正交试验方差分析(通俗易懂)
正交试验的方差分析-

1. 对于未排满列的正交表,如L9(34)中只有3个因素 的情况,对第四列仍进行计算,求K14,K24,K34等,
并且求出第四列的差方和Q4。
这时会出现什是完全可以理解的,因为该表未排满时,正交表 事实上不完全符合正交性的原则。 这个差方和又叫做“空列误差”。又叫第一类误差。 这就说明Qe1可直接由空列误差计算。
如:L4(23)试验,重复5次,
则fe2=4(5-1)=16。
该项为3×3=9次。
4. 总的误差Qe=Qe1+Qe2。 其中:
Qe 2
1 n r 2 2 x ij ( x ij ) r i 1 j 1 i 1 j 1
m
r
r: 各号重复次数;n: 试验号总数。 5. 误差自由度: fe=fe1+fe2。 其中: fe2=n(r-1)。
2. 还有一种误差,就是重复试验误差。
在实际工作中,每一水平不可能只作一次试验, 一般都要做重复试验。重复试验引入的误差就叫重 复试验误差,称为第二类误差。 3. 当考虑重复试验时,那么计算各Ki值时须用重复 几次的和;另外,计算差方和时,水平数m项要改为 水平数与重复次数的乘积,如3水平,重复3次,则
实验设计的方差分析与正交试验

实验设计的方差分析与正交试验一、实验设计中的方差分析方差分析(analysis of variance,ANOVA)是一种统计方法,用于比较不同组之间的均值差异是否具有统计学上的显著性。
在实验设计中,方差分析主要被用来分析因变量(dependent variable)在不同水平的自变量(independent variable)中的变化情况。
通过比较不同组之间的方差,判断是否存在显著差异,并进一步分析差异的原因。
1. 单因素方差分析单因素方差分析是最简单的方差分析方法,适用于只有一个自变量的实验设计。
该方法通过比较不同组之间的方差来判断各组均值是否有差异。
步骤如下:(1)确定研究目的,选择合适的因变量和自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差和组间方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
2. 多因素方差分析多因素方差分析是在单因素方差分析的基础上,增加了一个或多个自变量的情况下进行的。
这种方法可以用来分析多个因素对因变量的影响,并判断各因素的主效应和交互效应。
步骤如下:(1)确定研究目的,选择合适的因变量和多个自变量。
(2)设计实验,确定各组的样本个数。
(3)进行实验,并收集数据。
(4)计算各组的平均值和总平均值。
(5)计算组内方差、组间方差和交互方差。
(6)计算F值,通过计算F值来判断各组均值是否有显著差异。
二、正交试验设计正交试验设计是一种设计高效实验的方法,可以同时考虑多个因素和各个因素之间的交互作用,并通过较少的试验次数得到较准确的结果。
1. 正交表的基本原理正交表的设计是基于正交原理,即每个因素和其他所有因素的交互效应都是独立的。
通过正交表设计实验,可以确保各因素和交互作用在样本中能够均匀地出现,从而减少误差来源,提高实验结果的可靠性。
2. 正交试验设计的步骤(1)确定要研究的因素和水平。
第三章 正交试验设计(2)-正交试验数据方差分析和贡献率分析

试验优化设计
主讲:刘建永
材 料 工 程 系 Department of Materials Engineering
第三章 正交试验设计
正交试验数据 方差分析与贡献率分析
正交试验结果的方差分析
1.离差平方和的计算
总离差平方和:
项目 因素A 因素B 因素C 误差 总和
平方和SS SSA SSB SSC SSE SST
自由度DF a- 1 a- 1 a- 1 a- 1 n-1
纯平方和 SSA- fA×MSE SSB- fB×MSE SSC- fC×MSE fT×MSE SST
贡献率 ρA ρB ρC ρE
其中: 纯平方和= SS因- f因×MSE 贡献率ρ因等于纯平方和与SST的比值 贡献率最大的几个因素是重要因素,与误差贡献率差不多的认为不 重要。
μ 3.2 的 1 − α 置信区间为: μ 3.2± t1−α / 2 ( f e′)σ / ne ˆ ˆ
′ ˆ 这里 σ = S e / f e′ , ′ S e = S e + 不显著因子的平方和, f e′ = f e + 不显著因子的自由度,
ne = 试验次数 1 + 显著因子自由度之和
n e = 9 /( 1 + f A + f C ) = 9 / 5 = 1 . 8 , ′ S e = S e + S B=132 , f ′ = f + f =4 ,
y 31 54 38 53 49 42 57 62 64 T=450 yi2 =23484 ST=984
∑
方差分析表 把上述计算表中得到的平方和与自由度移至一张方差分 析表中继续进行计算。 例 3.3 的方差分析表 来源 平方和 S 自由度 f 均方和 MS 因子 A 因子 B 因子 C 误差 e T 618 114 234 18 984 2 2 2 2 8 309 57 117 9 F比 34.33 6.33 13.00
正交试验方差分析

第十一章正交设计试验资料的方差分析在实际工作中,常常需要同时考察 3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交设计是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
第一节、正交设计原理和方法(一) 正交设计的基本概念正交设计是利用正交表来安排多因素试验、分析试验结果的一种设计方法。
它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。
例如,研究氮、磷、钾肥施用量对某小麦品种产量的影响:A因素是氮肥施用量,设A1、A2、A3 3个水平;B因素是磷肥施用量,设B1、B2、B3 3个水平;C因素是钾肥施用量,设C1、C2、C3 3个水平。
这是一个3因素每个因素3水平的试验,各因素的水平之间全部可能的组合有27种。
如果进行全面试验,可以分析各因素的效应,交互作用,也可选出最优水平组合。
但全面试验包含的水平组合数较多,工作量大,由于受试验场地、经费等限制而难于实施。
如果试验的主要目的是寻求最优水平组合,则可利用正交设计来安排试验。
正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
如对于上述3因素每个因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。
一、正交设计的基本原理表11-1 33试验的全面试验方案正交设计就是从全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。
图1中标有‘9 ’个试验点,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。
即:(1)A1B1C1 (2)A1B2C2(3)A1B3C3(4)A2B1C2(5)A2B2C3(6)A2B3C1(7)A3B1C3(8)A3B2C1(9)A3B3C2上述选择,保证了A因素的每个水平与B因素、 C 因素的各个水平在试验中各搭配一次。
第4讲5(1) 正交试验设计(方差分析)

处理号 1 2
第1列(A) 1 1
表 L9(34)正交表
第2列 1 2
第3列 1 2
第4列 1 2
因素A第1 试验结果y水i 平3次
重复测定 y1 值 y2
3
1
3
3
3
y3
单4 因素 2
1
2
3
y4
试5 验数 2
2
3
1
y5
因素A第2
SS据A6=资13(料y1 y22
格式 78=13(K12
3 K322
y3)2 (y43y5
K32)-
T2 9
1 2
y6)2 ( 1 y7 3 1
y 82y 9)2 2 3
(y1yy62 ...
9
y7 y8
y水9)平2(修 3次正重项) 复测定值
9
3
3
2
1
y9
分析第1列因素时,其它列暂不考虑,将其看做条件因因素素A。第3
因素 重复1 重复2 重复3
显著影响
(6)列方差分析表
(1)偏差平方和分解:
总偏差平方和=各列因素偏差平方和+误差偏差平方和
SST SS因素 SS空列(误差)
(2)自由度分解:
dfT df因素 df空列( 误列(
(3)方差:MS因素=
SS因素 df因素
,MS误差=
SS误差 df误差
(4)构造F统计量:
F因素=
MS因素 MS误差
(5)列方差分析表,作F检验
若计算出的F值F0>Fa,则拒绝原假设,认为 该因素或交互作用对试验结果有显著影响;若 F0≼Fa,则认为该因素或交互作用对试验结果 无显著影响。
正交试验方差分析

1(50) 1(6.5) 1(2.0) 1 1 2 2 2(7.0) 2(2.4) 3(7.5) 3(2.8 2 3 1 3 2 3
2(55) 1
3(58) 1
8பைடு நூலகம்
9 K1j
3
3 15.76
2
3 25.18
1
2 22.65
3
1 20.74
10.9
8.95
T 65.58
K2j
K3j K1j2 K2j2 K3j2
n
对上式做如下变换
SST ( X ij X ) 2 ( X ij X i. X i. X ) 2
i 1 j 1 i 1 j 1
r
n
r
n
( X ij X i. ) ( X i. X ) 2 (X ij X i. )( X i. X )
各式的物理意义
X
所有数据的平均值称为总平均 值 第i个水平的数据平均值称为组平均值 随机误差,又称为组内离差平方和
X i.
SSE 表示每一个数据与其组平均值的离差平方和,反映了实验中的
SS A
表示组平均值与总的平均值得离差平方和,反映了由于因素不同水平引 起的差异又称为组间离差平方和
再稍做整理
X 总和 2 2 SST ( X ij X ) ( X ij ) N i 1 j 1 i 1 j 1 X 总和 校正项CF N
2 2 i 1 j 1 r n i 1 j 1 r n i 1 j 1
r
n
r
n
r
n
( X ij X i. ) ( X i. X ) 2
2 i 1 j 1 i 1 j 1
高级篇 第二章 正交试验设计及统计分析-方差分析

0.415
(2)显著性检验
根据以上计算,进行显著性检验,列出方差分析表,结果见表10-24
变异来源
A B C△ 误差e 误差e△ 总和
平方和 45.40 6.49 0.31 0.83 1.14 53.03
自由度 2 2 2 2 4
表10-24 方差分析表
均方 F值
Fa
22.70 79.6 F0.05(2,4) =6.94
油温℃A 1 1 2 2 3 3 4 4
1.8 4.5 9.8 6.8 3.24 20.25 96.04 46.24
表10-27 试验方案及结果分析
含水量%B 油炸时间s C
1
1
空列 1
2Hale Waihona Puke 2211
2
2
2
1
1
2
1
2
1
2
1
2
2
2 11.4
1 10.2
1 12.1
11.5
12.7
10.8
空列 1 2 2 1 2 1 1 2
3.24 11.4 F0.01(2,4)=18.0
0.16
0.41
0.285
显著水平 ** *
因素A高度显著,因素B显著,因素C不显著。 因素主次顺序A-B-C。
(3)优化工艺条件的确定
本试验指标越大越好。对因素A、B分析,确定优 水平为A3、B1;因素C的水平改变对试验结果几乎无影
响,从经济角度考虑,选C1。优水平组合为A3B1C1。 即温度为58℃,pH值为6.5,加酶量为2.0%。
K2k2 SST=QT CT
…
Kmk2 SSk
Q
=
j
1 r
正交试验的方差分析

x 1 4
20 K 1
5 l 1
xkl
1 4
4 K 1
xk
4.2
• 依次求出Q、f、S2、F,与F表比较 2 Q1=10 (xi1 x )2 i 1 =10×[(3.65-4.2)2+(4.75-4.2)2]=6.05
• 其余Qj (j=2,3)同理可求
45
Qr
(xkl xk )2
产率
产率
﹪
-55
xK
50
-5
59
4ቤተ መጻሕፍቲ ባይዱ
56
1
58
3*
55
0
58
3
47
-8
52
-3
x = -5/8
(1)方差分析 • 依次求出Q、f、S2、F,与F表比较
第1列差方和:
2
Q1=4 (xi1 x )2 i 1 = 4{[3/4-(-5/8)]2+[(-2)-(-5/8)]2} = 121/8
• 其余Qj(j=2…7)同理可求
9-3-2 关于Qr的计算 一 表头留出空白列
其它的列若与空白列的Q值相近,加起来共同作 为Qr的估计值,可以提高方差分析检验的灵敏度(自 由度增大了)
二 无空白列
1 根据以往资料
若已知 2 ,可认为fr=∞,此时
F
Q因子 / f因子
2
,查表 Fα (f因子,∞)
2 选更大的正交表,从而留出空白列
1
2
2
1
1
2
2
1
2
2
1
2
1
1
2
3
2
-12
-12
-4
-5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章正交设计试验资料的方差分析在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。
正交设计是安排多因素试验、寻求最优水平组合的一种高效率试验设计方法。
第一节、正交设计原理和方法(一) 正交设计的基本概念正交设计是利用正交表来安排多因素试验、分析试验结果的一种设计方法。
它从多因素试验的全部水平组合中挑选部分有代表性的水平组合进行试验,通过对这部分试验结果的分析了解全面试验的情况,找出最优水平组合。
例如,研究氮、磷、钾肥施用量对某小麦品种产量的影响:A因素是氮肥施用量,设A1、A2、A3 3个水平;B因素是磷肥施用量,设B1、B2、B3 3个水平;C因素是钾肥施用量,设C1、C2、C3 3个水平。
这是一个3因素每个因素3水平的试验,各因素的水平之间全部可能的组合有27种。
如果进行全面试验,可以分析各因素的效应,交互作用,也可选出最优水平组合。
但全面试验包含的水平组合数较多,工作量大,由于受试验场地、经费等限制而难于实施。
如果试验的主要目的是寻求最优水平组合,则可利用正交设计来安排试验。
正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。
正交试验是用部分试验来代替全面试验,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。
如对于上述3因素每个因素3水平试验,若不考虑交互作用,可利用正交表L9(34)安排,试验方案仅包含9个水平组合,就能反映试验方案包含27个水平组合的全面试验的情况,找出最佳的生产条件。
一、正交设计的基本原理表11-1 33试验的全面试验方案正交设计就是从全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。
图1中标有…9 ‟个试验点,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。
即:(1)A1B1C1(2)A1B2C2(3)A1B3C3(4)A2B1C2(5)A2B2C3 (6)A2B3C1(7)A3B1C3(8)A3B2C1(9)A3B3C2上述选择,保证了A因素的每个水平与B因素、C 因素的各个水平在试验中各搭配一次。
从图1中可以看到,9个试验点分布是均衡的,在立方体的每个平面上有且仅有3个试验点;每两个平面的交线上有且仅有1个试验点。
9个试验点均衡地分布于整个立方体内,有很强的代表性,能够比较全面地反映全面试验的基本情况。
二、正交表及其特性(一) 正交表表11-2 是L8(27)正交表,其中“L”代表正交表;L 右下角的数字“8”表示有8行,用这张正交表安排试验包含8个处理(水平组合) ;括号内的底数“2” 表示因素的水平数,括号内2的指数“7”表示有7列,用这张正交表最多可以安排7个2水平因素。
表11-2 L8(27)正交表2水平正交表还有L4(23)、L16(215)等;3水平正交表有L9(34)、L27(313) 、…、等。
(二) 正交表的特性1、任一列中,不同数字出现的次数相同例如L8(27)中不同数字只有1和2,它们各出现4次;L9(34)中不同数字有1、2和3,它们各出现3次。
2、任两列中,同一横行所组成的数字对出现的次数相同例如L8(27)的任两列中(1, 1), (1, 2), (2, 1), (2, 2)各出现两次;L9(34)任两列中(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出现1次。
即每个因素的一个水平与另一因素的各个水平互碰次数相等,表明任意两列各个数字之间的搭配是均匀的。
用正交表安排的试验,具有均衡分散和整齐可比的特点。
均衡分散,是指用正交表挑选出来的各因素水平组合在全部水平组合中的分布是均衡的。
由图11-1可以看出,在立方体中,任一平面内都包含 3 个试验点,任两平面的交线上都包含1个试验点。
整齐可比是指每一个因素的各水平间具有可比性。
因为正交表中每一因素的任一水平下都均衡地包含着另外因素的各个水平,当比较某因素不同水平时,其它因素的效应都彼此抵消。
如在A、B、C 3个因素中,A因素的3 个水平A1、A2、A3条件下各有B、C 的3 个不同水平,即:在这9个水平组合中,A因素各水平下包括了B、C因素的3个水平,虽然搭配方式不同,但B、C皆处于同等地位,当比较A因素不同水平时,B因素不同水平的效应相互抵消,C因素不同水平的效应也相互抵消。
所以A因素3个水平间具有可比性。
同样,B、C因素3个水平间亦具有可比性。
(三) 正交表的类别1、相同水平正交表各列中出现的最大数字相同的正交表称为相同水平正交表。
L4(23)、L8(27)、L12(211)等各列中最大数字为2,称为两水平正交表;L9(34)、L27(313)等各列中最大数字为3,称为3水平正交表。
2、混合水平正交表各列中出现的最大数字不完全相同的正交表称为混合水平正交表。
L8(41×24)表中有一列最大数字为4,有4列最大数字为2。
也就是说该表可以安排1个4水平因素和4个2水平因素。
L16(44×23),L16(4×212)等都混合水平正交表。
三、正交设计方法【例11·1】某水稻栽培试验选择了3个水稻优良品种(A):二九矮、高二矮、窄叶青,3种密度(B):15、20、25(万苗/666.7m2);3种施氮量(C):3、5、8(kg/666.7m2),试采用正交设计安排一个试验方案。
(一) 确定试验因素及其水平, 列出因素水平表表11-3 因素水平表(二) 选用合适的正交表根据因素、水平及需要考察的交互作用的多少来选择合适的正交表。
选用正交表的原则是:既要能安排下试验的全部因素(包括需要考查的交互作用),又要使部分水平组合数(处理数)尽可能地少。
一般情况下,试验因素的水平数应恰好等于正交表记号中括号内的底数;因素的个数(包括需要考查交互作用)应不大于正交表记号中括号内的指数;各因素及交互作用的自由度之和要小于所选正交表的总自由度,以便估计试验误差。
若各因素及交互作用的自由度之和等于所选正交表总自由度,则可采用有重复正交试验来估计试验误差。
此例有3个3水平因素,若不考察交互作用,则各因素自由度之和为因素个数×(水平数-1) = 3 ×(3-1) =6,小于L9(34)总自由度9-1=8,故可以选用L9(34);若要考察交互作用,则应选用L27(313),此时所安排的试验方案实际上是全面试验方案。
(三) 表头设计表头设计就是把挑选出的因素和要考察的交互作用分别排入正交表的表头适当的列上。
在不考察交互作用时,各因素可随机安排在各列上;若考察交互作用,就应按该正交表的交互作用列表安排各因素与交互作用。
此例不考察交互作用,可将品种(A)、密度(B)和施氮量(C)依次安排在L9(34)的第1、2、3列上,第4 列为空列,见表2-4。
表11-4 表头设计L9(34)表头设计L8(27) 表头设计(四) 列出试验方案把正交表中安排因素的各列(不包含欲考察的交互作用列)中的每个数字依次换成该因素的实际水平,就得到一个正交试验方案。
表11-5 正交试验方案第二节正交试验资料的方差分析若各号试验处理都只有一个观测值,则称之为单个观测值正交试验;若各号试验处理都有两个或两个以上观测值,则称之为有重复观测值正交试验。
一、单个观测值正交试验资料的方差分析对【例11-1】用L9(34)安排试验方案后,各号试验只进行一次,试验结果列于表2-6。
试对其进行方差分析。
表11-6 正交试验结果计算表T i为各因素同一水平试验指标之和,T为9个试验号的试验指标之和;x为各因素同一水平试验指标的平均数。
该试验的9个观测值总变异由A因素、B因素、C因素及误差变异4部分组成,因而进行方差分析时平方和与自由度的分解式为:SS T = SS A + SS B + SS C+SSedf T= df A+ df B+ df C + dfe用n表示试验(处理)数;a、b、c表示A、B、C因素的水平数;k a、k b、k c表示A、B、C因素的各水平重复数。
本例,n=9、a=b=c=3、k a=k b=k c=3。
1、计算各项平方和与自由度矫正数C = T2/n = 37112/9 = 1530169.00总平方和SST =Σx2-C=(340.02+422.52+…+462.52)-1530169.00=21238.00A因素平方和T/k a-CSS A=Σ2A=(1201.52+1291.52+1218.02)/3 -1530169.00=1530.50B因素平方和T/k b-CSS B= Σ2B=(1092.02+1278.52+1340.52)/3 -1530169.00=11153.17C因素平方和T/k c-CSS C=Σ2C=(1142.52+1245.02+1323.52)/3 -1530169.00=5492.17误差平方和SS e=SS T-SS A-SS B-SS C=21238.00-1530.5-11153.17 -5492.17=3062.16总自由度df T=n-1=9-1=8A因素自由度df A=a-1=3-1=2B因素自由度df B=b-1=3-1=2C因素自由度df C=c-1=3-1=2误差自由度df e= df T-df A-df B-df C= 8-2-2-2 = 22、列出方差分析表,进行F检验表11-7 方差分析表F 检验结果表明,三个因素对产量的影响都不显著。
究其原因可能是本例试验误差大且误差自由度小(仅为2),使检验的灵敏度低,从而掩盖了考察因素的显著性。
由于各因素对增重影响都不显著,不必再进行各因素水平间的多重比较。
此时,可从表11-6中选择平均数大的水平A2、B3、C3组合成最优水平组合A2B3C3。
若F检验结果3个因素对试验指标的影响显著或极显著,进行各因素水平间多重比较常采用SSR法。
本例是选用相同水平正交表L9(34)安排的试验,A、B、C因素各水平重复数相同,即k a=k b=k c=3,它们的标准误相同,即单个观测值正交试验资料的方差分析,其误差是由“空列”来估计的。
然而“空列”并不空,实际上是被未考察的交互作用所占据。
这种误差既包含试验误差,也包含交互作用,称为模型误差。
若交互作用不存在,用模型误差估计试验误差是可行的;若因素间存在交互作用,则模型误差会夸大试验误差,有可能掩盖考察因素的显著性。
试验误差应通过重复试验值来估计。
所以,进行正交试验最好能有二次以上的重复。
正交试验的重复,可采用完全随机或随机区组设计。