神经网络
神经网络基础精选
第一讲 神经网络基础
突触:突触是神经元的树突末梢连接另一神经元的突触 后膜 (postsynaptic membrane)的部分。它是神经元之 间相联系并进行信息传送的结构,是神经元之间连接的 接口。两个神经元的细胞质并不直接连通,两者彼此联 系是通过突触这种结构接口的。
膜电位:神经元细胞膜内外之间存在电位差,称为膜电 位。膜外为正,膜内为负。膜电压接受神经其它神经元 的输入后,电位上升或下降。当传入冲动的时空整合结 果,使膜电位上升,而且当超过叫做动作电位的阈值时, 细胞进入兴奋状态,产生神经冲动,由轴突输出,这个 过程称为兴奋。
•9
第一讲 神经网络基础
2 突触传递信息动作原理
膜电位(mv)
兴奋期, 大于动作阈值
动 作
绝对不应期:不响应任何刺激 阈
值
相对不应期:很难相应
t (ms)
根据突触传递信息的动作过 -55
程可以分为两种类型:兴奋型 -70
12
3
和抑制型。神经冲动使得细胞 膜电压升高超过动作电压进入
1ms 1ms 3ms
•5
树突
细胞体
细胞核 轴突
轴突末梢
图1-1a 神经元的解剖
•6
图1-1b 神经元的解剖
•7
第一讲 神经网络基础
细胞体:细胞体是由很多分子形成的综合体,内部含有 一个细胞核、核糖体、原生质网状结构等,它是神经元 活动的能量供应地,在这里进行新陈代谢等各种生化过 程。包括细胞核,细胞膜和细胞质。
n
Ii W ijXj为 第 i个 神 经 元 的 净 输 入
j1
•12
第一讲 神经网络基础
四 人工神经元与生物神经元区别 (1)模型传递的是模拟信号,生物输入输出均
神经网络基础知识
神经网络基础知识神经网络是一种模拟大脑处理信息的计算机系统。
神经网络通过自动学习和适应来执行任务,例如图像和语音识别。
对于普通人来说,理解神经网络可能有些困难。
因此,我们准备了这篇文章,以帮助您了解神经网络的基本知识。
1.神经元神经元是神经网络最基本的组成部分。
神经元接收输入信号,将其加权处理,然后传递给下一个神经元。
每个神经元都有一个阈值,当加权输入信号超过该阈值时,它产生一个输出信号。
神经元的目的是对输入信号进行分类或数据处理。
可以通过调整神经元之间的连接权重来改变神经元的行为,从而调整神经网络的性能。
2.神经网络神经网络由许多相互连接的神经元组成,这些神经元可以分为层。
每个神经元接收其上一层的输出信号,加权后将其传递到下一层。
一般而言,神经网络通常有三层:输入层,隐藏层和输出层。
输入层接收外部输入,并将其传递到隐藏层。
隐藏层在接收输入信号后产生新特征,这些新特征可以用于进一步处理,最终生成输出。
输出层将处理后的结果展示给用户。
3.训练神经网络训练神经网络分为两个步骤:前向传递和反向传递。
·前向传递:给网络提供输入数据,网络经过处理后,输出一个结果。
·反向传递:通过改变神经元之间的连接权重(weight)来训练神经网络,在误差反向传播的过程中逐渐调整。
误差越小,神经网络的性能就越好。
4.损失函数损失函数的主要功能是对神经网络的性能进行评估。
损失函数可以描述神经网络的误差和数据之间的差异。
损失函数的大小越小,神经网络的性能就越好。
常用的损失函数有平方损失函数、交叉熵损失函数、绝对值损失函数等。
5.深度学习深度学习是一种基于神经网络的机器学习方法,这种方法通过将多层神经网络组合起来来模拟人类大脑的学习方式。
深度学习的一个优点是可以在没有人工干预的情况下自动学习。
由于网络和数据集的复杂性,深度学习的计算成本很高,但是随着技术的发展,越来越多的公司和研究机构正在将深度学习应用于实际场景中。
神经网络(NeuralNetwork)
神经⽹络(NeuralNetwork)⼀、激活函数激活函数也称为响应函数,⽤于处理神经元的输出,理想的激活函数如阶跃函数,Sigmoid函数也常常作为激活函数使⽤。
在阶跃函数中,1表⽰神经元处于兴奋状态,0表⽰神经元处于抑制状态。
⼆、感知机感知机是两层神经元组成的神经⽹络,感知机的权重调整⽅式如下所⽰:按照正常思路w i+△w i是正常y的取值,w i是y'的取值,所以两者做差,增减性应当同(y-y')x i⼀致。
参数η是⼀个取值区间在(0,1)的任意数,称为学习率。
如果预测正确,感知机不发⽣变化,否则会根据错误的程度进⾏调整。
不妨这样假设⼀下,预测值不准确,说明Δw有偏差,⽆理x正负与否,w的变化应当和(y-y')x i⼀致,分情况讨论⼀下即可,x为负数,当预测值增加的时候,权值应当也增加,⽤来降低预测值,当预测值减少的时候,权值应当也减少,⽤来提⾼预测值;x为正数,当预测值增加的时候,权值应当减少,⽤来降低预测值,反之亦然。
(y-y')是出现的误差,负数对应下调,正数对应上调,乘上基数就是调整情况,因为基数的正负不影响调整情况,毕竟负数上调需要减少w的值。
感知机只有输出层神经元进⾏激活函数处理,即只拥有⼀层功能的神经元,其学习能⼒可以说是⾮常有限了。
如果对于两参数据,他们是线性可分的,那么感知机的学习过程会逐步收敛,但是对于线性不可分的问题,学习过程将会产⽣震荡,不断地左右进⾏摇摆,⽽⽆法恒定在⼀个可靠地线性准则中。
三、多层⽹络使⽤多层感知机就能够解决线性不可分的问题,输出层和输⼊层之间的成为隐层/隐含层,它和输出层⼀样都是拥有激活函数的功能神经元。
神经元之间不存在同层连接,也不存在跨层连接,这种神经⽹络结构称为多层前馈神经⽹络。
换⾔之,神经⽹络的训练重点就是链接权值和阈值当中。
四、误差逆传播算法误差逆传播算法换⾔之BP(BackPropagation)算法,BP算法不仅可以⽤于多层前馈神经⽹络,还可以⽤于其他⽅⾯,但是单单提起BP算法,训练的⾃然是多层前馈神经⽹络。
什么是神经网络
什么是神经网络古老的东西没有任何的设计思想可言,然而,随着科学和技术的发展,人类已经可以站在宇宙的设计师的角度去设计思惙,神经网络正是其中最有成效的例子。
神经网络十分广泛地应用于人工智能,它能够通过分析大量数据,产生出超过人类智能的结果。
本文旨在介绍神经网络,以便大家轻松入门并最终掌握这门学科。
一、概念介绍神经网络是一种人工模拟生物神经网络的技术。
它由许多神经元组成,从而建模和模仿人的中控脑的神经架构,从而实现复杂的计算功能。
它可以执行大量分析和计算,学习输入和输出的联系,并通过学习输出受控制。
二、神经网络应用1、大数据领域应用:神经网络是大数据分析的有力工具,可用于模仿真实生态系统中的自然过程,并以真实细节达到预期的准确性。
2、语言和视觉领域应用:语言神经网络可以准确地理解微观语言结构,从而能够精准地解析语义关系,从而完成宝贵的文本分析任务,如机器翻译、文本理解等。
视觉神经网络可以准确识别形态,并帮助自动驾驶或机器视觉检测和检测任务。
3、自然语言处理领域应用:神经网络技术可以帮助机器迅速理解非结构化的自然语言内容,增强其理解能力,从而完成大量具有挑战性的自然语言处理任务。
三、构成神经网络神经网络由三个基本元素构成:1、输入层:神经网络的输入层由输入的信号和数据节点组成,每一个节点就是一个输入信号。
2、隐藏层:隐藏层是神经网络复杂性的核心,是把输入和输出两层之间的桥梁,它可以有几个甚至数十个神经元组成,它分析输入数据和反馈信息,最终产生输出结果。
3、输出层:输出层可以是一个或几层神经元,它根据网络计算出来的结果和反馈信息,产生最终的输出结果。
什么是神经网络?
什么是神经网络?神经网络是一种模仿人脑神经系统构建的计算模型。
它由一组互相连接的神经元单元组成,这些神经元单元可以传输和处理信息。
神经网络可以通过研究和训练来理解和解决问题。
结构神经网络由多个层级组成,包括输入层、隐藏层和输出层。
每个层级都由多个神经元单元组成。
输入层接收外部的数据输入,隐藏层和输出层通过连接的权重来处理和传递这些输入信息。
工作原理神经网络的工作原理主要包括两个阶段:前向传播和反向传播。
- 前向传播:输入数据通过输入层传递给隐藏层,然后进一步传递到输出层。
在传递的过程中,神经网络根据权重和激活函数计算每个神经元的输出值。
- 反向传播:通过比较神经网络的输出和期望的输出,计算误差,并根据误差调整权重和偏差。
这个过程不断重复,直到神经网络的输出接近期望结果。
应用领域神经网络在许多领域有广泛的应用,包括:- 机器研究:神经网络可以用于图像识别、语音识别、自然语言处理等任务。
- 金融领域:用于预测股票价格、风险评估等。
- 医疗领域:用于疾病诊断、药物发现等。
- 自动驾驶:神经网络在自动驾驶汽车中的感知和决策中有重要作用。
优势和局限性神经网络的优势包括:- 可以研究和适应不同的数据模式和问题。
- 能够处理大量的数据和复杂的非线性关系。
- 具有并行计算的能力,可以高效处理大规模数据。
神经网络的局限性包括:- 需要调整许多参数,并且结果可能不稳定。
- 解释性较差,很难理解模型的内部工作原理。
总结神经网络是一种模仿人脑神经系统构建的计算模型,具有广泛的应用领域和一定的优势和局限性。
随着技术的不断发展,神经网络在各个领域的应用将会越来越广泛。
神经网络ppt课件
通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
神经网络简介
神经网络简介神经网络(Neural Network),又被称为人工神经网络(Artificial Neural Network),是一种模仿人类智能神经系统结构与功能的计算模型。
它由大量的人工神经元组成,通过建立神经元之间的连接关系,实现信息处理与模式识别的任务。
一、神经网络的基本结构与原理神经网络的基本结构包括输入层、隐藏层和输出层。
其中,输入层用于接收外部信息的输入,隐藏层用于对输入信息进行处理和加工,输出层负责输出最终的结果。
神经网络的工作原理主要分为前向传播和反向传播两个过程。
在前向传播过程中,输入信号通过输入层进入神经网络,并经过一系列的加权和激活函数处理传递到输出层。
反向传播过程则是根据输出结果与实际值之间的误差,通过调整神经元之间的连接权重,不断优化网络的性能。
二、神经网络的应用领域由于神经网络在模式识别和信息处理方面具有出色的性能,它已经广泛应用于各个领域。
1. 图像识别神经网络在图像识别领域有着非常广泛的应用。
通过对图像进行训练,神经网络可以学习到图像中的特征,并能够准确地判断图像中的物体种类或者进行人脸识别等任务。
2. 自然语言处理在自然语言处理领域,神经网络可以用于文本分类、情感分析、机器翻译等任务。
通过对大量语料的学习,神经网络可以识别文本中的语义和情感信息。
3. 金融预测与风险评估神经网络在金融领域有着广泛的应用。
它可以通过对历史数据的学习和分析,预测股票价格走势、评估风险等,并帮助投资者做出更科学的决策。
4. 医学诊断神经网络在医学领域的应用主要体现在医学图像分析和诊断方面。
通过对医学影像进行处理和分析,神经网络可以辅助医生进行疾病的诊断和治疗。
5. 机器人控制在机器人领域,神经网络可以用于机器人的感知与控制。
通过将传感器数据输入到神经网络中,机器人可以通过学习和训练来感知环境并做出相应的反应和决策。
三、神经网络的优缺点虽然神经网络在多个领域中都有着广泛的应用,但它也存在一些优缺点。
神经网络基础知识介绍
神经网络基础知识介绍神经网络是一种模拟生物神经系统的计算模型,通过对复杂的非线性模式进行学习和分类,逐步发展成为目前人工智能领域中的重要算法之一。
本篇文章将重点介绍神经网络的基础知识,包括神经元、层、权重、偏置等概念及其在神经网络中的应用。
一、神经元神经元是神经网络的基本单元,也称为“节点”或“神经元”。
它们模拟了生物神经元的功能,根据输入信号产生输出信号。
一个神经元通常接受多个输入信号,对每个输入信号都有一个权重,通过加权和计算后,再通过一个激活函数进行处理,最终产生输出信号。
二、层神经元可以组合成层,层是神经网络的基本组成部分。
神经网络通常包括输入层、中间层和输出层。
输入层负责将数据输入网络,中间层则负责逐步分析并提取数据的特征,输出层则输出最终的结果。
层与层之间的神经元之间也有权重和偏置。
三、权重权重是神经元之间互相连接的强度,是神经网络的核心参数之一。
每个输入信号都有一个对应的权重,权重的大小决定了该输入信号对神经元输出的影响程度。
在神经网络的训练中,权重会不断地调整以达到最优的分类效果。
四、偏置偏置是每个神经元的一个常数项,用于控制神经元的激活状态。
偏置通常被设置为一个较小的值,以确保神经元能够在没有输入信号的情况下仍然处于激活状态。
五、前向传播前向传播是神经网络中最基本的计算过程之一,也称为“向前计算”或“前向推理”。
在前向传播过程中,输入数据从输入层顺序传递到隐藏层和输出层,直至产生最终的输出结果。
神经网络的预测和分类都是基于前向传播算法完成的。
六、反向传播反向传播是神经网络中最重要的学习算法之一,用于不断调整神经网络的权重和偏置以提高其分类能力。
在反向传播过程中,先计算输出层的误差,再按照一定的规则将误差反向传播到每一层的神经元中,从而计算每个神经元上的误差,并根据这些误差值来更新神经元之间的权重和偏置。
综上所述,神经网络作为一种模拟生物神经系统的计算模型,通过不断学习和调整,在图像识别、自然语言处理、语音识别等领域中都发挥了越来越重要的作用。
神经网络
1. 什么是神经网络
• 神经网络(Neural Networks,NN)是由大量的、简 单的处理单元(称为神经元)广泛地互相连接而形 成的复杂网络系统,它反映了人脑功能的许多基本 特征,是一个高度复杂的非线性动力学习系统。 • 神经网络具有大规模并行、分布式存储和处理、自 组织、自适应和自学能力,特别适合处理需要同时 考虑许多因素和条件的、不精确和模糊的信息处理 问题。 • 神经网络的发展与神经科学、数理科学、认知科学、 计算机科学、人工智能、信息科学、控制论、机器 人学、微电子学、心理学、光计算、分子生物学等 有关,是一门新兴的边缘交叉学科。
概述
• BP算法的出现
非循环多级网络的训练算法 UCSD PDP小组的Rumelhart、Hinton和Williams1986年独立地给出 了BP算法清楚而简单的描述 1982年,Paker就完成了相似的工作 1974年,Werbos已提出了该方法
• BP网络主要用于: 1、函数逼近:用输入向量和相应的输出向量训练一个网络逼 近一个函数。 2、模式识别:用一个特定的输出向量将它与输入向量联系起 来。 3、分类:把输入向量 以所定义的合适方式进行分类。 4、数据压缩:减少输出向量维数以便于传输或存储。
神经网络中神经元的构造方式是和训练网络的学习算法紧 密相连的。一般来说,我们可以区分三种不同的网络结构。
①单层前馈网络 在分层网络中,神经元以层的形式 组织。在最简单的分层网络中,源节 点构成输入层,直接投射到神经元的 输出层,也就是说,这个网络是严格 的无圈的或前馈的。 如图所示,输出输入层各有4个节点, 这样的一个网络称为单层网。
3.鲁棒性和容错性。
神经网络具有信息存储的分布性,故 局部的损害会使人工神经网络的运行适 度减弱,但不会产生灾难性的错误。
神经网络基本介绍PPT课件
神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:
什么是神经网络
什么是神经网络神经网络是当今人工智能技术中最常见的模式,它引发了各种科学革命,无论是工程学还是商业,它在不同行业和应用中发挥着越来越大的作用。
本文将介绍神经网络在解决各种问题方面的神奇力量。
1. 什么是神经网络神经网络是一种仿照人脑的“机器学习”算法。
它是一种可以从大量示例分析和学习的计算机算法,具有自适应性,可大规模搜索。
神经网络的算法就像人类的记忆技能,可以自行学习数据并扩展知识,从而解决一些非常困难的问题,因此也被称为“深度学习”算法。
2. 神经网络如何工作神经网络通过网络层积的多层神经元结构,可以从大量输入数据中特征提取、预测和学习,这些神经元结构在建立连接的基础上,可以识别复杂的模式,从而整合起输入到输出之间的映射。
在学习过程中,神经网络根据示例数据调整其参数,在训练完毕后输入到测试集中,根据其表现度量精度,从而让人工智能系统能够有效地满足需求。
3. 神经网络的应用(1)计算机视觉:神经网络在人工智能方面应用最为广泛的是计算机视觉,它可以被用于图像识别、物体检测、图像检索等。
(2)自然语言处理:神经网络还可以用于自然语言处理,用于文本分类、问答机器人、聊天机器人等。
(3)机器学习:神经网络也是机器学习的最常见方法,可以用于大规模优化、行为预测和分类。
(4)语音识别:神经网络可以用于语音识别,可以对输入的音频信号进行分析,从而实现自动语音识别。
(5)机器人学:神经网络技术也被应用于机器人学,以控制机器人的动作和行为,可以实现在环境中自主行走。
4.结论通过以上介绍可以看出,神经网络具有极大的潜力,能够自动学习和发现规律,并能应用到各种不同的领域,迅速应对瞬息万变的人工智能环境。
什么是神经网络?
什么是神经网络?随着人工智能技术的不断发展,神经网络已成为热门的研究领域之一。
但很多人并不了解神经网络是什么,本文将详细介绍这一领域的基本概念。
一、神经网络的定义和类别神经网络,又称为人工神经网络,其定义为由大量节点(也称为神经元)互相连接组成的网络。
根据神经元之间的连接方式和模型参数的不同,神经网络被分为多种类别,例如前馈神经网络、反馈神经网络和卷积神经网络等。
其中,前馈神经网络是应用最广泛的一类,其结构为由输入层、隐藏层和输出层所构成的三层结构。
二、神经网络的工作原理神经网络的工作原理是通过大量的样本数据进行训练,不断优化神经元间的连接权重,使其能够预测未知数据的结果。
具体过程为:将输入数据通过输入层传递至隐藏层,通过各隐藏节点的权重计算产生输出值,再将输出值传递到输出层进行结果输出,最终与真实结果进行比对得出误差,根据误差值不断更新各神经元之间的权重,使神经网络逐渐提高准确率。
三、神经网络的应用领域神经网络已广泛应用于图像识别、机器学习、自然语言处理、语音识别、智能推荐等领域。
在图像识别中,卷积神经网络能够通过分层抽象特征识别出图像中物体的不同特征,从而实现识别分类;在自然语言处理中,循环神经网络可以实现对语句序列的依赖性建模,对于语言翻译和情感分析等任务有很好的应用前景。
四、神经网络的优缺点神经网络作为一种优秀的机器学习模型,其优点体现在能够处理大量高维度数据和非线性问题、能够进行自我学习和适应、较为灵活等。
但在实际应用中,也存在一些不足之处,例如神经网络训练周期长、容易出现过拟合现象、需要大量数据支持等。
五、神经网络技术的发展前景随着神经网络技术的不断发展,其应用领域也将会得到进一步拓展。
未来,神经网络将会应用于更多领域,例如智能家居、智能医疗、智能制造等,带来更多便利和效益。
总结神经网络是一种通过模拟人类神经元的方式实现信息处理和分析的技术,其应用领域十分广泛,未来有着较大发展空间。
神经网络基本知识
神经网络基本知识目录1. 内容概要 (2)1.1 神经网络的概念及发展 (2)1.2 神经网络的应用领域 (4)1.3 本文组织结构 (5)2. 神经网络的数学基础 (6)2.1 激活函数及其种类 (7)2.2 损失函数 (8)2.2.1 均方误差 (10)2.2.2 交叉熵 (10)2.2.3 其他损失函数 (11)2.3 反向传播算法 (13)2.4 梯度下降优化算法 (14)2.4.1 批量梯度下降 (14)2.4.2 随机梯度下降 (15)2.4.3 小批量梯度下降 (17)2.4.4 其他优化算法 (17)3. 神经网络的神经元结构 (18)3.1 特征节点和输出节点 (19)3.2 权重和偏置 (20)4. 常用神经网络架构 (21)4.1 多层感知机 (23)4.2 卷积神经网络 (24)4.2.1 卷积层 (26)4.2.2 池化层 (27)4.2.3 全连接层 (28)4.3 反馈神经网络 (29)4.4 其他神经网络架构 (31)1. 内容概要神经元模型:深入讲解神经网络的基本单元——神经元,包括其结构、激活函数以及学习机制。
网络架构:探讨常见神经网络架构,例如感知机、多层感知机、卷积神经网络以及循环神经网络,并介绍各自的特点和适用场景。
训练过程:分解神经网络训练的过程,包括数据预处理、模型优化、正则化技术以及评估指标等。
应用案例:展示神经网络在图像识别、自然语言处理、语音识别等实际应用中的成果。
未来发展:展望神经网络发展趋势,包括新的架构设计、算法改进以及硬件平台的优化。
本文档旨在为初学者提供一站式学习资源,帮助理解神经网络的基本原理,激发您对深度学习的兴趣和理解。
1.1 神经网络的概念及发展神经网络是一种受到生物神经元工作原理启发的人工智能技术。
这种模型由多个节点(即神经元)相互连接组成,它们能够处理和传递信息,这是一个由输入层、若干隐藏层和输出层构成的层次结构。
神经网络通过对输入数据学习,并按层次逐层传递信息,最终输出结果。
什么是神经网络?
什么是神经网络?
神经网络是最近几年引起重视的计算机技术,也是未来发展的重要方向之一。
它以自己的独特优势赢得众多受众,从早期的生物神经科学家到IT从业者都在关注它。
今天,让我们一起来解读神经网络:
神经网络(Neural Network)对应于生物学中的神经元网络,是一种人工智能的学习模型,旨在模拟生物的神经元网络,利用大量的计算节点来处理复杂的任务,也就是运用大量数据以及人工智能算法,使机器可以自动学习,进而实现自动决策。
在神经网络中,有多个计算节点,这些节点组成一个网络,每一节点都有不同的权重和偏差,这些计算节点可以传递数据并进行处理。
神经网络的结构可以分为输入层、隐藏层和输出层。
输入层的节点用来接收外部输入的数据,隐藏层的节点会通过不同形式的处理把输入变成有效的数据,最后输出层就会输出处理结果。
随着计算机技术的发展,神经网络的应用越来越广泛,已经被广泛应用于很多方面:
- 计算机视觉:神经网络可以分析视频流中的图像,从而可以实现自动
识别,有助于更好地理解图像内容;
- 自动驾驶:神经网络可以帮助自动车辆在复杂的环境中顺利行驶;
- 机器学习:神经网络可以构建从历史数据中学习出来的模型,帮助企
业做出准确的决策;
此外,神经网络还有许多其他的应用,比如自然语言处理、机器翻译、文本挖掘等,都是极受欢迎的计算机技术。
神经网络近些年来发展得很快,从早期的深度学习以及模式识别一步
步发展到现在的再生成模型、跨模态深度学习,也成为当下热门话题。
未来,人工智能的发展将变得更加普及,其核心技术之一是神经网络,因此神经网络也将更加重要,它可以实现更智能、更可靠的机器学习
任务,这也是未来的趋势。
神经网络基础PPT课件
AlexNet
VGGNet
ResNet
DenseNet
由Yann LeCun等人提出 ,是最早的卷积神经网 络之一,用于手写数字 识别。
由Alex Krizhevsky等人 提出,获得了2012年 ImageNet图像分类竞 赛的冠军,引入了ReLU 激活函数和数据增强等 技巧。
由牛津大学Visual Geometry Group提出 ,通过反复堆叠3x3的小 型卷积核和2x2的最大池 化层,构建了深度较深 的网络结构。
内部表示。
隐藏层
通过循环连接实现信息 的持久化,捕捉序列中
的动态信息。
输出层
将隐藏层的状态转化为 具体的输出。
循环连接
将隐藏层的状态反馈到 输入层或隐藏层自身, 实现信息的循环传递。
序列建模与长短时记忆网络(LSTM)
序列建模
01
RNN通过循环连接实现对序列数据的建模,能够处理任意长度
的序列输入。
久化。
Jordan网络
与Elman网络类似,但将输出 层的状态反馈到隐藏层。
LSTM网络
长短时记忆网络,通过引入门 控机制实现对长期依赖信息的
有效处理。
GRU网络
门控循环单元网络,一种简化 的LSTM结构,具有较少的参
数和较快的训练速度。
06 深度学习框架 TensorFlow使用指南
TensorFlow安装与配置教程
非线性可分问题
不存在一条直线(或超平面)能够将两类样本完全分开的 问题。对于这类问题,需要使用非线性分类器或者核方法 等技巧进行处理。
处理非线性可分问题的方法
包括使用多项式核、高斯核等核函数将数据映射到高维空 间使其线性可分;或者使用神经网络等非线性模型对数据 进行建模和分类。
神经网络的基本知识点总结
神经网络的基本知识点总结一、神经元神经元是组成神经网络的最基本单元,它模拟了生物神经元的功能。
神经元接收来自其他神经元的输入信号,并进行加权求和,然后通过激活函数处理得到输出。
神经元的输入可以来自其他神经元或外部输入,它通过一个权重与输入信号相乘并求和,在加上偏置项后,经过激活函数处理得到输出。
二、神经网络结构神经网络可以分为多层,一般包括输入层、隐藏层和输出层。
输入层负责接收外部输入的信息,隐藏层负责提取特征,输出层负责输出最终的结果。
每一层都由多个神经元组成,神经元之间的连接由权重表示,每个神经元都有一个对应的偏置项。
通过调整权重和偏置项,神经网络可以学习并适应不同的模式和规律。
三、神经网络训练神经网络的训练通常是指通过反向传播算法来调整网络中每个神经元的权重和偏置项,使得网络的输出尽可能接近真实值。
神经网络的训练过程可以分为前向传播和反向传播两个阶段。
在前向传播过程中,输入数据通过神经网络的每一层,并得到最终的输出。
在反向传播过程中,通过计算损失函数的梯度,然后根据梯度下降算法调整网络中的权重和偏置项,最小化损失函数。
四、常见的激活函数激活函数负责对神经元的输出进行非线性变换,常见的激活函数有Sigmoid函数、Tanh函数、ReLU函数和Leaky ReLU函数等。
Sigmoid函数将输入限制在[0,1]之间,Tanh函数将输入限制在[-1,1]之间,ReLU函数在输入大于0时输出等于输入,小于0时输出为0,Leaky ReLU函数在输入小于0时有一个小的斜率。
选择合适的激活函数可以使神经网络更快地收敛,并且提高网络的非线性拟合能力。
五、常见的优化器优化器负责更新神经网络中每个神经元的权重和偏置项,常见的优化器有梯度下降法、随机梯度下降法、Mini-batch梯度下降法、动量法、Adam优化器等。
这些优化器通过不同的方式更新参数,以最小化损失函数并提高神经网络的性能。
六、常见的神经网络模型1、全连接神经网络(Fully Connected Neural Network):每个神经元与下一层的每个神经元都有连接,是最基础的神经网络结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。
近年来,美国等先进国家又相继投入巨额资金,制定出强化研究计划,开展对脑功能和新型智能计算机的研究。
人脑是自生命诞生以来,生物经过数十亿年漫长岁月进化的结果,是具有高度智能的复杂系统,它不必采用繁复的数字计算和逻辑运算,却能灵活处理各种复杂的,不精确的和模糊的信息,善于理解语言、图象并具有直觉感知等功能。
人脑的信息处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。
单个神经细胞的工作速度并不高,但它通过超并行处理使得整个系统实现处理的高速性和信息表现的多样性。
因此,从信息处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能信息处理方法,一直是人工智能追求的目标。
神经网络就是通过对人脑的基本单元---神经元的建模和联结,来探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。
本文介绍神经网络的特点以及近年来有关神经网络与混沌理论、模糊计算和遗传算法等相结合的混合神经网络研究的动态。
回顾认知科学的发展,有所谓符号主义和联结主义两大流派。
符号主义从宏观层次上,撇开人脑的内部结构和机制,仅从人脑外在表现出来的智能现象出发进行研究。
例如,将记忆、判定、推理、学习等心理活动总结成规律、甚至编制成规则,然后用计算机进行模拟,使计算机表现出各种智能。
符号主义认为,熟悉的基本元素是符号,认知过程是对符号表示的运算。
人类的语言,文字的思维均可用符号来描述,而且思维过程只不过是这些符号的存储、变换和输入、输出而已。
以这种方法实现的系统具有串行、线性、准确、简洁、易于表达的特点,体现了逻辑思维的基本特性。
七十年代的专家系统和八十年代日本的第五代计算机研究计划就是其主要代表。
联接主义则与其不同,其特点是从微观出发。
联接主义认为符号是不存在的,认知的基本元素就是神经细胞,认知过程是大量神经元的联接,以及这种联接所引起的神经元的不同兴奋状态和系统所表现出的总体行为。
八十年代再度兴起的神经网络和神经计算机就是这种联接主义的代表。
神经网络的主要特征是:大规模的并行处理和分布式的信息存储,良好的自适应、自组织性,以及很强的学习功能、联想功能和容错功能。
与当今的冯.诺依曼式计算机相比,更加接近人脑的信息处理模式。
主要表现如下:☆神经网络能够处理连续的模拟信号。
例如连续灰度变化的图象信号。
☆能够处理混沌的、不完全的、模糊的信息。
☆传统的计算机能给出精确的解答,神经网络给出的是次最优的逼近解答。
☆神经网络并行分布工作,各组成部分同时参与运算,单个神经元的动作速度不高,但总体的处理速度极快。
☆神经网络信息存储分布于全网络各个权重变换之中,某些单元障碍并不影响信息的完整,具有鲁棒性。
☆传统计算机要求有准确的输入条件,才能给出精确解。
神经网络只要求部分条件,甚至对于包含有部分错误的输入,也能得出较好的解答,具有容错性。
☆神经网络在处理自然语言理解、图象模式识别、景物理解、不完整信息的处理、智能机器人控制等方面有优势。
符号主义和联接主义两者各有特色,学术界目前有一种看法:认为基于符号主义得传统人工智能和基于联接主义得神经网络是分别描述人脑左、右半脑的功能,反映了人类智能的两重性:精确处理和非精确处理,分别面向熟悉的理性和感性两个方面,两者的关系应该是互补而非互相代替。
理想的智能系统及其表现的智能行为应是两者相互结合的结果。
接下去的问题是,符号AI和联接AI具体如何结合,两者在智能系统中相互关系如何?分别扮演什么角色?目前这方面发表的文献很多,大致有如下几种类型:1.松耦合模型:符号机制的专家系统与联接机制的神经网络通过一个中间媒介进行通讯。
2.紧耦合模型:与松耦合模型相比较,其通讯不是通过外部数据进行,而是直接通过内部数据完成,具有较高的效率。
其主要类型有嵌入式系统和黑板结构等。
3.转换模型:将专家系统的知识转换成神经网络,或把神经网络转换成专家系统的知识,转换前的系统称为源系统,转换后的系统称为目标系统,由一种机制转成另一种机制。
假如源系统是专家系统,目标系统是神经网络,则可获得学习能力及自适应性;反之,可获得单步推理能力、解释能力及知识的显式表示。
当然,转换需要在两种的机制之间,确定结构上的一致性,目前主要问题是还没有一种完备而精确的转换方法实现两者的转换。
有待进一步研究。
4.综合模型:综合模型共享数据结构和知识表示,这时联接机制和符号机制不再分开,两者相互结合成为一个整体,既具有符号机制的逻辑功能,又有联接机制的自适应和容错性的优点和特点。
例如联接主义的专家系统等。
近年来神经网络研究的另一个趋势,是将它与模糊逻辑、混沌理论、遗传进化算法等相结合,即所谓“混合神经网络”方法。
由于这些理论和算法都是属于仿效生物体信息处理的方法,人们希望通过她们之间的相互结合,能够获得具有有柔性信息处理功能的系统。
下面分别介绍。
混沌理论是对貌似无序而实际有序,表面上看来是杂乱无章的现象中,找出其规律,并予以处理的一门学科。
早在七十年代,美国和欧洲的一些物理学家、生物学家、数学家就致力于寻求在许许多多不同种类的不规则性之间的联系。
生物学家发现在人类的心脏中有混沌现象存在,血管在显微镜下交叉缠绕,其中也有惊人的有序性。
在生物脑神经系统中从微观的神经膜电位到宏观的脑电波,都可以观察到混沌的性态,证实混沌也是神经系统的正常特性。
九十年代开始,则更进一步将混沌和神经网络结合起来,提出多种混沌神经网络模型,并探索应用混沌理论的各种信息处理方法。
例如,在神经元模型中,引入神经膜的不应性,研究神经元模型的混沌响应,研究在神经网络的方程中,不应性项的定标参数,不定性时间衰减常数等参数的性质,以及这些参数于神经网络混沌响应的关系,并确定混沌---神经网络模型具有混沌解的参数空间。
经过试验,由这种混沌神经网络模型所绘出的输出图形和脑电图极为相似。
现代脑科学把人脑的工作过程看成为复杂的多层次的混沌动力学系统。
脑功能的物理基础是混沌性质的过程,脑的工作包含有混沌的性质。
通过混沌动力学,研究、分析脑模型的信息处理能力,可进一步探索动态联想记忆、动态学习并应用到模式识别等工程领域。
例如:☆对混沌的随机不规则现象,可利用混沌理论进行非线性猜测和决策。
☆对被噪声所掩盖的微弱信号,假如噪声是一种混沌现象,则可通过非线性辨识,有效进行滤波。
☆利用混沌现象对初始值的敏锐依靠性,构成模式识别系统。
☆研究基于混沌---神经网络自适应存储检索算法。
该算法主要包括三个步骤,即:特征提取、自适应学习和检索。
模式特征提取采用从简单的吸引子到混沌的层次分支结构来描述,这种分支结构有可能通过少数几个系统参数的变化来加以控制,使复杂问题简单化。
自适应学习采用神经网络的误差反传学习法。
检索过程是通过一个具有稳定吸引子的动力学系统来完成,即利用输入的初始条件与某个吸引子之间的存在直接对应关系的方法进行检索。
利用这种方法可应用于模式识别。
例如黑白图象的人脸识别。
八十年代以来在模糊集理论和应用方面,也有很大进展。
1983年美国西海岸AI研究所发表了称为REVEAL的模糊辅助决策系统并投入市场,1986年美国将模糊逻辑导入OPS5,并研究成功模糊专家系统外壳FLOPS,1987年英国发表采用模糊PROLOG的智能系统FRIL 等。
除此通用工具的研制以外,各国还开发一系列用于专用目的的智能信息处理系统并实际应用于智能控制、模式识别、医疗诊断、故障检测等方面。
模糊集理论和神经网络虽然都属于仿效生物体信息处理机制以获得柔性信息处理功能的理论,但两者所用的研究方法却大不相同,神经网络着眼于脑的微观网络结构,通过学习、自组织化和非线性动力学理论形成的并行分析方法,可处理无法语言化的模式信息。
而模糊集理论则着眼于可用语言和概念作为代表的脑的宏观功能,按照人为引入的隶属度函数,逻辑的处理包含有模糊性的语言信息。
神经网络和模糊集理论目标相近而方法各异。
因此假如两者相互结合,必能达到取长补短的作用。
将模糊和神经网络相结合的研究,约在15年前便已在神经网络领域开始,为了描述神经细胞模型,开始采用模糊语言,把模糊集合及其运算用于神经元模型和描述神经网络系统。
目前,有关模糊---神经网络模型的研究大体上可分为两类:一类是以神经网络为主,结合模糊集理论。
例如,将神经网络参数模糊化,采用模糊集合进行模糊运算。
另一类以模糊集、模糊逻辑为主,结合神经网络方法,利用神经网络的自组织特性,达到柔性信息处理的目的。
与神经网络相比,模糊集理论和模糊计算是更接近实用化的理论,非凡近年来美国和日本的各大公司都纷纷推出各种模糊芯片,研制了型号繁多的模糊推理板,并实际应用于智能控制等各个应用领域,建立“模糊工程”这样一个新领域。
日本更首先在模糊家电方面打开市场,带有模糊控制,甚至标以神经---模糊智能控制的洗衣机、电冰箱、空调器、摄象机等已成为新一代家电的时髦产品。
我国目前市场上也有许多洗衣机,例如荣事达洗衣机就是采用模糊神经网络智能控制方式的洗衣机。
遗传算法是模拟生物的进化现象的一种概率搜索和最优化方法。
是模拟自然淘汰和遗传现象的工程模型。
GA的历史可追溯到1960年,明确提出遗传算法的是1975年美国Michigan大学的Holland 博士,他根据生物进化过程的适应现象,提出如下的GA模型方案:1.将多个生物的染色体组成的符号集合,按文字进行编码,称为个体。
2.定义评价函数,表示个体对外部环境的适应性。
其数值大的个体表示对外部环境的适应性高,它的生存的概率也高。
3.每个个体由多个“部分”组合而成,每个部分随机进行交叉及忽然变异等变化,并由此产生子孙。
4.个体的集合通过遗传,由选择淘汰产生下一代。
遗传算法提出之后,很快得到人工智能、计算机、生物学等领域科学家的高度重视,并在各方面广泛应用。
1989年美国Goldberg博士发表一本专著:“GeneticAlgorithmsinSearch,OptimizationandMachineLearning”。
出版后产生较大影响,该书对GA的数学基础理论,GA 的基本定理、数理分析以及在搜索法、最优化、机器学习等GA应用方面进行了深入浅出的介绍,并附有Pascal模拟程序。
1985年7月在美国召开第一届“遗传算法国际会议”。
以后每隔两年召开一次。
近年来,遗传算法发展很快,并广泛应用于信息技术的各个领域,例如:智能控制:机器人控制。
机器人路径规划。
工程设计:微电子芯片的布局、布线;通信网络设计、滤波器设计、喷气发动机设计。