苏教版七年级数学第一学期期末试卷附答案

合集下载

苏教版七年级上册数学期末试卷测试卷附答案

苏教版七年级上册数学期末试卷测试卷附答案

苏教版七年级上册数学期末试卷测试卷附答案一、选择题1 .下列各组单项式中,是同类项的一组是()2 .如图,点A 、。

、O 在一条直线上,此图中大于0。

且小于180。

的角的个数是()3 .如图,AB 〃CD, NBAP=6(T — a, ( )D. 30c22一,3.3O3OO3OOO3…,一区-053.14,其中是无理数有() 76 .在5x5方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平 移方法是()7 .如图,若将三个含45。

的直角三角板的直角顶点重合放置,则N1的度数为()A. 3x 3y 与 3xy 3B. 2ab2与-3a2bC. a?与 b?D. 2xy 与3 yx A. 3个B. 4个c. 5个 D. 6个 A.1个 2x-l5.方程j —B. 2个3 -x c. 3个 D. 4个丁去分母后正确的结果是() OA. 2(2〜1) = 1 —(3 T) C. 2x - 1 = 8 - (3 -B. 2(2工-1) = 8 — (3— 幻ZAPC=500 +2a, NPCD 二30。

-a.则 a 为 C. 20°A.先向下移动1格,再向左移动1格: C.先向下移动2格,再向左移动1格:B.先向下移动1格,再向左移动2格D.先向下移动2格,再向左移动2格 4.下列四个数: 1525A. 15°B. 20°C. 25° D, 30°8 .若x>y,则下列式子错误的是()x yA. x - 3>y - 3B. - 3x> - 3yC. x+3>y+3D. —>y9 . 一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小 明同学在解此题的时候,设标价为X 元,列出如下方程:0.8x —20 = 0.6/+10.小明同 学列此方程的依据是()A.商品的利润不变 C.商品的成本不变10 .如图所示的几何体的左视图是()13. 一船在静水中的速度为20km/h,水流速度为4km/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm,则下列方程正确的是()X X _X X _C. ---- 1— =5D. -------- 1 ---- = 520 420 + 4 20-414.如图1是AO 〃 8c 的一张纸条,按图1 -图2—图3,把这一纸条先沿所折叠并压 平,再沿8月折登并压平,若图3中NC 庄= 24。

苏教版七年级数学上册 期末试卷测试卷附答案

苏教版七年级数学上册 期末试卷测试卷附答案

苏教版七年级数学上册 期末试卷测试卷附答案一、选择题1.在有理数2,-1,0,-5中,最大的数是( ) A .2 B .C .0D .2.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( )A .1B .2C .1-D .2- 3.己知x=2是关于x 的一元一次方程ax-6+a=0 的解,则a 的值为( )A .2B .2-C .1D .04.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -5.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( )(1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格6.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A .15°B .20°C .25°D .30°7.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .8.小明在某月的日历中圈出了三个数,算出它们的和是14,那么这三个数的位置可能是( )A .B .C .D .9.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种10.下列立体图形中,俯视图是三角形的是( )A .B .C .D .11.-5的相反数是( ) A .-5B .±5C .15D .512.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上13.画如图所示物体的主视图,正确的是( )A .B .C .D .14.在同一平面内,下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.15.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养二、填空题16.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上由左至右第1个数是1,第2个数是13,第3个数是41,…,依此规律,第5个数是______.17.已知关于 x 的一元一次方程 5x - 2a = 6 的解 x=1,则 a 的值是___________. 18.一家商店因换季将某种服装打折出售,如果每件服装按标价的5折出售将亏20元, 而按标价的8折出售将赚40元,为保证不亏本,最多打__________折. 19.比较大小:π1-+ _________3-(填“<”或“=”或“>”). 20.若a -2b =1,则3-2a +4b 的值是__.21.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.22.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.23.单项式-4x 2y 的次数是__.24.一个角的余角比这个角的补角15的大10°,则这个角的大小为_____. 25.计算:3-|-5|=____________.三、解答题26.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOC =50°.求∠BOE 的度数.27.如图,数轴上线段AB =2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度也向右匀速运动.(1)运动t 秒后,点B 表示的数是 ;点C 表示的数是 .(用含有t 的代数式表示)(2)求运动多少秒后,BC =4(单位长度);(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式4BD AP PC -=,若存在,求线段PD 的长;若不存在,请说明理由.28.如图,线段 AB 的中点为 M ,C 点将线段 MB 分成 MC :CB=1:3 的两段,若 AC=10,求AB 的长.29.解方程:(1)1﹣3(x ﹣2)=4; (2)213x +﹣516x -=1. 30.我们经常运用“方程”的思想方法解决问题.已知∠1是∠2的余角,∠2是∠3的补角,若∠1+∠3=130°,求∠2的度数.可以进行如下的解题:(请完成以下解题过程) 解:设∠2的度数为x , 则∠1= °,∠3= °.根据“ ” 可列方程为: . 解方程,得x = . 故:∠2的度数为 °.31.已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O . (1)若∠AOC=36°,求∠BOE 的度数; (2)若∠BOD :∠BOC=1:5,求∠AOE 的度数;(3)在(2)的条件下,请你过点O 画直线MN ⊥AB ,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出∠EOF 的度数.32.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯--33.解方程:(1)523(2)x x -=-- (2)321143x x ---= 四、压轴题34.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.35.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB的长;(2)点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动.设点A、B同时出发,运动时间为t秒,若点A、B能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A和点B都向同一个方向运动时,直接写出经过多少秒后,点A、B两点间的距离为20个单位.36.如图,数轴上点A,B表示的有理数分别为6,3,点P是射线AB上的一个动点(不与点A,B重合),M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.(1)若点P表示的有理数是0,那么MN的长为________;若点P表示的有理数是6,那么MN的长为________;(2)点P在射线AB上运动(不与点A,B重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.37.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm, 4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM-BM=OM,求AB OM的值.38.如图,点A,B,C在数轴上表示的数分别是-3,3和1.动点P,Q两同时出发,动点P从点A出发,以每秒6个单位的速度沿A→B→A往返运动,回到点A停止运动;动点Q从点C出发,以每秒1个单位的速度沿C→B向终点B匀速运动.设点P的运动时间为t (s).(1)当点P到达点B时,求点Q所表示的数是多少;(2)当t=0.5时,求线段PQ的长;(3)当点P从点A向点B运动时,线段PQ的长为________(用含t的式子表示);(4)在整个运动过程中,当P,Q两点到点C的距离相等时,直接写出t的值.39.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?40.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?41.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O 作射线OE ,当OE 恰好为∠AOC 的角平分线时,另作射线OF ,使得OF 平分∠BOD ,则∠EOF 的度数是__________度;(2)如图2,过点O 作射线OE ,当OE 恰好为∠AOD 的角平分线时,求出∠BOD 与∠COE 的数量关系;(3)过点O 作射线OE ,当OC 恰好为∠AOE 的角平分线时,另作射线OF ,使得OF 平分∠COD ,若∠EOC=3∠EOF ,直接写出∠AOE 的度数42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示);(3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可. 【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2. 故选A. 【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.C解析:C【解析】【分析】根据题意将解代入方程解出a即可.【详解】将x=-a代入方程得:-a-3a=4,解得:a=-1.故选C.【点睛】本题考查一元一次方程的解题方法,熟练掌握解题方法是关键.3.A解析:A【解析】【分析】x=代入方程,即可求出a的值.直接把2【详解】解:∵x=2是关于x 的一元一次方程ax-6+a=0 的解,x=代入方程,得:∴把2-+=,260a aa=;解得:2故选:A.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法. 4.A解析:A【解析】【分析】-,根据题意可得a的值.由展开图可知a的相对面为1【详解】-,解:因为相对面上的数都互为相反数,由展开图可知a的相对面为1所以a的值为1.故选:A【点睛】本题考查了正方体的展开图,熟练掌握展开图与立体图之间的关系是解题的关键. 5.C解析:C【解析】 【分析】根据题意,结合图形,由平移的概念求解. 【详解】解:根据平移的概念,图形先向下移动2格,再向左移动1格或先向左移动1格,再向下移动2格.结合选项,只有C 符合. 故选:C . 【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.6.D解析:D 【解析】 【分析】根据∠1=∠BOD+EOC -∠BOE ,利用等腰直角三角形的性质,求得∠BOD 和∠EOC 的度数,从而求解即可. 【详解】 解:如图,根据题意,有90AOD BOE COF ∠=∠=∠=︒, ∴903555BOD ∠=︒-︒=︒,902565COE ∠=︒-︒=︒, ∴155659030BOD COE BOE ∠=∠+∠-∠=︒+︒-︒=︒; 故选:D. 【点睛】本题考查了角度的计算,正确理解∠1=∠BOD+∠COE -∠BOE 这一关系是解决本题的关键.7.B解析:B 【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B 不能围成. 考点:棱柱的侧面展开图.8.B解析:B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+7+1=14x=1 3故本选项错误;B、设最小的数是x.x+x+1+x+7=14,x=2.故本选项正确.C、设最小的数是x.x+x+1+x+8=14,x=53,故本选项错误.D、设最小的数是x.x+x+6+x+7=14,x=13,故本选项错误.故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.9.C解析:C【解析】【分析】利用立方体展开图的性质即可得出作图求解.【详解】如图,再添加1个小正方形拼接后就能使得整个图形能折叠成正方体纸盒故有4种,故选C.【点睛】此题主要考查了几何展开图的应用以及基本作图,解题的关键是熟知正方体的展开图特点. 10.C解析:C【解析】【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【详解】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.D解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.【点睛】本题考查相反的定义,熟练掌握基础知识是解题关键.12.D【解析】【分析】直接利用方向角的定义得出∠2的度数.【详解】如图所示:由题意可得:∠1=20°,∠ABC=90°,则∠2=90°-20°=70°,故超市(记作C)在蕾蕾家的南偏东70°的方向上.故选:D.【点睛】本题考查了方向角的定义,正确根据图形得出∠2的度数是解答本题的关键.13.A解析:A【解析】【分析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A.故选:A.【点睛】本题考查三视图,基础知识扎实是解题关键14.D解析:D【解析】【分析】根据线段的概念,以及所学的基本事实,对选项一一分析,选择正确答案.【详解】解:A、两点之间线段最短,正确;B、过直线外一点有且只有一条直线与这条直线平行,正确;C、过直线外一点有且只有一条直线与这条直线垂直,正确;,则点C是线段AB的中点,错误;D、若AC BC故选:D.【点睛】本题考查线段的概念以及所学的基本事实.解题的关键是熟练运用这些概念.解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D.【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.二、填空题16.145【解析】【分析】观察根据排列的规律得到第一行为数轴上左边的第一个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边第22个数85,…,由此规律可得出第解析:145【解析】【分析】观察根据排列的规律得到第一行为数轴上左边的第一个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边第22个数85,…,由此规律可得出第五行的数.【详解】解:观察根据排列的规律得到:第一行为数轴上左边的第1个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边的第22个数,为2(1+6+14+22)-1=85,第五行为91右边的第30个数,为2(1+6+14+22+30)-1=145.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.17.-【解析】【分析】把x=1代入方程,即可得到一个关于a的方程,即可求解.【详解】把x=1代入方程得5-2a=6,解得:a=-.故答案为:-.【点睛】本题考查了一元一次方程的解的定义解析:-1 2【解析】【分析】把x=1代入方程,即可得到一个关于a的方程,即可求解.【详解】把x=1代入方程得5-2a=6,解得:a=-12.故答案为:-12.【点睛】本题考查了一元一次方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值.18.六【解析】【分析】设每件服装的成本为x元,则标价为2(x-20)元,根据销售价格-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论,再利用成本÷标价即可求出结论.【详解】解:设每解析:六【解析】【分析】设每件服装的成本为x元,则标价为2(x-20)元,根据销售价格-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论,再利用成本÷标价即可求出结论.【详解】解:设每件服装的成本为x 元,则标价为2(x-20)元,根据题意得:0.8×2(x-20)-x=40,解得:x=120,∴2(x-20)=200.即每件服装的标价为200元,成本为120元.120÷200=0.6.即为保证不亏本,最多能打六折.故答案为:六.【点睛】本题考查一元一次方程的应用,解题关键是找准等量关系,正确列出一元一次方程.19.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则. 解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.20.1【解析】【分析】先把代数式3﹣2a+4b 化为3﹣2(a ﹣2b),再把已知条件整体代入计算即可.【详解】根据题意可得:3﹣2a+4b=3﹣2(a ﹣2b)=3﹣2=1.故答案为:1.【点解析:1【解析】【分析】先把代数式3﹣2a+4b化为3﹣2(a﹣2b),再把已知条件整体代入计算即可.【详解】根据题意可得:3﹣2a+4b=3﹣2(a﹣2b)=3﹣2=1.故答案为:1.【点睛】本题考查了代数式求值.注意此题要用整体思想.21.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75, 17340.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升510463⨯=cm,①当甲比乙高16cm时,此时乙中水位高56cm,用时1分;②当乙比甲水位高16cm 时,乙应为76cm,757=665÷分,当丙的高度到5cm时,此时用时为5÷103=32分,因为73<52,所以75分乙比甲高16cm.③当丙高5cm 时,此时乙中水高535624⨯=cm ,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm ,当乙的水位达到5cm 时开始流向甲,此时用时为355+5243⎛⎫-÷ ⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm ,当甲的水位高为546cm 时,乙比甲高16cm ,此时用时155201734146340⎛⎫+-÷= ⎪⎝⎭分; 综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm. 【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点.22.﹣5.【解析】【分析】根据:当输入的值为时,输出的值是,可得:,据此求出的值是多少,进而求出当输入的值为时,输出的值为多少即可.【详解】∵当x =12时,y =8,∴12÷3+b =8,解得解析:﹣5.【解析】【分析】根据:当输入x 的值为12时,输出y 的值是8,可得:1238b ÷+=,据此求出b 的值是多少,进而求出当输入x 的值为12-时,输出y 的值为多少即可. 【详解】∵当x =12时,y =8,∴12÷3+b =8,解得b =4,∴当x =﹣12时, y =﹣12×2﹣4=﹣5. 故答案为:﹣5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简. 23.3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x2y 的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解析:3【解析】【分析】直接利用单项式的次数的确定方法得出即可.【详解】单项式-4x 2y 的次数是2+1=3.故答案为:3.【点睛】本题考查了有关单项式的概念,正确把握单项式次数的确定方法是解题的关键.24.55°.【解析】【分析】设这个角大小为x ,然后表示出补角和余角,根据题意列出方程解方程即可【详解】设这个角大小为x ,则补角为180°-x ,余角为90°-x ,根据题意列出方程°,解得x=解析:55°.【解析】【分析】设这个角大小为x ,然后表示出补角和余角,根据题意列出方程解方程即可【详解】设这个角大小为x ,则补角为180°-x ,余角为90°-x ,根据题意列出方程()190x 180105x ︒-=︒-+°, 解得x=55°,故填55°【点睛】本题主要考查余角和补角,能够设出角度列出方程式本题解题关键25.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.三、解答题26.∠BOE=40°【解析】【分析】先算出∠DOE和∠DOB,相减即可算出∠BOE.【详解】解:如图所示.∵∠BOD =∠AOC =50°, ∵OE ⊥CD , ∴∠DOE =90°∴∠BOE =90°-50°=40° 【点睛】本题考查几何图中角度的计算,关键在于掌握基础知识. 27.(1)-6+6t ;10+2t ;(2)5t =,3t =;(3)PD =185或143【解析】 【分析】(1)根据题意列出代数式即可.(2)根据题意分点B 在点C 左边和右边两种情况,列出方程解出即可.(3)随着点B 的运动大概,分别讨论当点B 和点C 重合、点C 在A 和B 之间及点A 与点C 重合的情况. 【详解】(1)点B 表示的数是-6+6t ; 点C 表示的数是10+2t. (2)66(102)4t t -+-+=661024t t -+--=或661024t t -+--=- ∴5t = 或 3t = (3)设未运动前P 点表示的数是x, 则运动t 秒后,A 点表示的数是86t -+ B 点表示的数是-6+6t C 点表示的数是10+2t D 点表示的数是14+2t P 点表示的数是x+6t 则BD=14+2t-(-6+6t)=20-4t AP=x+6t-(-8+6t)=x+8PC=6(102)x t t +-+ (P 点可能在C 点左侧,也可能在右侧) PD=14+2t-(x+6t)=14-(4t+x) ∵4BD AP PC -=∴20-4t-(x+8)=46(102)x t t +-+∴12-(4t+x )=4(4t+x)-40 或 12-(4t+x )=40-4(4t+x)∴4t+x=525或 4t+x=283∴PD=14+2t-(x+6t)=14-(4t+x)=185或143.【点睛】本题考查了两点间的距离,并综合了数轴、一次元一次方程,关键在于分类讨论,列出对应方程.28.16【解析】试题分析:本题需先设MC=x,根据已知条件C点将线段MB分成MC:CB=1:3的两段,求出MB=4x,利用M为AB的中点,列方程求出x的长,即可求出试题解析:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.∴AB=2AM=8x=16.29.(1)x=1,(2)x=﹣3【解析】试题分析:(1)按照去括号,移项,合并同类项,系数化为1求解;(2)按照去分母,去括号,移项,合并同类项,实数化为1的步骤解答.解:(1)1﹣3(x﹣2)=4,1-3x+6=4,-3x=4-6-1,-3x=-3,x=1.(2)213x+﹣516x-=1,2(2x+1)-(5x-1)=6,4x+2-5x+1=6,4x-5x=6-1-2,-x=3,x=-3点睛:去括号时一是不要漏乘括号内的项,二是括号前是“-”,去掉括号后括号内各项的符号都要改变;两边都乘个分母的最小公倍数去分母时一是不要漏乘没有分母的项,二是去掉分母后把分子加上括号.30.(90﹣x);(180﹣x);∠1+∠3=130°;(90﹣x)+(180﹣x)=130;70;70.【解析】【分析】根据余角和补角的定义解答即可.【详解】设∠2的度数为x,则∠1=(90﹣x)°,∠3=(180﹣x)°.根据“∠1+∠3=130°”可列方程为:(90﹣x)+(180﹣x)=130.解方程,得x=70.故:∠2的度数为70°.【点睛】此题考查了余角和补角的意义,互为余角的两角的和为90︒,互为补角的两角之和为180︒.解此题的关键是能准确的找出角之间的数量关系.31.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.【解析】【分析】(1)依据垂线的定义以及对顶角相等,即可得∠BOE的度数;(2)依据平角的定义以及垂线的定义,即可得到∠AOE的度数;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°.【详解】解:(1)∵EO⊥CD,∴∠DOE=90°,又∵∠BOD=∠AOC=36°,∴∠BOE=90°-36°=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=16∠COD=30°,∴∠AOC=30°,又∵EO⊥CD,∴∠COE=90°,∴∠AOE=90°+30°=120°;(3)分两种情况:若F在射线OM上,则∠EOF=∠BOD=30°;若F'在射线ON上,则∠EOF'=∠DOE+∠BON-∠BOD=150°;综上所述,∠EOF的度数为30°或150°.故答案为(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.【点睛】本题考查了角的计算,对顶角,垂线等知识点的应用,关键是分类讨论思想的运用. 32.(1)-3 ;(2)8 【解析】 【分析】(1)先计算乘法,再计算加法,即可得到答案; (2)先计算乘方和括号内的运算,然后再计算乘除法即可. 【详解】解:(1)1136()33-⨯+⨯- =12-- =3-;(2)32(2)4[5(3)]-÷⨯--=84(4)-÷⨯- =8. 【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算的运算法则. 33.(1)1x =;(2)75x = 【解析】 【分析】(1)根据解一元一次方程的步骤依次去括号、移项、合并同类项、系数化为1,据此计算可得;(2)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1,据此计算可得. 【详解】解:(1)523(2)x x -=-- 去括号得:523+6x x -=- 移项得:5+36+2x x = 合并同类项得:88x = 系数化为1得:1x = (2)321143x x ---= 去分母得:()()1233421x x --=- 去括号得: 129+384x x -=- 移项得: 3-84-12+9x x =- 合并同类项得: -57x =-系数化为1得: 75x = 【点睛】本题主要考查解一元一次方程,解一元一次方程的一般步骤:分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.四、压轴题34.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】 【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可; (1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. 【详解】 解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111 (12233420192020)++++⨯⨯⨯⨯ =111111...22320192020-+-++- =112020-=20192020; (2)∵|2||4|0a b -+-=, ∴a-2=0,b-4=0, ∴a=2,b=4,∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++=111124466820182020++++⨯⨯⨯⨯=1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭=111 222020⎛⎫-⎪⎝⎭=1009 4040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A、B两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a﹣6|+(b+12)2=0,∴a﹣6=0,b+12=0,∴a=6,b=﹣12,∴AB=6﹣(﹣12)=18;(2)设点A、B同时出发,运动时间为t秒,点A、B能够重合时,可分两种情况:①若相向而行,则2t+t=18,解得t=6;②若同时向右而行,则2t﹣t=18,解得t=18.综上所述,经过6或18秒后,点A、B重合;(3)在(2)的条件下,即点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动,设点A、B同时出发,运动时间为t秒,点A、B两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t)-(-12-2t)=20,解得:t=2;②若两点均向右,则(-12+2t)-(6+t)=20,解得:t=38;综上,经过2或38秒时,A、B相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用.36.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;。

苏教版七年级数学上册 期末试卷测试卷(含答案解析)

苏教版七年级数学上册 期末试卷测试卷(含答案解析)

苏教版七年级数学上册 期末试卷测试卷(含答案解析) 一、选择题1.下列各组单项式中,是同类项的一组是( ) A .3x 3y 与3xy 3 B .2ab 2与-3a 2b C .a 2与b 2 D .2xy 与3 yx 2.已知实数a ,b 在数轴上的位置如图,则=a b -( )A .+a bB .a b -+C .-a bD .a b --3.﹣3的相反数是( )A .13- B .13 C .3- D .34.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点5.如果a +b +c =0,且|a |>|b |>|c |,则下列式子可能成立的是( )A .c >0,a <0B .c <0,b >0C .c >0,b <0D .b =06.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .7.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).A .B .C .D .8.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a 9.-5的相反数是( )A .-5B .±5C .15D .5 10.在 3.14、227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个 B .2 个 C .3 个 D .4 个11.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小12.有轨电车深受淮安市民喜爱,客流量逐年递增.2018年,淮安有轨电车客流量再创新高:日最高客流48300人次,数字48300用科学计数法表示为( )A .44.8310⨯B .54.8310⨯C .348.310⨯D .50.48310⨯13.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( ) A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+= D .x x 5204204+=+- 14.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y -的系数是2-,次数是3 二、填空题16.2019上半年溧水实现GDP 为420.3亿元,增幅排名全市11个区第一,请用科学计数法表示2019上半年溧水GDP 为_________元.17.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .18.如图,点C 在线段AB 上,8,6AC CB ==,点,M N 分别是,AC BC 的中点,则线段MN =____.19.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.20.青藏高原面积约为2 500 000方千米,将2 500 000用科学记数法表示应为______.21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.23.如图,AB ,CD 相交于点O ,EO AB ⊥,则1∠与2∠互为_______角.24.比较大小: -0.4________12-. 25.一个角的的余角为30°15′,则这个角的补角的度数为________.三、解答题26.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元?27.先化简,再求值:()()222227a b ab 4a b 2a b 3ab +---,其中a 、b 的值满足2a 1(2b 1)0-++=28.计算:(1)243()(3)3-⨯-+-; (2)62112(3)522-+⨯--÷⨯. 29.解方程:(1)5(2)1x x --=;(2)21101211364x x x -++-=-. 30.如图,点P 是∠AOB 的边OB 上的一点.(1)过点P 画OB 的垂线,交OA 于点C ;(2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).31.计算(1)157()362612+-⨯(2)()421723-+÷-32.如图,在方格纸中,A、B、C为 3 个格点,点C在直线AB外.(1)仅用直尺,过点C画AB的垂线m和平行线n;(2)请直接写出(1)中直线m、n的位置关系.33.2017年元旦期间,某商场打出促销广告,如表所示.优惠条件一次性购物不超过200元一次性购物超过200元,但不超过500元一次性购物超过500元优惠办法没有优惠全部按九折优惠其中500元仍按九折优惠,超过500元部分按八折优惠小欣妈妈两次购物分别用了134元和490元.(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

苏教版七年级上册数学期末测试卷及答案

苏教版七年级上册数学期末测试卷及答案

苏教版七年级上册数学期末测试卷及答案成功的花由汗水浇灌,艰苦的掘流出甘甜的泉,祝:七年级数学期末考试时能超水平发挥。

下面是小编为大家精心整理的苏教版七年级上册数学期末测试卷,仅供参考。

苏教版七年级上册数学期末测试题一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1093.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是35.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.9.下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与己知直线平行;④两点之间的距离是两点间的线段.其中正确的个数是( )A.1个B.2个C.3个D.4个10.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…,则数字“2016”在( )A.射线OA上B.射线OB上C.射线OD上D.射线OF上二、填空题(本大题共有10小题,每小题3分,共30分)11.比较大小:﹣﹣0.4.12.计算: = .13.若∠α=34°36′,则∠α的余角为.14.若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n= .15.若有理数在数轴上的位置如图所示,则化简|a+c|+|a﹣b|﹣|c+b|= .16.若代数式x+y的值是1,则代数式(x+y)2﹣x﹣y+1的值是.17.若方程2(2x﹣1)=3x+1与方程m=x﹣1的解相同,则m的值为.18.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,M 是线段AC的中点,则AM= cm.19.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为元.20.将一个边长为10cm正方形,沿粗黑实线剪下4个边长为cm的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.三、解答题(本大题有8小题,共50分)21.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.22.解方程:(1)4﹣x=3(2﹣x);(2) ﹣ =1.23.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.24.已知代数式6x2+bx﹣y+5﹣2ax2+x+5y﹣1的值与字母x的取值无关(1)求a、b的值;(2)求a2﹣2ab+b2的值.25.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到的距离,线段是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是(用“<”号连接)26.某酒店有三人间、双人间客房若干,各种房型每天的收费标准如下:普通(元/间) 豪华(元/间)三人间 160 400双人间 140 300一个50人的旅游团到该酒店入住,选择了一些三人普通间和双人豪华间入住,且恰好住满.已知该旅游团当日住宿费用共计4020元,问该旅游团入住的三人普通间和双人豪华间各为几间?27.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外) ,理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.28.如图,直线l上有AB两点,AB=12cm,点O是线段AB上的一点,OA=2OB(1)OA= cm OB= cm;(2)若点C是线段AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为2cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以3cm/s的速度也向右运动.当点M追上点Q后立即返回,以3cm/s的速度向点P运动,遇到点P后再立即返回,以3cm/s的速度向点Q运动,如此往返,知道点P,Q停止时,点M也停止运动.在此过程中,点M行驶的总路程是多少?苏教版七年级上册数学期末测试卷参考答案一、选择题(本大题共有10小题.每小题2分,共20分)1.下列运算正确的是( )A.﹣a2b+2a2b=a2bB.2a﹣a=2C.3a2+2a2=5a4D.2a+b=2ab【考点】合并同类项.【专题】计算题.【分析】根据合并同类项的法则,合并时系数相加减,字母与字母的指数不变.【解答】解:A、正确;B、2a﹣a=a;C、3a2+2a2=5a2;D、不能进一步计算.故选:A.【点评】此题考查了同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.还考查了合并同类项的法则,注意准确应用.2.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:194亿=19400000000,用科学记数法表示为:1.94×1010.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知(1﹣m)2+|n+2|=0,则m+n的值为( )A.﹣1B.﹣3C.3D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.4.下列关于单项式的说法中,正确的是( )A.系数是3,次数是2B.系数是,次数是2C.系数是,次数是3D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.5.由一个圆柱体与一个长方体组成的几何体如图,这个几何体的左视图是( )A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面的中间有一个小长方形.故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【考点】垂线.【分析】根据垂线的定义求出∠3,然后利用对顶角相等解答.【解答】解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选:B.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题.7.如图,E点是AD延长线上一点,下列条件中,不能判定直线BC∥AD的是( )A.∠3=∠4B.∠C=∠CDEC.∠1=∠2D.∠C+∠ADC=180°【考点】平行线的判定.【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行得出答案即可.【解答】解:A、∵∠3+∠4,∴BC∥AD,本选项不合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠1=∠2,∴AB∥CD,本选项符合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:C.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.8.关于x的方程4x﹣3m=2的解是x=m,则m的值是( )A.﹣2B.2C.﹣D.【考点】一元一次方程的解.【专题】计算题;应用题.【分析】使方程两边左右相等的未知数叫做方程的解方程的解. 【解答】解:把x=m代入方程得4m﹣3m=2,m=2,故选B.。

苏教版七年级上册数学 期末试卷测试卷(含答案解析)

苏教版七年级上册数学 期末试卷测试卷(含答案解析)

苏教版七年级上册数学 期末试卷测试卷(含答案解析)一、选择题1.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5 B .﹣5 C .7 D .﹣7 2.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .3.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 4.2-的相反数是( ) A .2-B .2C .12D .12-5.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b -- 6.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=7.方程1502x --=的解为( ) A .4- B .6- C .8- D .10- 8.下列关于0的说法正确的是( )A .0是正数B .0是负数C .0是有理数D .0是无理数9.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为( )A .B .4C .或4D .2或410.一5的绝对值是( )A .5B .15C .15- D .-511.画如图所示物体的主视图,正确的是( )A .B .C .D .12.2019年12月15开始投入使用的盐城铁路综合客运枢纽,建筑总面积的为324000平方米,数据324000用科学记数法可表示为( ) A .33.2410⨯B .43.2410⨯C .53.2410⨯D .63.2410⨯13.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( )A .-1B .-2C .1D .215.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y-的系数是2-,次数是3二、填空题16.快放寒假了,小宇来到书店准备购买一些课外读物在假期里阅读.在选完书结账时,收银员告诉小宇,如果花20元办理一张会员卡,用会员卡结账买书,可以享受8折优惠.小宇心算了一下,觉得这样可以节省13元,很合算,于是采纳了收银员的意见.小宇购买这些书的原价是____元.17.已知关于x 的方程4231x m x +=+与方程3265x m x +=+的解相同,则方程的解为_________.18.已知关于x 的方程345m x -=的解是1x =,则m 的值为______. 19.如图,已知ON ⊥l ,OM ⊥l ,所以OM 与ON 重合,其理由是________.20.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.21.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示) 22.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.23.已知∠α=28°,则∠α的余角等于___.24.一件衬衫先按成本提高50%标价,再以8折出售,获利20元,则这件衬衫的成本是__元.25.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.解下列方程:(1)2(2)6x --= . (2)121123x x -+=-. 28.如图,已知三角形ABC ,D 为AB 边上一点.(1) 过点D 画线段BC 的平行线DE ,交AC 于点E ;过点A 画线段BC 的垂线AH ,垂足为点H .(2)用符号语言分别描述直线DE 与线段BC 及直线AH 与线段BC 的位置关系. (3)比较大小:线段BH 线段BA ,理由为 .29.线段AB=20cm,M是线段AB的中点,C是线段AB的延长线上的点,AC=3BC,D是线段BA的延长线上的点,且DB=AC.(1)求线段BC,DC的长;(2)试说明M是线段DC的中点.30.解方程:(1)5(x+8)=6(2x-7)+5(2)2x13-=2x16+-131.先化简,再求值:已知a2+2(a2﹣4b)﹣(a2﹣5b),其中a=﹣3,b=13.32.如图所示是一个几何体的表面展开图.(1)该几何体的名称是.(2)根据图中所给信息,求该几何体的体积(结果保留π)33.化简:(1)-3x+2y+5x-7y;(2)2(x2-2x)-(2x2+3x).四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题 1.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=- 2.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a= D .若a b c c=(c ≠0),则a b = 3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( )A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 4.在55⨯方格纸中将图(1)中的图形N 平移后的位置如图(2)中所示,那么正确的平移方法是( ) (1)(2)A .先向下移动1格,再向左移动1格;B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格:D .先向下移动2格,再向左移动2格5.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°6.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角 7.下列图形,不是柱体的是( )A .B .C .D .8.下列各式进行的变形中,不正确的是( )A .若32a b =,则3222a b +=+B .若32a b =,则3525a b -=-C .若32a b =,则23a b = D .若32a b =,则94a b = 9.若x ,y 满足等式x 2﹣2x =2y ﹣y 2,且xy =12,则式子x 2+2xy +y 2﹣2(x +y )+2019的值为( )A .2018B .2019C .2020D .202110.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( )A .-4B .-2C .2D .4 11.下列合并同类项正确的是( )A .2x +3x =5x 2B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 12.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .13.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 14.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒15.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D . 二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .18.已知22m n -=-,则524m n -+的值是_______.19.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简b c c a b -+--的结果是________.20.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.21.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是_____.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______.23.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.24.比较大小:227-__________3-. 25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.27.已知平面上点,,,A B C D .按下列要求画出图形:(1)画直线AC ,射线BD ,交于点O ;(2)比较两角的大小:AOD ∠___________BOC ∠,理由是___________;(3)画出从点A 到CD 的垂线段AH ,垂足为H .28.解方程:(1)-5x +3=-3x -5;(2)4x -3(1-x )=11.29.解下列方程:(1)3(45)7x x --=;(2)5121136x x +-=-. 30.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P和图形M,点B是图形M上任意一点,我们把线段PB长度的最小值叫做点P与图形M之间的距离.例如,以点M为圆心,1cm为半径画圆如图1,那么点M到该圆的距离等于1cm;若点N是圆上一点,那么点N到该圆的距离等于0cm;连接M N,若点Q为线段M N中点,那么点Q到该圆的距离等于0.5cm,反过来,若点P到已知点M的距离等于1cm,那么满足条件的所有点P就构成了以点M为圆心,1cm为半径的圆.(初步运用)(1)如图 2,若点P到已知直线m的距离等于1cm,请画出满足条件的所有点P.(深入探究)(2)如图3,若点P到已知线段的距离等于1cm,请画出满足条件的所有点P.(3)如图 4,若点P到已知正方形的距离等于1cm,请画出满足条件的所有点P.31.如图,A、B、C是正方形网格中的三个格点.(1)①画射线AC;②画线段BC;③过点B画AC的平行线BD;④在射线AC上取一点E,画线段BE,使其长度表示点B到AC的距离;(2)在(1)所画图中,①BD与BE的位置关系为;②线段BE与BC的大小关系为BE BC(填“>”、“<”或“=”),理由是.32.在平面内,将一副直角三角板按如图所示的方式摆放,其中三角形ABC为含60°角的直角三角板,三角形BDE为含45°角的直角三角板.(1)如图1,若点D在AB上,则∠EBC的度数为;(2)如图2,若∠EBC=170°,则∠α的度数为;(3)如图3,若∠EBC=118°,求∠α的度数;(4)如图3,若0°<∠α<60°,求∠ABE-∠DBC的度数.33.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.若x 3=是方程3x a 0-=的解,则a 的值是( ) A .9 B .6 C .9- D .6-2.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( )A .36.1728910⨯亿元B .261.728910⨯亿元C .56.1728910⨯亿元D .46.1728910⨯亿元 3.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( )A .116元B .145元C .150元D .160元4.有理数a 、b 在数轴上的位置如图所示,则化简|a+b|-|a-b|的结果为( )A .2aB .-2bC .-2aD .2b5.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A .15°B .20°C .25°D .30° 6.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定7.下列说法: ①两点之间,直线最短;②若AC =BC ,则点C 是线段AB 的中点;③同一平面内过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行.其中正确的说法有( )A .1个B .2个C .3个D .4个8.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种9.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a10.某数x 的43%比它的一半还少7,则列出的方程是( )A .143%72x ⎛⎫-= ⎪⎝⎭ B .1743%2x x -= C .143%72x x -= D .143%72x -= 11.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .12.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′13.数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B ,C ,D 分别表示整数a ,b ,c ,d ,且a +b +c +d =6,则点D 表示的数为( )A .﹣2B .0C .3D .514.下列运用等式的性质,变形不正确的是:A .若x y =,则55x y +=+B .若x y =,则ax ay =C .若x y =,则x y a a =D .若a b c c=(c ≠0),则a b = 15.若关于x y 、的单项式33n x y -与22m x y 的和是单项式,则()n m n -的值是 ( )A .-1B .-2C .1D .2二、填空题16.数a ,b ,c 在数轴上的对应的点如图所示,有这样4个结论:①c a b >>;②0b a +>;③||||a b >;④0abc >其中,正确的是________.(填写序号即可)17.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________.18.如图,若开始输入的x 的值为正整数,最后输出的结果为144,则满足条件的x 的值为_______.19.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.20.若623m x y -与41n x y -的和是单项式,则n m = _______.21.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.22.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学计数法表示为___________.23.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.24.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为__________.25.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF 的度数为_______.三、解答题26.化简:(1)()632m m n --+ (2)()()22835232ab a ab ab a ---- 27.我们规定,若关于x 的一元一次方程()0mx n m =≠的解为n m -,则称该方程为差解方程,例如:2554x =的解为525544x ==-,则该方程2554x =就是差解方程. 请根据上边规定解答下列问题(1)若关于x 的一元一次方程31x a =+是差解方程,则a =______. (2)若关于x 的一元一次方程3x a b =+是差解方程且它的解为x a =,求代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值(提示:若1m n m ++=,移项合并同类项可以把含有m 的项抵消掉,得到关于n 的一元一次方程,求得1n =-)28.如图,OC 是一条射线,OD 、OE 分别是AOC ∠和BOC ∠的平分线.(1)如图①,当80AOB ∠=︒时,则DOE ∠的度数为________________;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,∠BOE 、EOD ∠、DOA ∠三角之间有怎样的数量关系?并说明理由;(3)当射线OC 在AOB ∠外如图③所示位置时,(2)中三个角:∠BOE 、EOD ∠、DOA ∠之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC 在AOB ∠外如图④所示位置时,∠BOE 、EOD ∠、DOA ∠之间数量关系是____________.29.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图.30.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++=探索以上等式的规律,解决下列问题:(1) 13549++++=…( 2);(2)完成第n 个等式的填空: 2135()n ++++=…;(3)利用上述结论,计算51+53+55+…+109 .31.如图:点A 、C 、E 、B 、D 在一直线上,AB=CD ,点E 是CB 的中点,那么点E 是否为AD 中点?试说明理由.32.如图,直线AB,CD 交于点O ,OE 平分COB ∠,OF 是EOD ∠的角平分线.(1)说明: 2AOD COE ∠=∠;(2)若50AOC ∠=︒,求EOF ∠的度数;(3)若15BOF =︒∠,求AOC ∠的度数.33.先化简,再求值:()()2222 4333a b ab ab a b ---+.其中 1a =-、 2b =-.四、压轴题34.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ; (2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由.35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭ (3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 36.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.37.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?38.如图1,点O为直线AB上一点,过点O作射线OC,OD,使射线OC平分∠AOD.(1)当∠BOD=50°时,∠COD=°;(2)将一直角三角板的直角顶点放在点O处,当三角板MON的一边OM与射线OC重合时,如图2.①在(1)的条件下,∠AON=°;②若∠BOD=70°,求∠AON的度数;③若∠BOD=α,请直接写出∠AON的度数(用含α的式子表示).39.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm, 4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM-BM=OM,求AB OM的值.40.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE 和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.41.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOC MON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?42.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数;②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?43.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把x=3代入方程3x﹣a=0得到关于a的一元一次方程,解之即可.【详解】把x=3代入方程3x﹣a=0得:9﹣a=0,解得:a=9.故选A.【点睛】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】6172.89亿=6.17289×103亿.故选A.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.B解析:B【解析】【分析】根据售价-进价=利润这一等量关系,列方程求解即可.【详解】 解:设标价为x 元,依题意得:0.8x-100=16,解得x=145.即标价为145元.故答案选B.【点睛】本题考查了一元一次方程解应用题,解决本题的关键是找到题目中蕴含的等量关系. 4.A解析:A【解析】试题分析:根据有理数a 、b 在数轴上的位置,可得,a<0,b>0,所以∣a ∣<∣b ∣,所以可得,a+b>0,a-b<0则=(a+b )+a-b=a+b+a-b=2a,故选A考点:1.数轴;2.绝对值 5.D解析:D【解析】【分析】根据∠1=∠BOD+EOC -∠BOE ,利用等腰直角三角形的性质,求得∠BOD 和∠EOC 的度数,从而求解即可.【详解】解:如图,根据题意,有90AOD BOE COF ∠=∠=∠=︒,∴903555BOD ∠=︒-︒=︒,902565COE ∠=︒-︒=︒,∴155659030BOD COE BOE ∠=∠+∠-∠=︒+︒-︒=︒;故选:D.【点睛】本题考查了角度的计算,正确理解∠1=∠BOD+∠COE -∠BOE 这一关系是解决本题的关键.6.B解析:B【解析】【分析】根据图形可看出,∠2的对顶角∠COE 与∠1互余,那么∠1与∠2就互余.【详解】解:图中,∠2=∠COE (对顶角相等),又∵AB ⊥CD ,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B .【点睛】本题考查了余角和垂线的定义以及对顶角相等的性质.7.A解析:A【解析】【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断.【详解】解:①两点之间,线段最短,故错误;②若AC=BC ,且A ,B ,C 三点共线时,则点C 是线段AB 的中点,故错误;③同一平面内经过一点有且只有一条直线与已知直线垂直,故正确;④经过直线外一点有且只有一条直线与已知直线平行,故错误.正确的共1个故选:A .【点睛】本题考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础只记题目,掌握相关概念即可解题.8.C解析:C【解析】【分析】利用立方体展开图的性质即可得出作图求解.如图,再添加1个小正方形拼接后就能使得整个图形能折叠成正方体纸盒故有4种,故选C.【点睛】此题主要考查了几何展开图的应用以及基本作图,解题的关键是熟知正方体的展开图特点. 9.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C.【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a<-2是解此题的关键.10.B解析:B【解析】由该数的43%比它的一半还少7,可得出关于x的一元一次方程,此题得解.【详解】解:依题意,得:1743% 2x x-=故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.C解析:C【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选:C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.12.B解析:B【解析】【分析】先由∠1=27°40′,求出∠CAE的度数,再根据∠CAE+∠2=90°即可求出∠2的度数.【详解】∵∠1=27°40′,∴∠CAE=60°-27°40′=32°20′,∴∠2=90°-32°20′= 57°40′.故选B.【点睛】本题考查了角的和差及数形结合的数学思想,认真读图,找出其中的数量关系是解答本题的关键.13.D解析:D【解析】【分析】设出其中的一个数,根据各个数在数轴的位置,表示出其它的数,列方程求解即可.【详解】设点D 表示的数为x ,则点C 表示的数为x ﹣3,点B 表示的数为x ﹣4,点A 表示的数为x ﹣7,由题意得,x +(x ﹣3)+(x ﹣4)+(x ﹣7)=6,解得,x =5,故选:D .【点睛】考查数轴表示数的意义,根据点在数轴上的位置得出所表示的数是正确解答的关键. 14.C解析:C【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】A 、若x =y ,则x +5=y +5,此选项正确;B 、若x y =,则ax ay =,此选项正确;C 、若x =y ,当a ≠0时x y a a =不成立,故此选项错误; D 、若a b c c=,则a b =(c ≠0),则 a =b ,此选项正确; 故选:C .【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.15.C解析:C【解析】【分析】根据同类项的定义即可求出m 和n 的值,然后代入即可.【详解】解:∵关于x y 、的单项式33n x y -与22m x y 的和是单项式∴33n x y -与22m x y 是同类项,∴m=3,n=2将m=3,n=2代入()nm n -中,得原式=()2312=-故选C .【点睛】此题考查的是同类项的定义,根据同类项的定义求各字母指数中的参数是解决此题的关键.二、填空题16.③【解析】【分析】由题意看图得到,从而逐个判断即可.【详解】解:由题意可得:,∴a+b<0;abc <0∴①;错误②;错误③;正确④;错误故答案为:③【点睛】本题考查的利用数解析:③【解析】【分析】 由题意看图得到0,a b c a b <<<>,从而逐个判断即可.【详解】 解:由题意可得:0,a b c a b <<<>,∴a+b <0;abc <0∴①c a b >>;错误②0b a +>;错误③||||a b >;正确④0abc >;错误故答案为:③【点睛】本题考查的利用数轴进行数的大小比较,把握数轴上点的特征以及是解决本题的关键.17.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:52.810⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:280000=52.810⨯,故答案为:52.810⨯【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-解析:29或6.【解析】【详解】试题解析:第一个数就是直接输出其结果的:5x-1=144,解得:x=29,第二个数是(5x-1)×5-1=144解得:x=6;第三个数是:5[5(5x-1)-1]-1=144,解得:x=1.4(不合题意舍去),第四个数是5{5[5(5x-1)-1]-1}-1=144,解得:x=1225(不合题意舍去) ∴满足条件所有x 的值是29或6.19.1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A 与原点0的距离为2,那么A 应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A 向右移动3个单位长解析:1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A 与原点0的距离为2,那么A 应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A 向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A 表示的数.【详解】点A 在数轴上距离原点2个单位长度,当点A 在原点左边时,点A 表示的数是-2,将A 向右移动3个单位长度,此时点A 表示的数是-2+3=1;当点A 在原点右边时,点A 表示的数是2,将A 向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.20.8【解析】【分析】根据同类项的特点即可求解.【详解】∵与的和是单项式∴与是同类项,故6-m=4,n-1=2∴m=2,n=3∴8故答案为:8.【点睛】此题主要考查整式的运算,解解析:8【解析】【分析】根据同类项的特点即可求解.【详解】∵623m x y -与41n x y -的和是单项式∴623m x y -与41n x y -是同类项,故6-m=4,n-1=2∴m=2,n=3∴n m =8故答案为:8.【点睛】此题主要考查整式的运算,解题的关键是熟知同类项的特点.21.2【解析】【分析】设小长方形的长为x ,宽为y ,根据大长方形的长及宽,可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设小长方形的长为x ,宽为y ,根据题意得:,解得:,∴解析:2【解析】【分析】设小长方形的长为x ,宽为y ,根据大长方形的长及宽,可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设小长方形的长为x ,宽为y ,根据题意得:21028x y x y ⎧⎨⎩+=+=, 解得:42x y ⎧⎨⎩==, ∴宽为2.故答案为:2.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.25×108【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原解析:25×108【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:225000000=82.2510⨯故答案为:82.2510⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.23.﹣5.【解析】【分析】根据:当输入的值为时,输出的值是,可得:,据此求出的值是多少,进而求出当输入的值为时,输出的值为多少即可.【详解】∵当x =12时,y =8,∴12÷3+b=8,解得解析:﹣5.【解析】【分析】根据:当输入x 的值为12时,输出y 的值是8,可得:1238b ÷+=,据此求出b 的值是多少,进而求出当输入x 的值为12-时,输出y 的值为多少即可. 【详解】∵当x =12时,y =8,∴12÷3+b =8,解得b =4,∴当x =﹣12时,y =﹣12×2﹣4=﹣5. 故答案为:﹣5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简. 24.17×107【解析】解:11700000=1.17×107.故答案为1.17×107.解析:17×107【解析】解:11700000=1.17×107.故答案为1.17×107.25.【解析】【分析】先利用已知结合平角的定义得出∠BOD 的度数,利用垂线的定义结合互余的定义分析得出答案.【详解】∵,,∴∵∴∠EOD=180-∠EOC=90,∵OF ⊥AB ,∴∠BO解析:︒【解析】【分析】先利用已知结合平角的定义得出∠BOD 的度数,利用垂线的定义结合互余的定义分析得出答案.【详解】∵:1:5BOD BOC ∠∠=,180BOD BOC ∠+∠=︒, ∴1180306BOD ∠=⨯︒=︒, ∵90COE ∠=︒∴∠EOD=180︒-∠EOC=90︒,∵OF ⊥AB ,∴∠BOF=90︒,∴∠DOF=∠BOF-∠BOD=90︒-30︒=60︒,∴∠EOF=∠EOD+∠DOF=90︒+60︒=150︒.故答案为:150︒.【点睛】本题考查了余角和补角的定义以及性质,等角的补角相等.等角的余角相等,解题时认真观察图形是关键.三、解答题26.(1)96m n -;(2)23ab a -+【解析】【分析】(1)先去括号再合并同类项即可;(2)去括号再合并同类项即可.【详解】解:(1)原式636m m n =+-96m n =-(2)原式2283564ab a ab ab a =---+23ab a =-+【点睛】本题考查了整式的加减,熟练掌握合并同类项的方法是解题的关键,易错点在于括号前是负号时去括号要变号.27.(1)72a =;(2)2222a ab -+,452 【解析】【分析】(1)由差解方程的定义可知13x a =+-,将x 的值代入方程可求得a 的值;(2)由差解方程的定义可3x a b a =+-=,可得b 的值,再将x a =代入方程可得a 的值,然后去括号化简代数式求值即可.【详解】解:(1)由差解方程的定义可知132x a a =+-=-,代入31x a =+得3(2)1a a -=+, 解得72a =. (2)由差解方程的定义可3x ab a =+-=得3b =将x a =,3b =代入3x a b =+得33a a =+ 解得32a = ()22224222ab a ab a b ⎡⎤---⎣⎦22224(224)a b a ab a b =--+22224224a b a ab a b =-+-2222a ab =-+ 将32a =,3b =代入得 222233452()2322222a ab =-⨯⨯+=-+⨯. 所以代数式()22224222a b a ab a b ⎡⎤---⎣⎦的值452. 【点睛】本题属于一元一次方程的实践创新题,同时涉及了整式的加减混合运算,正确理解差解方程的定义是解题的关键.28.(1)40︒;(2)BOE DOA EOD ∠+∠=∠,详见解析;(3)不成立,BOE EOD DOA ∠+∠=∠,详见解析;(4)BOE DOA EOD ∠+∠=∠;【解析】【分析】(1)(2)根据角平分线定义得出∠DOC =12∠AOC ,∠EOC =12∠BOC ,求出∠DOE =12(∠AOC +∠BOC )=12AOB ,即可得出答案;(3)根据角平分线定义得出∠DOC =12∠AOC ,∠EOC =12∠BOC ,求出∠DOE =12(∠AOC−∠BOC )=12∠AOB ,即可得出答案;(4)根据角平分线定义即可求解.【详解】解:当射线OC 在∠AOB 的内部时,∵OD ,OE 分别为∠AOC ,∠BOC 的角平分线,∴∠DOC =12∠AOC ,∠EOC =12∠BOC , ∴∠DOE =∠DOC +∠EOC =12(∠AOC +∠BOC )=12∠AOB , (1)若∠AOB =80°,则∠DOE 的度数为40°.故答案为:40;(2)∠DOE =∠DOC +∠EOC =12∠AOC +12∠BOC =∠BOE +∠DOA . (3)当射线OC 在∠AOB 的外部时 (1)中的结论不成立.理由是:∵OD 、OE 分别是∠AOC 、∠BOC 的角平分线∴∠COD =12∠AOC , ∠EOC =12∠BOC ,∠DOE =∠COD−∠EOC =12∠AOC−12∠BOC =∠AOD−∠BOE . (4)∵OD ,OE 分别为∠AOC ,∠BOC 的角平分线,∴∠DOC =∠AOD ,∠EOC =∠BOE ,∴∠DOE =∠DOC +∠EOC =∠BOE +∠DOA . 故∠BOE 、∠EOD 、∠DOA 之间数量关系是∠DOE =∠BOE +∠DOA .故答案为:∠DOE =∠BOE +∠DOA .【点睛】本题考查了角的有关计算和角平分线定义,能够求出∠DOE =12∠AOB 是解此题的关键,求解过程类似.29.(1)3a =,1b =,1c =;(2)最多由11个小立方体搭成;最少由9个小立方体搭成;(3)见解析.【解析】【分析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,那么b=1,c=1,a=3;(2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可;(3)左视图有3列,每列小正方形数目分别为3,1,2.【详解】(1)3a =,1b =,1c =;(2)62311++=(个),4239++=(个).这个几何体最多由11个小立方体搭成;最少由9个小立方体搭成.(3)如图所示. 【点睛】本题考查由三视图判断几何体及作三视图,解题关键在于熟练掌握几何体的三视图的相关知识.30.(1)25;(2)2n -1;(3)2400.【解析】【分析】(1)根据题目中的规律,写出答案即可.(2)根据题目中的规律,反推答案即可.(3)利用规律通式,代入计算即可.【详解】(1) 由题意规律可以得,连续奇数的和为中间相的平方,所以13549++++=…22149252+⎛⎫= ⎪⎝⎭. (2)设最后一项为x ,由题意可推出: 12x n +=,x =2n-1. (3)根据上述结论, 51+53+55+…+109=(1+3+5+···+109)-( 1+3+5+···+49)=552-252=2400.【点睛】本题为找规律题型,关键在于通过题意找到规律.31.点E 是AD 的中点,理由见解析.【解析】【分析】从线段和差入手,抓住题目中的中点,完成证明即可.【详解】解:点E 是AD 的中点,理由如下:∵AB=CD ,AC+CB=CB+DB ,∴AC=BD .又∵点E 为BC 的中点,∴CE=EB ,∴AC+CE=EB+DB ,即AE=ED .又∵A ,E ,D 在一条直线上,∴点E 是AD 的中点.【点睛】考查了两点间的距离及中点的定义,利用中点的定义找出AE=ED 是解题的关键.32.(1)见解析;(2)57.5º;(3)40º【解析】【分析】(1)根据角平分线的定义可得∠COB=2∠COE ,然后根据对顶角相等可得∠AOD=∠COB ,从而证出结论;(2)根据对顶角相等和平角的定义即可求出∠BOD 和∠COB ,然后根据角平分线的性质即可求出∠EOB ,从而求出∠EOD ,再根据角平分线的定义即可求出∠EOF ;(3)设∠AOC=x °,根据对顶角相等可得∠BOD=∠AOC=x °,利用角的关系和角平分线的定义分别用x 表示出∠DOF 、∠EOF 、∠EOB 、∠COB ,然后利用∠AOC +∠COB=180°列方程即可求出∠AOC .【详解】解:(1)∵OE 平分COB ∠,∴∠COB=2∠COE∵∠AOD=∠COB∴∠AOD=2∠COE(2)∵50AOC ∠=︒,∴∠BOD=∠AOC=50°,∠COB=180°-∠AOC=130°。

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.下列各组单项式中,是同类项的一组是( ) A .3x 3y 与3xy 3 B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 3.已知3x m =,5x n =,用含有m ,n 的代数式表示14x 结果正确的是 A .3mn B .23m nC .3m nD .32m n4.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =ABB .BD ﹣CD =CBC .AB =2ACD .AD =12AC 5.下列说法错误的是( ) A .2的相反数是2- B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是06.下列合并同类项结果正确的是( ) A .2a 2+3a 2=6a 2B .2a 2+3a 2=5a 2C .2xy -xy =1D .2x 3+3x 3=5x 67.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( ) A .116元 B .145元 C .150元 D .160元 8.多项式343553m n m n -+的项数和次数分别为( ) A .2,7B .3,8C .2,8D .3,79.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-10.已知关于x 的多项式()3222691353-x x x ax x +++--+的取值不含x 2项,那么a 的值是( ) A .-3B .3C .-2D .211.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10012.下列说法错误的是( )A .对顶角相等B .两点之间所有连线中,线段最短C .等角的补角相等D .不相交的两条直线叫做平行线13.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐14.据统计,2020年元旦到高邮市旅游的旅客约为15000人,数据15000用科学计数法可表示为( ) A .50.1510⨯B .51.510⨯C ..41510⨯D .31510⨯15.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( ) A . 1.5(7020)x x =-+ B .70 1.5(20)x x +=+ C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.一个角的的余角为30°15′,则这个角的补角的度数为________. 18.已知A =5x +2,B =11-x ,当x =_____时,A 比B 大3. 19.在数轴上到-3的距离为4个单位长度的点表示的数是___.20.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.21.已知222x y -+的值是 5,则 22x y -的值为________. 22.多项式234ab ab -的次数是______.23.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.24.下列各数:3.141592、1.010010001、..4.21、π、813中,无理数有_______个25.如图,点C 在直线AB 上,(A C 、、B 三点在一条直线上,)若CE CD ⊥,已知150∠=︒,则2∠=________°三、解答题26.化简:(1)-3x +2y +5x -7y ; (2)2(x 2-2x )-(2x 2+3x ).27.如图,∠AOB 是平角,OD 是∠AOC 的角平分线,∠COE =∠BOE . (1)若∠AOC = 50°,则∠DOE = °;(2)若∠AOC = 50°,则图中与∠COD 互补的角为 ;(3)当∠AOC 的大小发生改变时,∠DOE 的大小是否发生改变?为什么?28.(探索新知)如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)图2中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.29.小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天30.列方程解应用题:《弟子规》的初中读本的主页共计96页。

苏教版本数学初一上册的期末试卷习题包括答案.doc

苏教版本数学初一上册的期末试卷习题包括答案.doc

苏教版数学初一上册期末试卷及答案一、选择题: ( 本题共 8 小题,每小题 2 分,共 16 分)1.﹣ 2 的倒数是 ()A .﹣B . C.﹣2 D. 22.身份证号码告诉我们很多信息,某人的身份证号码是130503************,其中 13、05、03 是此人所属的省 ( 市、自治区 ) 、市、县 ( 市、区 ) 的编码, 1967、04、01 是此人出生的年、月、日, 001 是顺序码, 2 为校验码.那么身份证号码是 321084************的人的生日是()A . 8 月 10 日B . 10 月 12 日 C. 1 月 20 日 D. 12 月 8 日3.将 12000000 用科学计数法表示是:xKb 1.C om ()A . 12×106 B. 1.2 ×107 C. 0.12 ×108 D. 120×1054.如果整式xn﹣2﹣5x+2 是关于x 的三次三项式,那么n 等于( )A .3B .4C .5D .65.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A .中B .钓 C.鱼 D.岛6. 下面四个图形中,∠1 与∠2是对顶角的图形为 ()7 .下列语句准确的是 ()A .画直线 AB=10厘米B .延长射线 OAC.画射线 OB=3厘米 D.延长线段 AB到点 C,使得 BC=AB8.泰市新区曾涛路行化,划把某一段公路的一全部栽上桂花,要求路的两端各栽一棵,并且每两棵的隔相等.如果每隔 5 米栽 1 棵,苗缺 21 棵;如果每隔 6 米栽 1 棵,苗正好用完.原有苗棵. ()A.100B.105C.106D.111二、填空: ( 本大共 10 小,每小 2 分,共 20 分)9.式-2xy的次数________.10.已知一个一元一次方程的解是2,个一元一次方程是_________.(只写一个即可)11.若 3xm+5y与 x3y 是同, m= _________.12.若∠ α的余角是 38°52′,∠ α的角.13.若 x=2 是关于 x 的方程 2x+3m 1=0 的解, m的等于_________14.在数上与 -3 的距离等于 4 的点表示的数是 _________15.如所的三表示的几何体是_________ .16 .在 3,- 4,5,- 6 四个数中,任取两个数相乘,所得的是.17.若∠ 1+∠2=90°,∠ 2+∠3=90°,∠ 1=∠3.理由是.18.如,每一幅中均含有若干个正方形,第 1 幅中有形;第 2 幅中有 5 个正方形;⋯按的律下去,第7 _________个正方形.1 个正方幅中有三、解答 ( 本大共 10 小,共 64 分,把解答程写在答卷相的位置上,解答写出必要的算程、推演步或文字明.)19. (1) (本题4分)计算:(-1)3×(-5)÷[(-3)2+2×(-5)].(2)( 本题 4 分) 解方程:20.( 本题 6 分) 先化简,再求值:2x2+( -x2-2xy+2y2) -3(x2 -xy+2y2) ,其中 x=2,y=- 12.21.( 本题 6 分) 我们定义一种新运算: a*b= 2a-b+ab( 等号右边为通常意义的运算 ) :(1)计算: 2*( -3) 的值;(2)解方程: 3*x = *x .22.( 本题 6 分) 如图,是由若干个完全相同的小正方体组成的一个几何体。

苏教版七年级数学上册期末考试测试卷附答案

苏教版七年级数学上册期末考试测试卷附答案

苏教版七年级数学上册期末考试测试卷初一数学试卷(试卷满分130分,考试时间120分钟)一、选择题(请将下列各题唯一正确的选项代号填在答题卷相应的位置上,本大题共10小题,每小题3 分,共30分)1. 有理数一2的绝对值是A. —22. 下列四个算式中,有一个算式与其他三个算式的计算结果不同,则该算式是3•地球上陆地的而积约为149000000km 2,数1490000∞用科学记数法可表示为A. 一 1.49x10$B. 1.49×109C ・ 14.9×Io HD ・ 14.9×1094. 下列代数式运算正确的是B. 2a÷3b=5abC. 7-3ab=4ab5. 下列立体图形中,有五个面的是 A.四棱锥B.五棱锥C.四棱柱D.五棱柱6. 如图是一块带有圆形空洞和方形空洞的小木板,则下列物体 调整适当的大小后既可以堵住圆形空洞,又可以堵住方形空 ( 洞的是_____7. 如图,AB. CD 交于点6 OE 丄AB,则Zl 与Z2—注满足关系是 c × 1 A.对顶角 D. 互余8. 已知一个多项式与3x 2+9x 的和等于3x 2÷4χ-h 则这个多项式是9•点P 是直线/外一点,A 、B 、C 为直线/上的三点,若PA=4c ιm PB=5cm, PC=2cm,则点P 到直 线/的距离A. 2-3B. — I?C. (-D 3D. (-D 2D ・ a 3÷a 2=a 5B.相等C.互补B. 5x+lC. —13X -1 D. 13x+l10.—块正方体木块的六个而上分别标上数字1〜6,如图是从不同方向所看到的数字情况,则5对面的数二、填空题(本大题共8小题,每小题3分,共24分)11.我市某日的最高气温是6C,最低气温是一2C,则该日的温差是▲°C:12.如果x=2是方程iχ+a= 一 1的解,那么a的值是▲:2 ---------------------------------13.已知一个角的余角等于40° 36;则这个角的补角的度数是▲:14.若有理数a是负数,化简:Il-屮同= ▲:15.若卜-2∣ + (y + 3)'=0,则严= ▲:16.地图上三个地方用A, B, C三点表示,若点A在点B的正东方向,点C在点A的南偏西15°方向, 那么ZCAB = A度;17.若当X=—2时代数式X+bx — 1的值是2,那么当x=2时该代数式的值是一▲:18.如图,要使输出值y大于100,则输入的正整数n最小是_ ▲:三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(本题满分5分)计算:—2“ + ㊁x∣5-(―3)J20•解方程和不等式:(l)3(χ-2)=9(本题共4小题,每小题4分,满分16分)(2)3(χ-2)>9A.等于2cmB.小于2cmC.不大于2cmD.等于4cm字是A. 3C. 6B. 4D・无法确立=22L (本题满分6分)先化简,后求值:5(3χ2y-χy2)—3(-χy2+4χ2y),其中 x=l, y= — |.乙22. (本题满分6分)按下列要求画图,并解答问题:(1) 如图,在AABC 中,取BC 边的中点D,过点D 画射线AD ; (2) 分别过点B, C 画BE 丄AD 于点E, CF 丄AD 于点F : (3) 通过度量猜想BE 和CF 的数量关系是一 ▲,位置关系是一▲23. (本题满分6分)如图①所示的组合几何体,它的下而是一个长方体,上面是一个圆柱.(1) 图②和图③是它的两个视图,在横线上分别填写两种视图的名称(填“主”、“左”或“俯”): (2) 根据两个视图中的尺寸,计算这个组合几何体的体积.(结果保留兀)5x-3 65x-36≤2 42r-124.------------------------------------- (本题满分6分)设yι = y2=x+l∙⑴若y】比y2大1,求X的值; (2)若y】比y?大,求X的取值范围.25•(本题满分6分)春节临近,许多商场利用打折的优惠措施吸引顾客.若某商品原标价为X元/件,现商场以八折优惠售出.(1)该商品现在售价为▲元/件:(用含X的代数式表示)(2)若打八折后商场从该商品中仍可获利20元/件,但是打6折则要亏损20元/件,求该商品每件的进价是多少元?26.(本题满分6分)探究与发现:你能很快算出10052吗?这是一类个位数为5的自然数计算平方的问题,我们利用'‘从特殊到一般”的方法,计算以下简单情况,然后从中探索规律:(1)计算:152=A : 252=A : 352=A :(2)若个位数为环砧然数id⅞~10n÷5 (Wφ刀为自然数),从第⑴题的讣算结果归纳猜想,发现(IOn+5)2=A_:(3)根据上而的规律,计算10052=A・27.(本题满分7分)如图,点C在射线AB上,点D为线段BC的中点,已知AB=4,以C为端点的所有线段之和为9,求线段BD的长.28.(本题满分12分)如图,已知AB丄CD于点D,点E为平而内一点,且ZBOE=60°・(1)ZCOE=A /$;(2)画 OF 平分ZCOE, OG 平分ZBOE,则ZFQG=A ⅞:⑶在(2)的条件下,若将题目中ZBOE=600改成ZBOE=α° (α<90),英他条件不变,你能求出ZFOG 的度数吗?若能,请你写出求解过程;若不能,请说明理由.C29.(本题满分12分)知识的迁移与应用.问题一:如图⑪甲、乙两人分别从相距30km的A、B两地同时岀发,若甲的速度为80km∕h,乙的速度为60km∕h,设甲追到乙所花时间为xh,则可列方程为:▲:问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(I小时的间隔),易知ZAOB = 30°・(1)分针OC的速度为每分钟转动▲度:时针OD的速度为每分钟转动▲度:(2)若从1: OO起计时,几分钟后分针与时针第一次重合?⑶在(2)的条件下,几分钟后分针与时针互相垂直(在1: 00-2: 00之间)?图①图②4-2013〜2014学年第一学期期末教学调研测试初一数学答案一、选样愿(毎小題3分,满分30分)1 ->—34 5 6 • 78 9 IO I 答条B D A AAB DACB二、填空JS (每小題3斛满分24力)T i 'IU 8 12∙ -2 ∖3r 13O°36' $ 9 16. 75 17. -4 三、解答点(满分7&分〕19•计算题:<τt<B;W 分Q 分)解;原式=・16冷X |$-9| ............................................. 2f=T 6+丄 X 4 ........... ........ (3)2 =-16+2 »1420, 解方程和不耶式:{每坐題3分.滿分(I)X-2≡3 ..................... 2rΛΛ=S .......... . ..... V --^R⑴ 3(v+lH5r-3)=12 —: ....... -I r√Λλ2χ=6・:……五•……V . .................. TI I Λ.^3 .......... . ................... 3∙ 分}・(2)x-2≥3 ........................ 2「(4) 3("I)-(5L 3)≤∏2 (V):2r<6 ....................... 2r化焙一3 (V)21. 化简求值(木鬆満分$分)解; 乐式=I 5XZ 厂SXy?+3形-12丹 ...................................... 2r=3Λ>-2X √ ................................................... V 当 X = I , y = - £ 时,=-2 ............................ 5'22・(木题滿分6分〉】4・I-加4,'E(1)止确找i i∣J⅛D. Iiyi岀射线AD^得丨分—(2)U-^iiuiihR条匝线各得1分:W G) B^CF得 1 分,BE"CF 卷 1 分.23∙(本题满分6分》騎:(i> 后J n ...........................................................(2)底廉氏方律的体积;2x5曲関…・•;............................... S1•上Z/圍柱的体积:πx 1 >6=6π^ ..................................... .................................. 6,组合休的体枳为:8O÷6π, <若;们⑴学将G看JiKa结果为紺你也.<<、 2d∙(本鬆满分6分}・「・Z *徹(1)~l=χ-l +l ...................................................... Γ・3.∖2X~1=3Λ÷6∙ ............................................... 2'•:尸一 7 ................................................. y3Λ2ΛT∙1>3Λ+3 .................................................. y-i∙Λ<-4 .................................................... 6r25.(本题满分6分)解:(∣)0.8r......................................................... 2!(2)由题意得;逬价为畑∙∙20√.0.6A∙+2O-0,Xr-20 ............. ...... ............................. *Λχ=200.............................................................. 5,J该商品的进价为;O.8Λ-20=HO (元/件) ................................. &26.(本题满分6分)(1)225、625、1 225 .......................................... 3'(2)WOm时 1片25 .................................................. 5r⑶ I UwO25“•……•••'■........................................... 6'27.(本题满分7分)解「竟BDTe(I)如图①_j ______________ * J , 丁点D为BC的中点,A BDCl:.CD^BD≈x. 5C=2r・............ I Z图①-CF十Zr. ............ 2'TCHBWT>9, ∙∖(4÷2.r)+∙2v4χ-9. ..................................... 3l/.X=N 即 EZ>-l∙................................................. 4・⑵如图②一—' _______________________4, ΛJC=1 H乂・Cz)B/ TC.W*K9∙ .∙∙(4∙2v)+2r+x=9.—5r图②・*5・.............................. & •4-7 v<2. Λ⅛ C不可能在线段AB上「・一 (7)••2H.(术总湧分9分j........... ............ ............... 2' 解:(1)30。

苏科版七年级上册数学期末考试试题含答案

苏科版七年级上册数学期末考试试题含答案

苏科版七年级上册数学期末考试试卷一、单选题1.整数2022的绝对值是()A .﹣2022B .2022C .12022-D .120222.下列几何体中,是圆锥的为()A .B .C .D .3.下列计算正确的是()A .3a+2b =5abB .5y ﹣3y =2xC .7a+a =8D .3x 2y ﹣2yx 2=x 2y4.用科学记数法表示“3395000”为()A .533.9510⨯B .53.39510⨯C .63.39510⨯D .70.339510⨯5.已知关于x 的一元一次方程240x a --=的解是2x =,则a 的值为()A .5-B .1-C .1D .56.如图,某测绘装置上一枚指针原来指向南偏西50︒,把这枚指针按逆时针方向旋14周,则指针的指向是()A .南偏东50︒B .南偏北50︒C .南偏东40︒D .东南方向7.甲单独做某项工程需15天完成,乙单独做该项工程需10天完成.现在甲先做4天剩下由甲乙合做.设完成此工程一共用了x 天,则下列方程正确的是()A .411510x x -+=B .11510x x +=C .411510x x ++=D .4411510x x +-+=8.将一张长方形纸片ABCD 按如图所示方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B '、D ¢,若8B AD ''∠=︒,则EAF ∠的度数为()A .40︒B .40.5︒C .41︒D .42︒二、填空题9.在墙壁上固定一根横放的木条,则至少需要_______枚钉子.10.已知单项式33m x y 与14n x y -和是单项式,则m n -=______.11.若23x y -=,则代数式244x y --的值等于___________.12.点A 在数轴上所表示的数是1-,则在数轴上与点A 距离4个单位长度的点所表示的数是___________.13.如图是每个面上都有一个汉字的正方体的一种展开图,在原正方体的表面上与“我”相对的面上的汉字是___________.14.如图,数轴上的两点A 、B 分别表示有理数a 、b ,则a b +___________0(填“>”,“<”或“=”).15.魔术师在表演中请观众任意想一个数,然后将这个数按照以下步骤操作,魔术师立刻说出了观众想的那个数.4847−−→−−→−−→−−→乘减去除以加上告诉魔术师结果小乐想了一个数,并告诉魔术师结果为80,则小乐想的这个数是___________.16.七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经过历代演变而成七巧板,如图1所示.19世纪传到国外,被称为“唐图”(意为“来自中国的拼图”),图2是由边长为8的正方形分割制作的七巧板拼摆成的“叶问蹬”图.则图中抬起的“腿”(即阴影部分)的面积为___________.17.如图,已知60AOB ∠=︒,从点O 引出一条射线OC ,使得:1:2AOC COB ∠∠=,则OC 与AOB ∠的平分线所成的角的度数为_____________.18.观察下列两行数:3,5,7,9,11,13,15,17,19,…4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是7,第2个相同的数是13,…,若第n 个相同的数是1801,则n 等于___________.三、解答题19.计算:(1)217939⎛⎫-++- ⎪⎝⎭;(2)241111124232⎛⎫⎛⎫-+-⨯+÷- ⎪ ⎪⎝⎭⎝⎭.20.化简:(1)2224a ab a ab --+;(2)2()3(5)x y y x ---.21.解下列方程:(1)236x x +=-;(2)132123x x --=-.22.如图,点O 在线段AB 上,点M 、N 分别是AO 、BO 的中点.(1)若6cm,3cm AM BN ==,求线段AB 的长度;(2)若cm MN a =,求线段AB 的长度.23.如图是用10块完全相同的小正方体搭成的几何体.(1)请在方格中分别画出它的主视图、俯视图、左视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加_____________个小正方体.24.如图是由相同边长的小正方形组成的网格图形,每个小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(1)画出△ABC 向右平移8个单位长度后△A′B′C′;(2)△A′B′C′的面积为;(3)过点A 画BC 的垂线,并标出垂线所过格点P ;(4)过点A 画BC 的平行线,并标出平行线所过格点Q .25.一商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏损20元,而按标价的8折出售将赚40元.问:(1)每件服装的标价、成本各多少元?(2)为了保证不亏本,最多能打几折?26.如图,直线AB 与CD 相交于点O ,∠AOC =48°,∠DOE ∶∠BOE =5∶3,OF 平分∠AOE .(1)求∠BOE 的度数;(2)求∠DOF 的度数.27.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程48x =和10x +=为“美好方程”.(1)若关于x 的方程30x m +=与方程4210x x -=+是“美好方程”,求m 的值;(2)若“美好方程”的两个解的差为8,其中一个解为n ,求n 的值;(3)若关于x 的一元一次方程1322022x x k +=+和1102022x +=是“美好方程,”求关于y 的一元一次方程1(1)3222022y y k ++=++的解.28.如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且()232+4=0ab b +-.(1)a=,b=;(2)在数轴上是否存在一点P ,使2PA PB OP -=,若有,请求出点P 表示的数,若没有,请说明理由?(3)点M 从点A 出发,沿A O A →→的路径运动,在路径A O →的速度是每秒2个单位,在路径O A →上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN=1?参考答案1.B2.B3.D4.C5.B6.C7.A8.C9.210.-211.212.3或-513.中14.<15.7516.1217.10°或90°【详解】解:如图①,当OC在∠AOB的内部时,OD为∠AOB的角平分线,∴∠AOD=12∠AOB=30°,∵∠AOB=60°,∠AOC:∠COB=1:2,∴∠AOC=13∠AOB=20°,∴OC与∠AOB的平分线所成的角的度数为:∠AOD-∠AOC=30°-20°=10°;如图②,当OC 在∠AOB 的外部时,∵∠AOB=60°,∠AOC :∠COB=1:2,∴∠AOC=∠AOB=60°,∴OC 与∠AOB 的平分线所成的角的度数为:∠AOD+∠AOC=30°+60°=90°;综上所述,OC 与∠AOB 的平分线所成的角的度数为10°或90°.故答案为:10°或90°.18.300【分析】根据题目中的数据,可以发现数字的变化特点,数列中7,13,19,…,的第n 项是数列4,7,10,13,16,19,22,25,…,第2n 项,然后列方程3(2n )+1=1801,从而可以求得n 的值即可.【详解】解:由题目中的数据可知,3,5,7,9,11,13,15,17,19,…第一行是一些连续的奇数,规律为2m-1,4,7,10,13,16,19,22,25,…第二行数列,从第2项起,每一项都比前一项大3,规律为3k+1,两个数列中相同的数组成新数列为:7,13,19,…,新数列是第二行数列的偶数项第2项,,第4项,第6项,…,组成,∴数列中7,13,19,…,的第n 项是数列4,7,10,13,16,19,22,25,…,第2n 项∴3(2n )+1=1801∴n=300,故答案为:300.19.(1)23-(2)2【分析】(1)根据有理数的加法可以解答本题;(2)根据有理数的乘方、有理数的加减法可以解答本题.(1)217939⎛⎫-++- ⎪⎝⎭=271993⎡⎤⎛⎫⎛⎫-+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=113-+=23-.(2)241111124232⎛⎫⎛⎫-+-⨯+÷- ⎪ ⎪⎝⎭⎝⎭=1112446-+⨯+÷=121-++=2.20.(1)23-+a ab(2)175x y-【分析】(1)合并同类项即可;(2)先去括号,再合并同类项即可.(1)解:原式2224a a ab ab=--+23a ab=-+(2)解:原式22315x y y x=--+175x y=-21.(1)4x =(2)37x =【分析】(1)通过移项、合并同类项、系数化1求解即可;(2)通过去分母、去括号、移项、合并同类项、系数化1即可.(1)解:236x x +=-移项,得:326x x -=--合并同类项,得:28x -=-系数化1,得:4x =(2)解:132123x x --=-去分母,得:()()312326x x -=--去括号,得:33646x x -=--移项,得:34663x x +=-+合并同类项,得:73x =系数化1,得:37x =22.(1)AB=18cm(2)AB=2acm【分析】(1)根据中点的定义,求出AO 和BO ,相加即可;(2)利用AB=AO+BO=2MO+2NO=2MN ,进行转化计算即可.(1)解:∵点M 、N 分别是AO ,BO 的中点,∴AO=2AM=12cm ,BO=2BN=6cm ,∴AB=AO+BO=12+6==18cm ;(2)解∵MN=MO+NO=acm ,∴AB=AO+BO=2MO+2NO=2MN=2acm .23.(1)见解析(2)4【分析】(1)根据简单组合体的三视图的画法,画出从正面、上面、左面看该组合体所看到的图形即可;(2)从俯视图的相应位置增加小立方体,直至左视图不变即可.(1)如图所示:(2)如图所示,故如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加4个小正方体.故答案为:4.【点睛】本题考查简单组合体的三视图,理解三视图的意义,掌握简单组合体三视图的画法是正确解答的关键.24.(1)见解析(2)192(3)见解析(4)见解析【分析】(1)先描出A、B、C向右平移8个单位长度后的A′、B′、C′,再顺次连接A B'',B C'',C A''即可;(2)结合网格,利用一个长方形的面积减去三个直角三角形的面积即可;(3)将点A向下平移5个单位,再向右平移1个单位得到点P,过点,A P画直线即可;(4)如图(见解析),将点A先向右平移5个单位长度,再向上平移1个单位长度得到点Q,然后过点,A Q画直线AQ即可.(1)解:先描出A、B、C向右平移8个单位长度后的A′、B′、C′,再顺次连接A B'',B C'',C A'','''为所求;如图△A B C(2)',解:如图,将△A′B′C′补成长方形B DEFΔ---A B C A B DEF DB A EC B FC S S S S S ''''''''∆∆∆''= 11145144315222=⨯-⨯⨯-⨯⨯-⨯⨯520262=---192=故答案为:192(3)解:将点A 向下平移5个单位,再向右平移1个单位得到点P ,过A 与P 作直线AP ,则直线PA 为所求垂线;(4)解:∵点B 向右平移5个单位,再向上平移1个单位得点C ,∴如图,将点A 先向右平移5个单位长度,再向上平移1个单位长度得到点Q ,然后过点,A Q 画直线,则直线AQ ∥BC ,直线AQ 即为所求平行线;【点睛】本题考查了平移作图、作垂线、作平行线,割补法求三角形面积等知识点,熟练掌握平移的作图方法是解题关键.25.(1)每件服装的标价为200元,成本为120元;(2)最多打了6折.【分析】(1)分别设每件服装的标价和成本为a 元和b 元,根据题中已知条件列出二元一次方程组即可求出标价和成本.(2)标价和成本都由(1)算出,不亏本,是指售价为成本价,即可算出服装打了几折.(1)解:设每件服装的标价为a 元、服装的成本为b 元,则有0.5200.840a b a b =-⎧⎨=+⎩,解得200120a b =⎧⎨=⎩,即每件服装的标价为200元,成本为120元.(2)不亏本时,最低售价为120元,此时,最多打了120÷200=0.6,即打了6折.【点睛】本题主要考查学生运用二元一次方程组解决实际问题的能力,能依据题目已知条件找出等量关系列出二元一次方程组是解决本题的关键.26.(1)30°;(2)51°.【分析】(1)根据对顶角相等求出∠BOD 的度数,设∠DOE=x ,根据题意列出方程,解方程即可;(2)根据角平分线的定义求出∠AOF 的度数即可.【详解】(1)设∠DOE=5x ,则∠BOE=3x ,∵∠BOD=∠AOC=48°,∴5x+3x=48°,解得,x=6°,∴∠DOE=30°;(2)∵∠BOE=3x=18°,∴∠AOE=180°-∠BOE=162°,∵OF 平分∠AOE ,∴∠AOF=81°,∴∠DOF=180-∠AOF-∠DOE-∠BOE=180-81-30-18=51°.【点睛】本题考查的是对顶角、邻补角的概念和性质、角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.27.(1)9(2)7-2或92(3)2022【分析】(1)先表示两个方程的解,再求解;(2)根据条件建立关于n 的方程,再求解;(3)由关于x 的一元一次方程1322022x x k +=+和1102022x +=是“美好方程”,可求出1322022x x k +=+的解为x=-2023,再将1(1)3222022y y k ++=++变形为1(1)32(1)+2022++=+y y k ,则y+1=x=2023,从而求解.(1)解:∵3x+m=0∴x -3m =∵4210x x -=+∴x=4∵关于x 的方程30x m +=与方程4210x x -=+是“美好方程”∴-+4=13m ∴m=9.(2)解:∵“美好方程”的两个解和为1∴另一个方程的解是1-n ∵两个解的差是8∴1-n-n=8或n-(1-n )=8∴7=-2n 或9=2n .(3)解:∵1102022x +=∴x=-2022∵关于x 的一元一次方程1322022x x k +=+和1102022x +=是“美好方程”∴关于x 的一元一次方程1322022x x k +=+的解为:x=1-(-2022)=2023∴关于y 的一元一次方程1(1)3222022y y k ++=++可化为1(1)32(1)+2022++=+y y k ∴y+1=x=2023∴y=2022.【点睛】本题考查了一元一次方程的解,利用“美好方程”的定义找到方程解的关系是解题的关键.28.(1)a=-8,b=4;(2)-1或6;(3)115秒,135秒或234秒.【分析】(1)根据()232+4=0ab b +-,利用绝对值及偶次方的非负性即可求出;(2)若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,分三种情况讨论;(3)当MN=1时,根据运动情况,可分三种情形讨论,列出方程解答.【详解】(1)解:(1)∵()232+4=0ab b +-,∴ab=-32,b-4=0,∴a=-8,b=4.(2)根据题意,若要满足2PA PB OP -=,则点P 在线段AB 中点右侧,线段AB 的中点表示的数为-2,设点P 表示的数为x ,分三种情况讨论:①当-2≤x<0时,则x+8-(4-x )=2(-x ),解得:x=-1;②当0≤x<4时,则x+8-(4-x )=2x ,方程无解③当x≥4时,则x+8-(x-4)=2x ,解得:x=6.综上:存在点P ,表示的数为-1或6.(3)设运动时间为t ,根据运动情况,可知MN=1的情况有三种:①M 在A→O 上,且M 在N 左侧,则2t+3t+1=12,解得t=115.②M 在A→O 上,且M 在N 右侧,则2t+3t-1=12,解得t=135.③M 在O→A 上,且N 到达点A ,此时,M 在A→O 上所用时间为8÷2=4(s ),M 在O→A 上速度为4个单位每秒,∵MN=1,∴(8-1)÷4=74,∴此时时间t=4+74=234,综上:当MN=1时,时间为115秒,135秒或234秒.。

七年级数学上册期末试卷及答案(苏教版)

七年级数学上册期末试卷及答案(苏教版)

七年级数学上册期末试卷及答案(苏教版)第一学期期末考试题(苏教版)七年级数学(本试卷满分100分,在90分钟内完成)一. 填空题:(第1-----11题每空1分,第12—15题每空2分,共25分)1.在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有,属于四棱柱的有 .2.用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是 . 3.深圳市某天早晨的温度是12°C,中午上升了9°C,夜间下降了6°C,则这天夜间的温度是 .4.+8与互为相反数,请赋予它实际意义:5.用科学记数法表示:5678000000 = .6.甲、乙争论“a 和3a哪个大(a 是有理数)”. 甲:“a 一定比3a大”. 乙:“不一定”.又说: “你漏掉了两种可能.”请问:乙说的是什么意思? 答: ; .7.x 的平方的3倍与-5的差,用代数式表示为 ,当1-=x 时,代数式的值为 .8.如图,是按照某种规律排列的多边形:第20个图形是边形,第41个图形的颜色是色.9.如图:∠AOB=∠COD=90°,∠AOD=130°, 则∠BOC 的度数是 . 10.数轴的A 点表示-3,让A 点沿着数轴移动2个单位到B 点, B 点表示的数是 ;线段BA 上的点表示的数是 . 11.北环中学初一年级共10个班,每班有43名学生,现从每个班中任意抽一名学生共10名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性是 .12.如图,A 点表示数a ,B 点表示数b ,在3++-+b a ab a b b a ,,,中正数13.A 、B 、C 是直线l 上的三点,BC=32AB ,若BC=6,则AC 的长等于 . 14.一商店把彩电按标价的九折出售,仍可获利20% ,若该彩电的进价是2400元,则该彩电的标价为元.15.某市为了鼓励居民节约用水,对自来水用户按如下标准收费,若每月每户用水不超过15吨,按每吨1元收费,若超过15吨,则超过部分每吨按2元收费.如果小明家12月份交纳的水费29元,则小明家这个月实际用水吨.二.选择题(每题2分,共20分,将答案直接填在下表中)1.下面的算式: ①.-1-1=0; ② 2516542=;③ (-1)2004=2004 ;④ -42=-16;⑤612131=-⑥53315-=?÷-,其中正确的算式的个数是 A .1个 B. 2 个 C.3个 D.4个 2.下面说法:正确的是:①如果地面向上15米记作15米,那么地面向下6米记作-6米;②一个有理数不是正数就是负数;③正数与负数是互为相反数;④任何一个有理数的绝对值都不可能小于零.A .①,② B.②,③ C.③,④ D.④,①3.下列图形中,是正方体的展开图是:①③ ④ A .①② B.③④ C.③ D.④4.在8:30这一时刻,时钟上的时针和分针之间的夹角为A .85° B.75° C.70° D.60°5.nm myx + 与y x 32是同类项,那么n 等于A .-2 B.-1 C.0 D.16.下列说法正确的是:1-1-27. 下列算式正确的是:A .224=-a a . B.3243a a a =+. C.2222a a a -=--. D.a a a =-228.下列事件中是必然事件的有①明天中午的气温一定是全天最高的温度; ②小明买电影票,一定会买到座位号是双号的票;③现有10张卡片,上面分别写有1,2,3,……,10,把它们装人一个口袋中,从中抽出6张.这6张中,一定有写着偶数的卡片. ④元旦节这一天刚好是1月1日.A . ①, ② B. ①, ③ C. ①, ④ D. ③, ④9.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于A .教室地面的面积. B.黑板面的面积. C.课桌面的面积. D.铅笔盒盒面的面积10.下列说法,正确的是①.用长为10米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1米,设长方形的长为X 米,则可列方程为2(X+X-1)=10 .②.小明存人银行人民币2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为X,则可列方程2000(1+X)80%=2120.③.X 表示一个两位数,把数字3写到X 的左边组成一个三位数,这个三位数可以表示为300+X.④.甲、乙两同学从学校到少年宫去,甲每小时走4千米,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s 千米,则可列方程216214+=-s s A . ①, ② B. ①, ③ C. ②, ④ D. ③, ④三.计算题(要求写出详细的计算过程,不准用计算器。

苏教版七年级数学上册 期末试卷测试卷(含答案解析)

苏教版七年级数学上册 期末试卷测试卷(含答案解析)

苏教版七年级数学上册 期末试卷测试卷(含答案解析)一、选择题1.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120202.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-3.有理数-53的倒数是( ) A .53 B .53-C .35D .354.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2B .|x +2|C .x 2+2D .x 2-25.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个B .2个C .3个D .4个6.-8的绝对值是( ) A .8B .18C .-18D .-87.-5的相反数是( ) A .-5B .±5C .15D .58.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ) A .①② B .①③ C .②④ D .③④ 9.对于代数式3m +的值,下列说法正确的是( )A .比3大B .比3小C .比m 大D .比m 小10.一件商品,按标价八折销售盈利 20 元,按标价六折销售亏损 10 元,求标价多少元?小明同学在解此题的时候,设标价为 x 元,列出如下方程: 0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变 B .商品的售价不变 C .商品的成本不变 D .商品的销售量不变11.-3的相反数为( )A .-3B .3C .0D .不能确定12.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣1202013.-5的相反数是( ) A .15B .±5C .5D .-1514.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒15.如图,直线a ,b 相交于点O ,若1∠等于36︒,则2∠等于( )A .54︒B .64︒C .144︒D .154︒二、填空题16.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________. 17.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件____元.18.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上; ②把弯曲的公路改直,就能够缩短路程; ③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是________ .(填序号) 19.一个数的绝对值是2,则这个数是_____.20.在数轴上到-3的距离为4个单位长度的点表示的数是___.21.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是-16、9,现以点C 为折点,将数轴向右对折,若点A 对应的点A ’落在点B 的右边,并且A ’B =3,则C 点表示的数是_______.22.在墙上固定一根木棒时,至少需要两根钉子,这其中所体现的“基本事实”是______. 23.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.24.小颖将考试时自勉的话“冷静、细心、规范”写在一个正方体的六个面上,其平面展开图如图所示,那么在正方体中和“规”字相对的字是____.25.写出一个关于三棱柱的正确结论________.三、解答题26.计算下列各题: (1)1021(2)11-+--⨯ (2)2019111(3)69--÷-⨯ 27.如图所示的几何体是由若干个相同的小正方体组成的.(1)填空:这个几何体由 个小正方体组成; (2)画出它的三个视图.(作图必须用黑色水笔描黑)28.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.29.(探索新知)如图1,点C 将线段AB 分成AC 和BC 两部分,若BC =πAC ,则称点C 是线段AB 的圆周率点,线段AC 、BC 称作互为圆周率伴侣线段. (1)若AC =3,则AB = ;(2)若点D 也是图1中线段AB 的圆周率点(不同于C 点),则AC DB ;(深入研究)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C 的位置.(3)若点M 、N 均为线段OC 的圆周率点,求线段MN 的长度.(4)图2中,若点D 在射线OC 上,且线段CD 与以O 、C 、D 中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D 所表示的数.30.如图,点O 是直线AB 上一点, OC ⊥OE ,OF 平分∠AOE ,∠COF =25°,求∠BOE 的度数.31.计算:(1)(-23)-(+13)-|-34|-(-14) (2)-12-(1-0.5)×13×[3-(-3)2] 32.2020年8月连淮扬镇铁路正式通车,高邮迈入高铁时代,动车的平均速度为200/km h (动车的长度不计),高铁的平均速度为300/km h (高铁的长度不计),扬州市内依次设有6个站点,宝应站、高邮北站、高邮高铁站、邵伯站、江都站、扬州高铁站,假设每两个相邻站点之间的路程都相等,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟 (1)求宝应站到扬州高铁站的路程;(2)若一列动车6:00从宝应站出发,每个站点都停靠4分钟,一列高铁6:18从宝应站出发,只停靠高邮北站、江都站,每个站点都停靠4分钟. ①求高铁经过多长时间追上动车;②求高铁经过多长时间后,与动车的距离相距20千米. 33.解下列方程:(1)76163x x +=-;(2)253164y y---=. 四、压轴题34.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”. (1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______. (2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______(4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭35.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.37.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.38.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.39.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.40.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠B0C在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=23∠DON.求t的值.41.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.42.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程; (迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= . 43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.2.D解析:D【解析】【分析】设输入的数为x,根据计算程序列出方程,求出方程的解即可得到x的值.【详解】解:设输入的数为x,输出为9,根据计算程序中得:(2x-1)2=9,开方得:2x-1=3或2x-1=-3,解得:x=2或x=-1,故选D.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的计算方法.3.D解析:D【解析】【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案.【详解】解:-53的倒数是-35,故选:D.【点睛】本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.4.C解析:C【解析】【分析】分别求出每个选项中数的范围即可求解.【详解】A.(x+2)2≥0;B.|x+2|≥0;C.x2+2≥2;D.x2﹣2≥﹣2.故选:C.【点睛】本题考查了正数与负数、绝对值和平方数的取值范围;掌握平方数和绝对值的意义是解题的关键.5.B解析:B【解析】【分析】直接录用等式的基本性质分析得出答案.【详解】解:①如果a=b,那么a-c=b-c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4-3,正确;④由7y=-8,得y=-,故此选项错误;故选:B.【点睛】此题主要考查了等式的基本性质,正确把握性质2是解题关键.6.A解析:A【解析】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点-8到原点的距离是8,所以-8的绝对值是8,故选A.7.D解析:D【解析】【分析】根据相反数的定义直接求解即可.【详解】解:-5的相反数是5,故选D.【点睛】本题考查相反的定义,熟练掌握基础知识是解题关键.8.C【解析】【分析】【详解】试题分析:直接利用直线的性质以及两点确定一条直线的性质分析得出答案.解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A 地到B 地架设电线,总是尽可能沿着线段AB 架设,根据是两点之间线段最短; (3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选C .考点:直线的性质:两点确定一条直线.9.C解析:C【解析】【分析】3+m=m+3,根据加法运算的意义可得m+3表示比m 大3.【详解】解:∵3+m=m+3,m+3表示比m 大3,∴3+m 比m 大.故选:C.【点睛】本题考查代数式的意义,理解加法运算的意义是解答此题的关键.10.C解析:C【解析】【分析】0.8x-20表示售价与盈利的差值即为成本,0.6x+10表示售价与亏损的和即为成本,所以列此方程的依据为商品的成本不变.【详解】解:设标价为x 元,则按八折销售成本为(0.8x-20)元,按六折销售成本为(0.6x+10)元, 根据题意列方程得, 0.8200.610x x -=+.故选:C.【点睛】本题考查一元一次方程的实际应用,即销售问题,根据售价,成本,利润之间的关系找到等量关系列方程是解答此题的关键.11.B解析:B【解析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.12.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.13.C解析:C【解析】解:﹣5的相反数是5.故选C.14.C解析:C【解析】【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.15.C解析:C【解析】【分析】∠=︒,可求∠2.观察图形可知∠1和∠2是一对邻补角,由136【详解】解:因为直线a,b相交于点O,∠+∠=︒,所以12180∠=︒,又因为136∠=︒-∠=︒-︒=︒.所以2180118036144故选:C.【点睛】本题考查了邻补角的性质,解题的关键是结合图形,熟练运用邻补角的性质,此题比较简单,易于掌握.二、填空题16.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于解析:5⨯5.6310【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于4320000有7位,所以可以确定n=7-1=6.【详解】解:563000=5.63×105,故答案为:5.63×105.【点睛】本题考查科学记数法,解题关键是熟记规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.17.150【解析】设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150,故答案为150.解析:150【解析】设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150,故答案为150.18.②【解析】分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.详解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最解析:②【解析】分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.详解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最短;③体育课上,老师测量某个同学的跳远成绩,根据垂线段最短;故答案为②.点睛:本题考查了线段的性质,利用直线的性质、线段的性质是解题关键.19.±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.解析:±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.20.1或【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单解析:1或7【解析】【分析】数轴上到−3的距离为4个单位长度的点表示的数有2个:−3−4,−3+4,据此求解即可.【详解】解:∵−3−4=−7,−3+4=1,∴数轴上到−3的距离为4个单位长度的点表示数是1和−7.故答案为1和−7.【点睛】本题主要考查了数轴的特征和应用,以及分类讨论思想的应用,要熟练掌握.21.-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.设点C表示的数为x,根据题意可得,,解得x=-2.【点睛】本题考查解析:-2【解析】【分析】将数轴向右对折后,则AC=A´B+BC,设点C表示的数为x,根据等量关系列方程解答即可.【详解】设点C表示的数为x,根据题意可得,--=+-,解得x=-2.(16)39x x【点睛】本题考查一元一次方程的应用,解题的关键是根据数轴表示的距离得到AC=A´B+BC. 22.两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案解析:两点确定一条直线.【解析】【分析】由于两点确定一条直线,所以在墙上固定一根木条至少需要两根钉子.【详解】解:在墙上固定一根木条至少需要两根钉子,依据的数学道理是两点确定一条直线.故答案为:两点确定一条直线.【点睛】此题主要考查了直线的性质,熟记直线的性质是解题的关键.23.152【解析】【分析】根据周角以及直角的定义进行解答即可.【详解】解:由图可知∵∴故答案为:152.【点睛】本题考查了周角及直角的定义,以及角度的和差关系,掌握角度的和差关系是解解析:152【解析】【分析】根据周角以及直角的定义进行解答即可.【详解】解:由图可知360-90-90-αβ∠=∠∵28β∠=︒∴360-90-90-28=152α∠=故答案为:152.【点睛】本题考查了周角及直角的定义,以及角度的和差关系,掌握角度的和差关系是解题的关键. 24.静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“解析:静.【解析】【分析】正方形的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“冷”与“心”是相对面,“细”与“范”是相对面,“静”与“规”是相对面,在正方体中和“规”字相对的字是静;故答案为:静.【点睛】本题主要考查了正方形相对两个面上的文字,注意正方形的空间图形,从相对面入手,分析及解答问题.25.三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6解析:三棱柱有5个面(答案不唯一)【解析】【分析】根据三棱柱的特点,例如,三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱等写出一个即可.【详解】解:∵三棱柱的性质有:三棱柱有5个面,三棱柱有6个顶点,三棱柱有9条棱,三棱柱的底面形状为三角形等等,∴关于三棱柱的正确结论是:三棱柱有5个面(答案不唯一)故答案为:三棱柱有5个面(答案不唯一)【点睛】本题考查了三棱柱的特点,具有空间想象能力,掌握了三棱柱的顶点、棱、面的性质是解答此题的关键.三、解答题26.(1)33;(2)1 2 -.【解析】【分析】(1)先计算乘法,再去括号,最后进行有理数加减混合运算;(2)先算乘方和小括号内的乘法,再计算除法,最后计算加法运算.【详解】解:(1)1021(2)11-+--⨯=1021(22)-+--=1122+=33(2)2019111(3)69 --÷-⨯=111()63--÷- 11(3)6=--⨯- 112=-+ 12=- 【点睛】本题考查含有乘方的有理数混合运算,解题关键是熟练掌握运算顺序和运算法则.27.(1)7个,(2)图形见详解【解析】【分析】(1)前排有2个,后排有5个,据此解题,(2)主视图要将几何体从前往后压缩,使看到的面全部落在一个竖立的平面内;左视图要从正面的左面看,要正对着几何体,视线要与放置几何体的平面平行,并合理想象;俯视图要从正上方往下看,每一竖列的图形最顶的一个面,它们无高低之分使看到的面都落在同一个平面内.【详解】解:(1)前排有2个,后排有5个,∴这个几何体由7个小正方体组成,(2)如图【点睛】本题考查了图形的三视图,属于简单题,熟悉三视图的画法是解题关键.28.(1)2;(2)−5或1或7;(3)1t =或173t =【解析】【分析】(1)根据题意OA 的长度即为所求;(2)分三种情况进行讨论,①当点P 位于A 点左侧;②点P 位于线段AB 上;③点P 位于B 点右侧,分别求解;(3)分情况讨论,当PA=3或PB=3时,分别求解.【详解】解:(1)由题意OA=2;OB=4∴点O 到线段AB 的“靠近距离”为2 故答案为:2;(2)①当点P 位于A 点左侧时,点P 表示-2-3=-5; ②点P 位于线段AB 上时,点P 表示-2+3=1,此时PA=PB=1 ③点P 位于B 点右侧时,点P 表示4+3=7 ∴m=−5或1或7 故答案为:−5或1或7;(3)①当PA=3时, 可得523t -=,或253t -=, 解得14t t ==或.而当4t =时,PB=14-4×3=2,PB <PA ,点P 到线段AB 的“靠近距离”为2,不符合题意. 所以1t =.②当PB=3时, 可得14(12)3t -+=,或(12)143t +-=, 解得111733t t ==或. 而当113t =时,PA=1172533⨯-=,PA<PB ,点P 到线段AB 的“靠近距离”为73,不符合题意. 所以173t =. 综上所述,所以1t =或173t =. 【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.29.(1)3π+3;(2)=;(3)π-1,(4)1、π、π+1π+2、π2+2π+1. 【解析】 【分析】(1)根据线段之间的关系代入解答即可; (2)根据线段的大小比较即可;(3)由题意可知,C 点表示的数是π+1,设M 点离O 点近,且OM=x ,根据长度的等量关系列出方程求得x ,进一步得到线段MN 的长度. 【详解】(1)∵AC=3,BC=πAC , ∴BC=3π, ∴AB=AC+BC=3π+3.(2)∵点D 、C 都是线段AB 的圆周率点且不重合, ∴BC=πAC ,AD=πBD ,∴设AC=x ,BD=y ,则BC=πx ,AD=πy ,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1-1-1=π-1;(4)设点D表示的数为x,如图3,若CD=πOD,则π+1-x=πx,解得x=1;如图4,若OD=πCD,则x=π(π+1-x),解得x=π;如图5,若OC=πCD,则π+1=π(x-π-1),解得x=π+1π+2;如图6,若CD=πOC,则x-(π+1)=π(π+1),解得x=π2+2π+1;综上,D点所表示的数是1、π、π+1π+2、π2+2π+1.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.30.50°【解析】【分析】由O C⊥OE,可得∠COE=90°,从而求得,∠EOF的度数,然后利用角平分线的定义得到∠AOE=2∠EOF=130°,从而使问题得解.【详解】解:因为O C⊥OE所以∠COE=90°因为∠COF=25°所以∠EOF =∠COE -∠COF =65° 因为OF 平分∠AOE 所以∠AOE =2∠EOF =130° 因为∠AOB =180°所以∠BOE =∠AOB -∠AOE =50° 【点睛】本题考查了角平分线的定义及角的和差,数形结合思想解题是本题的解题关键. 31.(1)-32;(2)0. 【解析】 【分析】(1)根据有理数的加减法可以解答本题; (2)根据有理数的乘法和加减法可以解答本题. 【详解】 解:(1)(-23)-(+13)-|-34|-(-14) =(-23)+(-13)-34+14=-32; (2)-12-(1-0.5)×13×[3-(-3)2] =-1-()113923⨯⨯- =-1-16×(-6)=-1+1 =0. 【点睛】考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.32.(1)宝应站到扬州高铁站的路程为100km ;(2)①高铁经过20分钟时间追上动车②高铁经过12分钟后,与动车的距离相距20千米. 【解析】 【分析】(1)设宝应站到扬州高铁站的路程为xkm, ,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟,根据时间=路程:速度即可得出关于x 的一元一次方程,解之即可得出结论; (2)①分析出动车和高铁在每个站点的具体时间进行比较即可;②分析出动车和高铁在每个站点的具体时间及行驶过的路路程,进行比较.。

(完整版)苏教版七年级数学上册期末考试及答案(20201018221305)

(完整版)苏教版七年级数学上册期末考试及答案(20201018221305)

1七年级数学期末考试试卷7 C . 103人到乙班,那么两班人数正好相等.设甲班原有人B . 98 — x = x — 3D . ( 98— x ) + 3 = x — 3评卷人 得分•选择题(每题3分,共36 分)1已知4个数中:(—1严5, 2,- (- 1. 5), —3,其中正数的个数有()•C .D . 42.某种药品的说明书上标明保存温度是(20 ± 2) C ,则该药品在)范围内保存才合适.A . 18C 〜20CB . 20C C . 18 C 〜21CD . 18C 〜22C3.多项式 3x 2-2xy 3—1y - 1是().A .三次四项式 B. 三次三项式C. 四次四项式D. 四次三项式4.下面不是同类项的是).B . 2m 与 2n2a 2b 与 a 2b与 1x 2y 225.若x = 3是方程 a —x = 7的解,则的值是().x 1 6.在解方程 —2等1时,去分母正确的是().A . 3 (x — 1)— 2 (2 + 3x )= 1B . 3(x — 1)+2(2x + 3) = 1C . 3 ( x — 1) +2 (2 + 3x )= 6D . 3 (x — 1)— 2 ( 2x + 3)= 6 7.如图1,由两块长方体叠成的几何体,从正面看它所得到的平面图形是(D .&把图2绕虚线旋转一周形成一个几何体,与它相似的物体是A .课桌B .灯泡C .篮球D .水桶9.甲、乙两班共有98人,若从甲班调 数是x 人,可列出方程().A . 98 + x = x — 3 C . (98 — x ) + 3= x)221° .以下3个说法中:①在冋一直线上的4点A 、B 、C 、D 只能表示5条不冋的线段;② 经过两点有一条直线,并且只有一 条直线;③冋一个锐角的补角一定大于它的余角.说法都正确的结论是( ).A .②③B .③C . ①② D.①11.用一副三角板(两块)画角,不可能画出的角的度数是()A . 135°B . 75°C . 55°D . 15°12.如图3,已知B 是线段AC 上的一点,M 是线段AB 的中点,N 是线段AC 的中点,P 为NA 的中点,Q 是AM 的中点,贝U MN : PQ 等于().AQP M N BC图313 •请你写出一个解为 x = 2的一元一次方程 ______________________ .14 .在3, - 4, 5,— 6这四个数中,任取两个数相乘,所得的积最大的是 _________________ . 15 .下图(1)表示1张餐桌和6张椅子(每个小半圆代表 1张椅子),若按这种方式摆放 2°张17 .计算:(本题满分8分)231(1)— 21+ 3 — — — ° . 25 (4 分)3 4 3餐桌需要的椅子张数是 ______________ 三、解答与证明题(本题共72 分)评卷人得分、填空题(每小题 评卷人得分1⑵ 22+ 2X [( — 3)2— 3〜]3分,共12分)319. 解下列方程:(本题满分8分)20. (本题6分)如图所示,点 C 、D 为线段AB 的三等分点,点 E 为线段AC 的中点,若 ED = 9,求线段AB 的长度.A E C D B21. (本题7分)下面是红旗商场电脑产品的进货单,其中进价一栏被墨迹污染,读了进货 单后,请你求出这台电脑的进价是多少(写出解答过程)22. (本题9分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍•乒乓球拍每副定价30元,乒乓球每盒定价 5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球, 乙店全部按定价的 9折优惠.该班需球拍 5副,乒乓球若干盒(不小于 5盒).问:(1 )当购买乒乓球多少盒时,两种优惠办法付款一样?(6分)(2)当购买30盒乒乓球时,若让你选择一家商店去办这件事, 你打算去哪家商店购买?为什么? ( 3分)18.(本题满分8分)先化简,再求值, 分)29y 6x 3(y|x 2),其中x2, y(1)2x 3 x 1( 4 分)x 1(2)33x 1(4 分)223. (本题7分)如图,某轮船上午8时在A处,测得灯塔S在北偏东60。

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)

苏教版数学七年级上册 期末试卷测试卷(含答案解析)一、选择题1.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 2.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点 3.如图①,一种长方形餐桌的四周可坐6人用餐,现把若千张这样的餐桌按如图②方式进行拼接.那么需要_________张餐桌拼在一起可坐78人用餐( )A .13B .15C .17D .19 4.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ).A .B .C .D .5.下列运算正确的是( )A .225a 3a 2-=B .2242x 3x 5x +=C .3a 2b 5ab +=D .7ab 6ba ab -=6.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通7.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°8.如图,几何体的名称是( )A .长方体B .三角形C .棱锥D .棱柱 9.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 10.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为( )A .0.45×108B .45×106C .4.5×107D .4.5×10611.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④ 12.如图,用一副特制的三角板可以画出一些特殊角.在下列选项中,不能画出的角度是( )A .81B .63C .54D .55 13.下列计算正确的是( )A .325a b ab +=B .532y y -=C .277a a a +=D .22232x y yx x y -=14.下列说法正确的是( )A .两点之间的距离是两点间的线段B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y -的系数是2-,次数是3 二、填空题16.将一堆糖果分给幼儿园的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗.设幼儿园里有x 个小朋友,可得方程___________.17.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________.18.若4550a ∠=︒',则a ∠的余角为______.19.写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是负数__.20.若x =-1是关于x 的方程2x +a =1的解,则a 的值为_____.21.已知等腰三角形有两条边分别是3和7,则这个三角形的周长是_______.22.已知有理数a 、b 表示的点在数轴上的位置如图所示,化简:1b a a --+=_______.23.一个角的度数是4536'︒,则它的补角的度数为______︒.(结果用度表示)24.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.25.已知222x y -+的值是 5,则 22x y -的值为________. 三、解答题26.解下列方程:(1)3(1)4(21)8x x --+=(2)12123x x -+-= 27.解方程(1)528x +=-(2)4352x x -=+ (3)()4232x x -=--(4)2151136x x +--=28.如图,COD ∠为平角,,2AO OE AOC DOE ⊥∠=∠,求AOC ∠的度数.29.如图,已知AOB ∠.画射线OC OA ⊥、射线OD OB ⊥.(1)请你画出所有符合要求的图形;(2)若30AOB ∠=︒,求出COD ∠的度数.30.先化简,再求值:()()222227a b ab 4a b 2a b 3ab +---,其中a 、b 的值满足2a 1(2b 1)0-++=31.如图,直线 l 上有 A 、 B 两点,线段 10AB cm =.点 C 在直线 l 上,且满足 4BC cm =,点 P 为线段 AC 的中点,求线段BP 的长.32.已知高铁的速度比动车的速度快50 km /h ,小路同学从苏州去北京游玩,本打算乘坐动车,需要6h 才能到达;由于得知开通了高铁,决定乘坐高铁,她发现乘坐高铁比乘坐动车节约72 min .求高铁的速度和苏州与北京之间的距离.33.甲、乙两车都从A 地出发,在路程为360千米的同一道路上驶向B 地.甲车先出发匀速驶向B 地.10分钟后乙车出发,乙车匀速行驶3小时后在途中的配货站装货耗时20分钟.由于满载货物,乙车速度较之前减少了40千米/时.乙车在整个途中共耗时133小时,结果与甲车同时到达B 地.(1)甲车的速度为 千米/时;(2)求乙车装货后行驶的速度;(3)乙车出发 小时与甲车相距10千米?四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

新苏教版七年级数学上册期末试卷附答案 (62)

新苏教版七年级数学上册期末试卷附答案 (62)

新苏教版七年级数学上册期末试卷一、选择题(共8小题,每小题3分,满分24分)1.﹣5的倒数是( )A.B.﹣C.5 D.﹣52.下列单项式中,与3xy2是同类项的是( )A.﹣xy2B.﹣3xy C.﹣3x2y D.2x2y23.下列各式中运算错误的是( )A.2a﹣a=a B.﹣(a﹣b)=﹣a+b C.a+a2=a3D.2(a+b)=2a+2b4.如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A.B.C.D.5.如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足关系是( )A.对顶角B.相等 C.互补 D.互余6.下列说法中正确的有( )①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.A.1个B.2个C.3个D.4个7.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程( )A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)8.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.二、填空题(共10小题,每小题2分,满分20分)9.请写出一个大于3的无理数__________.10.我国因环境污染造成的巨大经济损失每年高达680 000 000元,680 000 000用科学记数法表示为__________.11.今年小丽a岁,她的数学老师的年龄比小丽年龄的3倍小3岁,5年后,小丽的数学老师__________岁.12.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为__________.13.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值是__________.14.已知∠α=35°,则∠α的补角的度数是__________°.15.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因__________.16.如果代数式﹣2x+1与3互为相反数,则x的值为__________.17.B为线段AC上一点,BC=AB,D为AC的中点,DC=3cm,则AB的长是__________cm.18.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=__________.三、解答题(共9小题,满分76分)19.计算:(1)17﹣8÷(﹣2)2+4×(﹣3)(2)2(2a2+9b)+3(﹣5a2﹣4b)20.解下列方程:(1)2x﹣2=3x+5(2).21.先化简,再求值:(4x2﹣5x+2)﹣3(x2﹣x),其中x=3.22.如图1是由一些完全相同的小正方体所搭几何体的俯视图,其中小正方形中的数字表示该位置的小正方体的个数,请在图2的方格纸中分别画出这个几何体的主视图和左视图.23.如图,点P是∠AOB的边OB上的一点.(1)过点M画OB的平行线MN;(2)过点P画OA的垂线,垂足为H;(3)过点P画OB的垂线,交OA于点C:则线段PH的长度是点P到__________的距离,__________是点C到直线OB的距离,因为直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是__________.(用“<”号连接).24.(1)如图1,已知O是直线CD上的点,OA平分∠BOC,OE平分∠BOD,∠AOC=35°,求∠BOE,∠COE的度数.(2)如图2,已知AB=16cm,C是AB上一点,点D是线段AC的中点,点E是线段BC 的中点,求线段DE的长度.25.a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(﹣2)=32+3×(﹣2)=3.(1)求(﹣2)⊗3的值;(2)若(﹣3)⊗x=5,求x的值;(3)若3⊗(2⊗x)=﹣4+x,求x的值.26.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?27.阅读下列材料:我们知道|x|的几何意义是:在数轴上数x对应的点与原点的距离,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在解题中,我们会常常运用绝对值的几何意义.例1:解方程|x|=2.分析:由绝对值的几何意义知,该方程表示:求在数轴上与原点距离为2的点对应的数,故该方程的解为:x=±2;例2:解方程|x﹣1|+|x+2|=5.分析:由绝对值的几何意义知,该方程表示:求在数轴上与1和﹣2的距离之和为5的点对应的数,而在数轴上,1和﹣2的距离为|1﹣(﹣2)|=3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图可知看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x﹣1|=2的解为__________.(2)方程|x﹣2|+|x+3|=7的解为__________.(3)如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数为1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动,设运动时间为t秒(t>0)①求点A、C分别对应的数;②求点P、Q分别对应的数(用含t的式子表示);③试问当t为何值时,OP=OQ?新苏教版七年级数学上册期末试卷答案一、选择题(共8小题,每小题3分,满分24分)1.﹣5的倒数是( )A.B.﹣C.5 D.﹣5【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的倒数是﹣,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.下列单项式中,与3xy2是同类项的是( )A.﹣xy2B.﹣3xy C.﹣3x2y D.2x2y2【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【解答】解:与3xy2是同类项的是﹣xy2.故选:A.【点评】此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.3.下列各式中运算错误的是( )A.2a﹣a=a B.﹣(a﹣b)=﹣a+b C.a+a2=a3D.2(a+b)=2a+2b【考点】去括号与添括号;合并同类项.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式去括号得到结果,即可做出判断;C、原式不是同类项,不能合并,错误;D、原式去括号得到结果,即可做出判断.【解答】解:A、2a﹣a=a,运算正确;B、﹣(a﹣b)=﹣a+b,运算正确;C、a+a2不能合并,运算错误;D、2(a+b)=2a+2b,运算正确.故选C.【点评】此题考查了去括号与添括号,以及合并同类项,熟练掌握运算法则是解本题的关键.4.如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是( )A.B.C.D.【考点】利用平移设计图案.【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【解答】解:A、可以由一个“基本图案”旋转得到,不可以由一个“基本图案”平移得到,故本选项错误;B、是轴对称图形,不是基本图案的组合图形,故本选项错误C、不可以由一个“基本图案”平移得到,故把本选项错误;D、可以由一个“基本图案”平移得到,故把本选项正确;故选D.【点评】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.5.如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足关系是( )A.对顶角B.相等 C.互补 D.互余【考点】垂线;对顶角、邻补角.【分析】由垂直的定义可知∠EOA=90°,从而可知∠1+∠AOC=90°,由对顶角的性质可知:∠2=∠AOC,从而可知∠1+∠2=90°.【解答】解;∵OE⊥AB,∴∠EOA=90°.∴∠1+∠AOC=90°.∵∠2=∠AOC,∴∠1+∠2=90°.∴∠1与∠2互为余角.故选:D.【点评】本题主要考查的是余角的定义、垂直的定义、对顶角的性质,发现∠2=∠AOC是解题的关键.6.下列说法中正确的有( )①过两点有且只有一条直线.②连接两点的线段叫做两点间的距离.③两点之间,线段最短.④若AB=BC,则点B是AC的中点.⑤射线AC和射线CA是同一条射线.A.1个B.2个C.3个D.4个【考点】直线、射线、线段;线段的性质:两点之间线段最短;两点间的距离.【分析】利用直线的定义、以及线段的性质和两点之间距离意义,分别分析得出答案.【解答】解:①过两点有且只有一条直线,正确.②连接两点的线段长度叫做两点间的距离,故此选项错误.③两点之间,线段最短,正确.④若AB=BC,则点B是AC的中点,错误,A,B,C不一定在一条直线上.⑤射线AC和射线CA是同一条射线,错误.故选:B.【点评】此题主要考查了直线的定义、以及线段的性质和两点之间距离意义等知识,正确把握相关定义是解题关键.7.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程( )A.54﹣x=20%×108 B.54﹣x=20%(108+x)C.54+x=20%×162 D.108﹣x=20%(54+x)【考点】由实际问题抽象出一元一次方程.【分析】设把x公顷旱地改为林地,根据旱地面积占林地面积的20%列出方程即可.【解答】解:设把x公顷旱地改为林地,根据题意可得方程:54﹣x=20%(108+x).故选B.【点评】本题考查一元一次方程的应用,关键是设出未知数以以改造后的旱地与林地的关系为等量关系列出方程.8.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是( )A.B.C.D.【考点】剪纸问题.【分析】根据题意直接动手操作得出即可.【解答】解:找一张正方形的纸片,按上述顺序折叠、裁剪,然后展开后得到的图形如图所示:故选A.【点评】本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.二、填空题(共10小题,每小题2分,满分20分)9.请写出一个大于3的无理数.【考点】实数大小比较.【专题】开放型.【分析】根据这个数即要比3大又是无理数,解答出即可.【解答】解:由题意可得,>3,并且是无理数.故答案为:.【点评】本题考查了实数大小的比较及无理数的定义,任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.10.我国因环境污染造成的巨大经济损失每年高达680 000 000元,680 000 000用科学记数法表示为6.8×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于680 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:680 000 000=6.8×108.故答案为:6.8×108.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.11.今年小丽a岁,她的数学老师的年龄比小丽年龄的3倍小3岁,5年后,小丽的数学老师3a+2岁.【考点】列代数式.【分析】先求倍数,再求小3岁的;5年后小丽和老师都要长5岁.【解答】解:5年后,老师的年龄为:3a﹣3+5=(3a+2)岁,故答案为:3a+2【点评】此题考查列代数式问题,列代数式的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.此题还要注意的是5年后,所有人的年龄都要长5岁.12.若x=2是关于x的方程2x﹣3m﹣1=0的解,则m的值为1.【考点】一元一次方程的解.【分析】把x=2代入方程,即可得出关于m的一个方程,求出方程的解即可.【解答】解:把x=2代入方程2x﹣3m﹣1=0得:4﹣3m﹣1=0,解得:m=1,故答案为:1【点评】本题考查了解一元一次方程,一元一次方程的解的应用,能得出关于m的方程是解此题的关键.13.已知x2﹣2x﹣3=0,那么代数式2x2﹣4x﹣5的值是1.【考点】代数式求值.【专题】整体思想.【分析】把x2﹣2x﹣3=0看成一个整体,代入代数式求值.【解答】解:2x2﹣4x﹣5=(x2﹣2x﹣3)+1=2×0+1=1.【点评】此题利用“整体代入法”求代数式的值.14.已知∠α=35°,则∠α的补角的度数是145°.【考点】余角和补角.【分析】根据互补即两角的和为180°,由此即可得出∠α的补角度数.【解答】解:∠α的补角的度数是180°﹣∠α=180°﹣35°=145°,【点评】本题考查了补角的知识,掌握互为补角的两角之和为180度是关键,比较简单.15.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.【考点】线段的性质:两点之间线段最短;三角形三边关系.【专题】开放型.【分析】根据线段的性质解答即可.【解答】解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.【点评】本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.16.如果代数式﹣2x+1与3互为相反数,则x的值为2.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:﹣2x+1+3=0,移项合并得:﹣2x=﹣4,解得:x=2.故答案为:2.【点评】此题考查了解一元一次方程,熟练掌握运算方程是解本题的关键.17.B为线段AC上一点,BC=AB,D为AC的中点,DC=3cm,则AB的长是4cm.【考点】两点间的距离.【分析】设AB=xcm,根据题意和中点的性质用x表示出DC的长,列方程解答即可.【解答】解:设AB=xcm,∵BC=AB,∴BC=xcm,∵D为AC的中点,∴DC=AC=xcm,由题意得,x=3,解得,x=4,【点评】本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想是解题的关键.18.将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=16.【考点】规律型:图形的变化类.【分析】由图可知:第1个图形中小圆的个数为5;第2个图形中小圆的个数为7;第3个图形中小圆的个数为11;第4个图形中小圆的个数为17;则知第n个图形中小圆的个数为n(n﹣1)+5.据此可以再求得“龟图”中有245个“○”是n的值.【解答】解:第一个图形有:5个○,第二个图形有:2×1+5=7个○,第三个图形有:3×2+5=11个○,第四个图形有:4×3+5=17个○,由此可得第n个图形有:[n(n﹣1)+5]个○,则可得方程:[n(n﹣1)+5]=245解得:n1=16,n2=﹣15(舍去).故答案为:16.【点评】此题主要考查了图形的规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.三、解答题(共9小题,满分76分)19.计算:(1)17﹣8÷(﹣2)2+4×(﹣3)(2)2(2a2+9b)+3(﹣5a2﹣4b)【考点】有理数的混合运算;整式的加减.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=17﹣2﹣12=3;(2)原式=4a2+18b﹣15a2﹣12b=﹣11a2+6a.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)2x﹣2=3x+5(2).【考点】解一元一次方程.【专题】计算题.【分析】(1)先移项,再合并同类项,化系数为1即可;(2)先去分母,再去括号,移项,然后合并同类项,化系数为1即可.【解答】解:(1)移项得,2x﹣3x=5+2,合并同类项得,﹣x=7,化系数为1得,x=﹣7;(2)去分母得,2(2x+1)﹣(5x﹣1)=6,去括号得,4x+2﹣5x+1=6,移项得,4x﹣5x=6﹣2﹣1,合并同类项得,﹣x=3,化系数为1得,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.21.先化简,再求值:(4x2﹣5x+2)﹣3(x2﹣x),其中x=3.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=2x2﹣x+1﹣3x2+x=﹣x2﹣x+1,当x=3时,原式=﹣9﹣3+1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图1是由一些完全相同的小正方体所搭几何体的俯视图,其中小正方形中的数字表示该位置的小正方体的个数,请在图2的方格纸中分别画出这个几何体的主视图和左视图.【考点】作图-三视图;由三视图判断几何体.【分析】利用俯视图上的数字可得出几何体的摆放情况,进而得出主视图与左视图.【解答】解:如图所示:.【点评】此题主要考查了画三视图以及由三视图判断几何体的形状,想象出结合体的形状是解题关键.23.如图,点P是∠AOB的边OB上的一点.(1)过点M画OB的平行线MN;(2)过点P画OA的垂线,垂足为H;(3)过点P画OB的垂线,交OA于点C:则线段PH的长度是点P到AO的距离,PC是点C到直线OB的距离,因为直线外一点到直线上各点连接的所有线段中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是PH<PC<OC.(用“<”号连接).【考点】作图—复杂作图;垂线段最短.【分析】(1)根据BO的倾斜程度画图;(2)根据正方形的性质画图;(3)根据正方形的性质画图;再根据直线外一点到直线上各点连接的所有线段中,垂线段最短填空即可.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:线段PH的长度是点P到AO的距离,PC是点C到直线OB的距离,根据垂线段最短可得PH<PC<OC,故答案为:AO;PC;PH<PC<OC.【点评】此题主要考查了复杂作图,以及垂线段最短,关键是掌握正方形的性质,正方形四边相等每个角都是直角.24.(1)如图1,已知O是直线CD上的点,OA平分∠BOC,OE平分∠BOD,∠AOC=35°,求∠BOE,∠COE的度数.(2)如图2,已知AB=16cm,C是AB上一点,点D是线段AC的中点,点E是线段BC 的中点,求线段DE的长度.【考点】两点间的距离;角平分线的定义.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据平角的定义求出∠BOD的度数,根据角平分线的定义计算即可;(2)根据线段的中点的性质列式计算即可.【解答】解:(1)∵OA平分∠BOC,∴∠BOC=2∠AOC=70°,∴∠BOD=110°,∵OE平分∠BOD,∴∠BOE=55°,∴∠COE=∠BOC+∠BOE=125°;(2)∵点D是线段AC的中点,点E是线段BC的中点,∴DC=AC,CE=CB,∴DE=DC+CE=(AC+CB)=8cm.【点评】本题考查的是角的计算和两点间的距离的计算,掌握角平分线的定义、线段中点的性质、灵活运用数形结合思想是解题的关键.25.a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(﹣2)=32+3×(﹣2)=3.(1)求(﹣2)⊗3的值;(2)若(﹣3)⊗x=5,求x的值;(3)若3⊗(2⊗x)=﹣4+x,求x的值.【考点】有理数的混合运算;解一元一次方程.【专题】新定义.【分析】各项分别利用题中的新定义计算即可得到结果.【解答】解:(1)根据题意得:(﹣2)⊗3=(﹣2)2﹣2×3=4﹣6=﹣2;(2)利用题中新定义化简(﹣3)⊗x=5得:9﹣3x=5,解得:x=;(3)根据题中的新定义化简2⊗x=4+2x,3⊗(2⊗x)=3⊗(4+2x)=9+12+6x=6x+21,3⊗(2⊗x)=﹣4+x得:6x+21=﹣4+x,解得:x=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【考点】一元一次方程的应用;列代数式;分式方程的应用.【专题】应用题.【分析】(1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数;(2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.【解答】解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得,解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用以及分式方程的应用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.27.阅读下列材料:我们知道|x|的几何意义是:在数轴上数x对应的点与原点的距离,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为:|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.在解题中,我们会常常运用绝对值的几何意义.例1:解方程|x|=2.分析:由绝对值的几何意义知,该方程表示:求在数轴上与原点距离为2的点对应的数,故该方程的解为:x=±2;例2:解方程|x﹣1|+|x+2|=5.分析:由绝对值的几何意义知,该方程表示:求在数轴上与1和﹣2的距离之和为5的点对应的数,而在数轴上,1和﹣2的距离为|1﹣(﹣2)|=3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图可知看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x﹣1|=2的解为x1=﹣1,x2=3.(2)方程|x﹣2|+|x+3|=7的解为x1=﹣5,x2=3.(3)如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数为1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动,设运动时间为t秒(t>0)①求点A、C分别对应的数;②求点P、Q分别对应的数(用含t的式子表示);③试问当t为何值时,OP=OQ?【考点】一元一次方程的应用;数轴;绝对值.【专题】几何动点问题.【分析】(1)分类讨论:x<1,x≥1,可化简绝对值,根据解方程,可得答案;(2)分类讨论:x<﹣3,﹣3≤x<2,x≥2,根据绝对值的意义,可化简方程,根据解方程,可得答案.(3)①根据点B对应的数为1,AB=6,BC=2,得出点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.②根据动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,表示出移动的距离,即可得出对应的数;③分两种情况讨论:当点P与点Q在原点两侧时和当点P与点Q在同侧时,根据OP=OQ,分别列出方程,求出t的值即可.【解答】解:(1)当x<1时,原方程等价于﹣x+1=2.解得x=﹣1;当x≥1时,原方程等价于x﹣1=2,解得x=3,故答案为:x1=﹣1,x2=3;(2)当x<﹣3时,原方程等价于2﹣x﹣x﹣3=7,解得x=﹣4,当﹣3≤x<2时,原方程等价于2﹣x+x+3=7,不存在x的值;当x≥2时,原方程等价于x﹣2+x+3=7,解得x=3,故答案为x1=﹣5,x2=3.(3)①∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.②∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;③当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;所以,当t为或8时,OP=OQ.【点评】本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系和分类讨论思想的运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第一学期期末试卷( 时间:120分钟 分值:150分)一、开心选一选,表现出你的能力(每小题有且只有一个答案正确,请把你认为正确的答案前的字母填入答题纸中相应的空格内,每小题3分,计24分) 1.2011的相反数是( )A .2011B .-2011C .12011D .-120112.实数x ,y 在数轴上的位置如图所示,则( )A .0>>y xB .0<<y xC .0>>x yD .0<<x y3.如图,AB ⊥AC ,AD ⊥BC ,那么点C 到直线AD 的距离是指 ( ) A .线段AC 的长 B .线段AD 的长 C .线段DB 的长 D .线段CD 的长 4.已知代数式122--x x 的值等于4,则代数式2632--x x 的值 ( ) A .11 B .12 C .13 D .15 5.如图,点O 在直线AB 上,且OC ⊥OD ,若∠COA =36°,则∠DOB 的大小为( ) A .36° B .54° C .64° D .72°6.如图所示,由M 观测N 的方向是 ( ) A .北偏西60° B .南偏东60° C .北偏西30° D .南偏东30°7.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x 辆客车,可列方程为( ) A .4432864x -= B .3284464x += C .4464328x += D .3286444x +=8.观察右图及图形所对应的算式,根据你发现的规律计算 1+8+16+24+……+8n (n 是正整数)的结果为 ( )A .2(21)n +B .2(21)n -C .2(2)n +D .2n二、静心填一填,你一定能行(每题3分,共30分) 9.方程212-=x 的解为____________________ 10.上海世博会“中国馆”的展馆面积为15800 m 2,这个数据用科学记数法可表示为 m 2. 11.己知(b +3) 2+∣a -2∣=0,则ab = 。

12.当x = 时,代数式4x +2与3x —9的值互为相反数.13.在梯形面积公式s = 12(a +b ) h 中,若s =32,b =6,h =4,则 a =xy(第2题)A C D OB 第5题图 60°NM第6题图 A B D 第3题图1+8+16+24=?(3)(2) ⑴ 1+8=?1+8+16=?14.已知y =1是方程2-13 (m -y )=2y 的解,则代数式)22(2--m m 的值=15.如图,把一块直角三角板的直角顶点放在一条直线上,如果∠1=35°,那么∠2= .16.如图,已知线段AB =12cm ,点N 在AB 上,NB =2cm ,M 是AB中点,那么线段MN 的长为cm .17.一张桌子上重叠摆放了若干枚面值一元的硬币,从三个不同方向看它得到的平面图形如上图所示,那么桌上共有 枚硬币.18.一个几何体的表面展开图如右图所示,那么这个几何体的名称是. 三.潜心解一解,你一定会成功 19.计算(每小题4分,共16分)(1)(7)(10)(1)(2)-+++-+- (2)-22×5-(-3)×-5÷(-51) (3)4x 2y -9xy 2+7-4x 2y +10xy 2-4 (4)3(2x 2-xy )-4(x 2-xy +3) 20.解方程 (每小题4分,共8分) (1)5x -6=3x +2(2)1823652=--+x x 21. 先化简,再求值:(每小题4分,共8分) (1)23a 2+8a -12-6a -23a 2+14,其中a =12(2))2(2)3(22222b a ab b a ab b a ---+-,其中 2,1-=-=b aB2 1第15题图从上面看 从正面看 从左面看第17题第16题M A N哦……我忘了!只记得笔记本的价格是笔的3倍,买了10支笔和5本笔记本花了30元钱.第22题四、解答题.22. 画图题.利用网络线画图.过点P画直线AB的平行线PQ,画PM⊥AB垂足为C.(要在图中标出相关的点保留画图痕迹)(6分)23. “*”是新规定的这样一种运算法则:ababa22+=*,比如3)2(323)2(32-=-⨯⨯+=-*(8分)(1)试求()32-*的值;(2)若22=*x,求x的值;(3)若(-2))1(x**=x+9,求x的值。

24.线段AB=12 cm,点O是线段AB中点,点C是线段AB上一点,且AC=21BC,P是线段AC的中点.(8分)(1)求线段OP的长.(如图所示)(2)若将题目中:点C是线段AB上一点,改为点C是直线AB上一点,线段OP还可以是多长?(画出示意图)25.根据以下对话,分别求小红所买的笔和笔记本的价格. (8分)26. 剃须刀由刀片和刀架组成。

某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换),有关销售策略与售价等信息如下表所示:某段时间内,甲厂家销售了8000把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲的两倍,问这段时间内,乙销售了多少把刀架?多少片刀片?(10分)小红,你上周买的笔和笔记本的价格是多少?BOO C A B EF 1 0 1+ 1 11 0 0 01 1 0— 1 11 127.如图,已知OE 平分∠AOC ,OF 平分∠BOC (12分) (1)若∠AOB 是直角,∠BOC =60°,求∠EOF 的度数。

(2)若∠AOC =x°,∠EOF =y °,∠BOC =60°,请用x 的代数式来表示y .(3)如果∠AOC +∠EOF =210°,∠BOC =60°,则∠EOF 是多少度?28.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数为:(101)2=1×22+0×21+1=4+0+1=5;(1011)2=1×23+0×22+1×21+1=11;两个二进制数可以相加减,相加减时,将对应数位上的数相加减.与十进制中的“逢十进一”、“退一还十”相类似,应用“逢二进一”、“退一还二”的运算法则,如: (101)2+(11)2=(1000)2;(110)2+(11)2=(11)2,用竖式运算如右侧所示.(12分) (1)按此方式,将二进制(1001)2换算成十进制数的结果是 .(2)计算:(10101)2+(111)2= (结果仍用二进制数表示); (110010)2-(1111)2= (结果用十进制数表示).七年级数学试题参考答案一.开心选一选,表现出你的能力(每小题3分,计24分)1、B2、C3、D4、C5、B6、B7、C8、A二、静心填一填,你一定能行(每题3分,共30分)9、41- 10、1.58×104 11、9 12 、1 13、10 14、 115、55 ° 16、4 17、11 18、三棱柱(或棱柱)三.潜心解一解,你一定会成功(共32分)19、(1)原式=0 ---------4′ (2)55---------4′(3)xy 2+3 ---------4′ (4)2x 2+xy-12 ---------4′ 20、(1)x=4 ---------4′ (2)x=2 ---------4′ 21、(1)2a 41----------3′ 原式= 43---------4′(2)-ab 2 ---------3′ 原式=4 ---------4′四、解答题(共64分)22、图略---------6′23、(1)-8 ---------2′ (2)x=21----------5′ (3)x=-1 ---------8′ 24、解:(1)4 ---------3′ (2)图略---------5′ 12---------8′ 25、解:笔x 元/支,则笔记本 3x 元/本---------1′ 由题意,10x+5×3x=30 ---------5′ 解之得x=1.2 3x=3.6 ---------7′ 答:(略)---------8′26、设这段时间内乙厂家销售了x 把刀架. ---------1′ 依题意,得(0.55-0.5) ×50x+(1-6)x=2×(2.5-2) ×8000 解得x=400 ---------8′ 销售出的刀片数=50×400=20000(片)--------9′ 答:这段时间乙厂家销售出400把刀架,20000片刀片 10′ 27、(1) 45°---------4′ (2)y=12x -30-------- 8′ (3)50 -------- 12′ 28、 (1)6,8,…,2n+2----6′;(2)能,此时三角形内共有1004个点---------12′。

相关文档
最新文档