和优化。

在变速器的结构设计中,需要尽可能地提高传动系统的集成度,减少传动系统的重量和空间占用,以满足电动汽车动力总成的整车安装要求。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计
随着纯电动汽车的普及,传统的机械式变速器已经不能完全满足纯电动汽车的要求。

因此,自动变速器成为了纯电动汽车中比较重要的部分之一。

本文将介绍一种纯电动汽车两挡行星齿轮自动变速器的结构设计。

1. 变速器的工作原理
本文设计的纯电动汽车两挡行星齿轮自动变速器主要由转子、太阳轮、行星轮、环形齿轮和制动机构等部分组成。

变速器的工作原理是通过制动机构调节不同齿轮的转速比例来实现变速的功能。

当变速器处于1挡状态时,制动机构会使太阳轮固定,环形齿轮和行星轮相互作用,而行星轮则会传递动力到输出轴上。

当变速器处于2挡状态时,制动机构会使环形齿轮固定,而太阳轮和行星轮则相互作用,太阳轮传递动力到输出轴上。

当需要逆转时,制动机构会使其逆转,并达到所需的速度比例。

2. 变速器的设计
为了实现变速器的自动化控制,本文设计了一个基于PLC控制的智能控制系统。

该系统可以自动判断车辆所处的运动状态,并快速响应,从而实现自动的变速控制。

在变速器的设计过程中,需要考虑到变速器的大小、重量和效率等因素。

由于纯电动汽车需要优化能耗,因此变速器的效率尤为重要。

为此,本文采用了行星齿轮传动,行星轮与太阳轮之间的传动效率可以达到96%以上。

同时,通过优化变速器的设计,可以最大限度地减小变速器的尺寸和重量,从而满足汽车空间的要求。

3. 总结。

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计

纯电动汽车两挡行星齿轮自动变速器结构设计随着汽车工业的不断发展,纯电动汽车已经逐渐成为汽车市场上的新宠。

相比传统燃油汽车,纯电动汽车有着更环保、更节能的优势,并且随着电池技术的不断提升,纯电动汽车的续航里程也得到了显著提高。

在纯电动汽车中,自动变速器的设计和性能至关重要,它直接影响车辆的动力传输效率和性能表现。

在纯电动汽车中,由于电机的工作特性,很多车型采用了两挡行星齿轮自动变速器来实现不同速度的匹配和转速的调节,以提高车辆的动力性和能效。

下面我们将深入探讨纯电动汽车两挡行星齿轮自动变速器的结构设计。

需要了解行星齿轮变速器的基本结构。

行星齿轮变速器由太阳轮、行星轮、内齿轮和外齿轮组成。

它通过不同组合方式实现了多档速比的调节,使得车辆可以在不同速度和负载条件下获得合适的动力输出。

行星齿轮变速器具有结构简单、可靠性高、换挡平顺等优点,因此得到了广泛应用。

在纯电动汽车的两挡行星齿轮自动变速器设计中,需要考虑以下几个方面:1. 齿轮材料和制造工艺。

行星齿轮变速器中的齿轮需要承受高速度和大扭矩的工作环境,因此需要选择高强度、高耐磨的材料来制造。

制造工艺的精度和稳定性也对齿轮的性能有着直接影响。

2. 变速器的传动效率。

在纯电动汽车中,能源的利用效率至关重要,因此两挡行星齿轮自动变速器的传动效率需要尽可能高,以减小能量的损耗和提高车辆的续航里程。

3. 换挡的平顺性和响应性。

两挡行星齿轮自动变速器的设计需要确保换挡的平顺性和响应性,保证车辆在不同速度下的动力输出具有良好的连续性和稳定性。

4. 系统的整体布局。

纯电动汽车的两挡行星齿轮自动变速器需要与电机、电控系统等其他部件进行良好的整体布局,以确保整车系统的协同工作和优化性能。

在实际的设计过程中,需要通过CAD、CAE等工具对两挡行星齿轮自动变速器进行结构设计和仿真分析,以验证设计方案的可行性和优化性能。

还需要进行试验验证和样车测试,不断优化和改进设计方案,最终实现两挡行星齿轮自动变速器的优秀性能和可靠性。

电动汽车用两档位变速装置设计研究

电动汽车用两档位变速装置设计研究

内燃机与配件1研究背景电动汽车由于使用电能驱动,克服了传统内燃机汽车的环境污染和资源短缺的问题,电动汽车的驱动电机相对传统内燃机具有较宽的工作范围,并且电机低速时恒转矩和高速时恒功率的特性更适合车辆运行需求,然而固定速比减速器仅有一个挡位,使得电动汽车电机常处在低效率区域,既浪费宝贵的电池电量,又提高了对驱动电机的要求,而且还会使车辆的续驶里程减少,电动汽车驱动电机在实际路况上既要在恒转矩区提供较高的瞬时转矩,又要在恒功率区提供较高的运行速度,才能满足车辆的高速、爬坡、加速等整车性能要求,假如在电动汽车上使用两挡机械自动变速箱(AMT ),就能解决上述矛盾,即在两挡机械变速箱上加装电控自动换挡装置来实现换挡自动化。

2两档位变速器结构设计一种电动汽车用两档位变速装置,包括箱体,所述箱体顶部通过螺钉固定有箱盖,所述箱体内顶端处设有转轴,所述转轴两端分别固定套有轴承,两个轴承分别嵌入箱体两侧内壁并与其接触处固定连接,所述转轴一端固定有连接轴,所述连接轴另一端穿透箱体伸出箱体外侧,所述连接轴与箱体接触处旋转连接,所述转轴上固定套有套筒,所述套筒上倾斜状环形开设有拔叉滑槽,所述拔叉滑槽内滑动设有滑杆,所述滑杆一端伸出拔叉滑槽固定连接有导向筒,所述导向筒内滑动套有拔叉轴,所述拔叉轴两端分别与箱体两侧内壁固定连接,所述导向筒底端处固定有换挡拔叉,所述导向筒正下端设有输出轴,所述输出轴设置在箱体内,所述输出轴中央处固定套有第三轴承,所述第三轴承嵌入箱体内壁并与其接触处固定连接,所述输出轴处在箱体内一端上固定套有第二轴承,所述第二轴承上固定套有圆柱齿轮,所述圆柱齿轮侧壁上固定有输入轴,所述输入轴另一端穿透箱体内壁并伸出箱体外侧,所述输入轴与箱体接触处固定套有第一轴承,所述第一轴承固定嵌入箱体侧壁内,所述输出轴上固定套有花键毂,所述花键毂上套有接合套,所述接合套内圈面上开设有与花键毂外圈面花键相对应的花键,所述接合套内圈面上的花键与花键毂外圈面上的花键啮合,所述接合套外圈面上环形开设有卡接凹槽,所述接合套外圈面上的卡接凹槽内插入换挡拔叉的底部凸起,所述花键毂一侧设有第一圆柱齿轮,所述第一圆柱齿轮套在输出轴上并与其旋转连接,所述第一圆柱齿轮与圆柱齿轮之间设有限位圈,所述限位圈固定套在输出轴上,所述限位圈侧壁与第一圆柱齿轮侧壁贴合,所述第一圆柱齿轮与花键毂之间设有镶套,所述镶套外圈面上开设有与花键毂外圈面的花键相对应的花键,所述镶套滑动套在输出轴上并通过若干个螺钉与第一圆柱齿轮侧壁固定连接,所述花键毂另一侧设有第二圆柱齿轮,所述第二圆柱齿轮套在输出轴上并与其旋转连接,所述第二圆柱齿轮与花键毂之间设有第一镶套,所述第一镶套外圈面上开设有与花键毂外圈面的花键相对应的花键,所述第一镶套滑动套在输出轴上并通过若干个螺钉与第二圆柱齿轮侧壁固定连接,所述输出轴正下端设有第一转轴,所述第一转轴设置在箱体内,所述第一转轴两端分别固定套有第四轴承,两个第四轴承分别嵌入箱体两侧内壁并与其接触处固定连接,所述第一转轴从左到右依次固定套有第三圆柱齿轮、第四圆柱齿轮和第五圆柱齿轮,所述第三圆柱齿轮与圆柱齿轮啮合设置,所述第四圆柱齿轮与第一圆柱齿轮啮合设置,所述第五圆柱齿轮与第二圆柱齿轮啮合设置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

HUNAN UNIVERSITY 毕业设计(论文)设计论文题目:电动车两档变速器换挡机构设计学生姓名:曹文研学生学号:20110402426专业班级:11级车辆四班学院名称:机械与运载工程学院指导老师:周云山学院院长:韩旭2015 年5 月20 日电动车两档变速器换挡机构设计摘要变速器已经因为其对性能较大的提升逐渐成为一个电动车不可或缺的一部分,目前最常用的是AMT变速器。

本论文为此类型变速器设计一个换档机构(包括电机驱动的换挡执行机构),主要重点有:1,根据对电动汽车变速器的受力分析,对换挡机构进行结构设计,从而保证换挡机构性能,保证换挡过程中不可与其他零件产生干涉,结构紧凑。

准确地实现换挡电机对同步器的控制功能。

2,保证换挡电机符合要求。

需要计算同步器力矩和换挡力的大小,可以通过对换挡同步过程进行分析,通过约束换挡速度和拨叉行程这两个参数在合理范围内,根据不同换挡时刻主从动齿轮的转速差,由此计算出换挡力,以此为依据完成选换挡电机及传动机构的参数设计。

3,要选择合适的电动执行机构的结构形式,保证电动执行机构可以可靠平稳的换挡,并且通过结构设计对换挡过程进行优化,达到减小换挡时的冲击,保证寿命,减小换挡电机功率,减小成本的优点。

关键词:电动车两档变速器,换挡机构,结构设计,换挡过程优化,三维建模Electric car two speed transmission shift mechanism designAbstractbecause of its great performance,Transmission is becoming an integral part of an electric car, the most commonly used is the AMT transmission. this thesis is about designing a shift mechanism for this type of transmission (including amotor-driven shift actuator), the main focus are:1, based on stress analysis of electric vehicle transmission, the shift mechanism is designed to ensure that the performance of the shift mechanism to ensure that the shift process can not interfere with other parts, compact structure. Achieving the Shifting motor to control the synchronization accurately.2, to ensure the shift motor compliance with the requirements. Need to calculate the synchronization torque and the shifting power. Through an analysis of shifting during synchronization.By constraining the shifting rate and shift fork movement within reasonable limits to calculate the shifting force,depending on these,we can choose the appropriate shifting motor and shifting mechanism.3,To select the appropriate electric shifting actuator form, guarantee electric shifting actuator smooth and reliable, and by the structural design to make the shifting process optimization, to reduce the impact of the shift time to ensure longevity, reduced shift motor power,to reducing costs.Key Words:Electric car two speed transmission,Shifting mechanism,Structural Design,Shifting Process Optimization,3-dimensional modeling目录1绪论 (1)1.1 课题背景及目的 (1)1.2 国内外研究状况 (2)1.3 课题研究方法 (3)2 换挡电机执行机构设计 (4)2.1 选换挡电机执行机构结构形式 (4)2.2 换挡过程优化 (5)3 换挡电机的设计计算…………………………….……………...………………………....3.1 计算方法和主要分析思路 (10)3.2 主要设计参数 (11)3.3 换挡力的计算 (11)3.4 确定电动机型号和确定减速比 (14)3.5 对换挡行程优化的结果经行验证 (14)4 换挡机构的受力分析与设计校核 (15)4.1 蜗杆蜗杆的设计 (15)4.2 蜗轮轴的设计 (18)4.3 凸轮轴的设计 (25)4.4 换挡拨叉的设计 (30)4.5 自锁轴的设计 (36)5结论 (38)6致谢 (42)7参考文献 (43)8附录 (44)一、绪论1.1 课题研究背景及目的随着油价的不断上涨和人们对环境污染问题的日益关注,电动汽车因其安全可靠,清洁环保的特点而成为未来汽车研究和发展的重要方向。

除了污染小,电动车还有很多优点。

比如电动车噪声低,能有效减小噪声污染,提高驾驶舒适度。

电动车的效率也很高,与内燃机相比可以大大节省资源。

同时电动汽车在成本方面也有优势,与一般的使用燃油的汽车相比,电动汽车具有操纵简便、结构简单,汽车传动部件比较少,而且不需要更换机油、油泵,还有冷却水,消声装置等,在维修保养方面的工作量相对较少。

在一些特殊场合,比如不通风、冬天低温场所,或者高海拔缺氧的地方,电动车与内燃汽车相比还具有适用范围广,不受所处环境影响的特点。

所以电动车并不如以前所想象的那样仅仅是为了保护环境而开发,如果解决了蓄电池的一些问题,它在驾驶舒适度,可靠性,成本方面都有内燃汽车无法比拟的优点。

所以,电动车的发展,必然是以后汽车的重点发展方向。

与内燃机相比,电动机的输出转矩较为固定,不像内燃机转矩和转速有很大的关系,所以电动车不用通过变速器繁琐的换挡,就可以完成起步,加速,高速行驶的过程。

但是没有档位的电动车的电动机在高速运转时扭矩较大,而并不需要这么大的扭矩,所以浪费了电能,降低了效率,电动车在爬坡时,电动机也会因为其扭矩的限制而产生最大爬坡度不足的情况。

而在启动时,电动机固定的扭矩也导致它不能更快的加速。

所以电动汽车再起步,加速,上坡,高速行驶情况下,会浪费很多电量,在地面起伏比较大的地带,或拥挤的城市里面,电动汽车的效率会大大降低。

简单的说,就是没有变速器的电动车太“笨”了,它的扭矩只能在很有限的范围内变化,而且不会朝以此时工况最适宜的扭矩变化,所以在上述对扭矩需求超出或低于电动车扭矩范围的情况下,无变速器的电动车就会显示出他的劣势,而加装一个变速器就可以改变这一状态,就可以在根据不同工况所需的扭矩的不同来挂入合适的档位,从而使电动汽车的性能得到大幅提升,而且可以简化电动机的冷却系统。

本毕业课题的目的是通过综合运用车辆工程的知识,对电动汽车专用的两档变速器的换挡机构进行设计。

根据电动汽车对动力的要求,对换挡机构进行设计,较好地实现换挡机构在箱体内的布置,准确地实现换挡电机对同步器的控制功能。

本课题训练学生的系统思维、独立思维及知识的综合应用能力,掌握换挡机构的设计能力。

1.2 国内外研究现状电动车变速器在国外发达国家技术应用已经相当成熟,变速器基本已经成为国外发达国家电动车的标配,但国内电动汽车制造商的电动汽车,变速器的使用率还很低,主要原因是1、人们刚刚认识电动车时错误的认为电动车不需要变速器。

2、最初国内制造的主要是低功率电动车,相比于高功率电动车,低功率电动车使用变速器的提升较小,也不需要两档以上的变速器。

3、国内汽车自动变速器生产水平较低。

因此,在《纯电动乘用车技术条件》里没有规定必须使用自动变速器。

但是,随着国内自动变速器产业的发展和大家对变速器认识的逐渐改变,自动变速器汽车已经成为了电动汽车的主流。

因此,电动车多挡自动变速器有着广阔的市场前景,是非常值得研究的项目。

目前电动车所使用的变速器主流是2AMT,两档是因为,目前国产电动车大多使用较为小型的驱动电机,对汽车动力性能没有过高的要求,只要能保证满足汽车足够的起步扭矩和最大爬坡度的需要就可以了。

所以两个档位就可以满足要求,档位过多反而会增大变速器尺寸,重量,成本。

是得不偿失的。

采用自动变速器而不使用手动变速器是因为,对电动车来说,驾驶员不能像内燃汽车一样通过对发动机声音等的感觉的经验来换挡,因为电动车不会产生这种反应汽车工况的直观信息,而且手动换挡也较为麻烦。

而自动变速器可以根据车速、汽车所受扭矩,驾驶员命令等参数,确定最佳挡位,控制离合器的分离与接合、换挡杆对档位的选择,以及对发动机油门开度的调节等操作过程,以此实现最佳的换挡过程和实现换挡自动化。

与AT,CVT等相比,AMT保持了原有机械变速器的基本结构,具有传动效率高、结构紧凑、省油、成本低、制造工艺要求低、维修方便,工作可靠等优点,十分适合在电动车中使用。

所以目前2AMT是电动车变速器的首选。

而本论文就是为了设计适用于2AMT的电执行自动换挡机构。

1.3 课题研究方法1,选择合适的电动执行机构的结构形式,保证电动执行机构的可以可靠平稳的换挡,并且通过结构设计对换挡过程进行优化,达到减小换挡时的冲击,保证寿命,减小换挡电机功率,减小成本的优点。

2,保证换挡电机符合要求。

需要计算同步器力矩和换挡力的大小,可以通过对换挡同步过程进行分析,通过约束换挡速度和拨叉行程这两个参数在合理范围内,根据不同换挡时刻主从动齿轮的转速差,由此计算出换挡力,以此为依据完成选换挡电机及传动机构的参数设计。

3,根据对电动汽车变速器的受力分析,对换挡机构进行设计,保证换挡机构性能,保证换挡过程中不可与其他零件产生干涉,结构紧凑。

相关文档
最新文档