2019年四川省凉山州中考数学试卷以及解析版

合集下载

2019年四川省凉山州中考数学试卷(答案)

2019年四川省凉山州中考数学试卷(答案)

2019年四川省凉山州中考数学试卷(含答案)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1 C.x≤1D.x≤﹣1 6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.5 7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.29.(4分)如图,在△ABC中,CA=CB=4,cosC=,则sinB的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O 是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:3 11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC 绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B 作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B (3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.。

2019年四川省凉山州中考数学试卷(含解析)完美打印版

2019年四川省凉山州中考数学试卷(含解析)完美打印版

2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×10123.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC 于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM ⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P 作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM 交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC 于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a ﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c =3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.14.(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣4+(2﹣)=.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=120.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM ⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE =90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB 知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤124.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P 作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP=12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;∵△=1﹣4a>0,∴a<,∴a=﹣1﹣;26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM 交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x ﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有P A=PB,则C△P AC=AC+PC+P A=AC+PC+PB,所以当C、P、B在同一直线上时,C△P AC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△P AM=S△P AC可得,当两三角形以P A为底时,高相等,即点C和点M到直线P A距离相等.若点M在点P上方,则有CM∥P A.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.若点M在点P下方,则此时M所在的直线到直线P A的距离等于第一种情况时CM到P A的距离,故可用平移的方法来求此时点M所在直线的解析式.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△P AC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴P A=PB∴C△P AC=AC+PC+P A=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△P AC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△P AC的周长最小,最小值为.(3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC∴当以P A为底时,两三角形等高∴点C和点M到直线P A距离相等①若点M在点P上方,如图2,∴CM∥P A∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)②若点M在点P下方,如图3,则点M所在的直线l∥P A,且直线l到P A的距离等于直线y=x+3到P A的距离∴直线AP:y=x+1向下平移2个单位得y=x﹣1即为直线l的解析式∵解得:∵点M在x轴上方∴y>0∴点M坐标为(,)综上所述,点M坐标为(1,4)或(,)时,S△P AM=S△P AC.。

2019年四川省凉山州中考数学试题(word版,含解析)(1)

2019年四川省凉山州中考数学试题(word版,含解析)(1)

2019年四川省凉山州中考数学试卷、选择题(共 12个小题,每小题 4分,共48分)在每小题给出的四个选项中只有一项 是正确的,把正确选项的宇母填涂在答题卡上相应的位置6人数(人) 3 17 13 7 时间(小时)78910A . 17, 8.5B . 17, 9C . 8, 9D . 8, 8.57. (4分)下列命题: ①直线外一点到这条直线的垂线段,叫做点到直线的距离; ②两点 之间线段最短;③相等的圆心角所对的弧相等; ④平分弦的直径垂直于弦.其中,真命题的个数是( )A . 1B . 2C . 3D . 41. (4分) -2的相反数是(2. 3. 4. (4分) 是(2018年凉山州生产总值约为 A . 1.533 X 109B . 1.533 X 10153300000000,用科学记数法表示数 15330000000010C . 1.533 X 1011D . 1.533 X 1012 (4分)如图,BD // EF , AE 与BD 交于点 )((4分)下列各式正确的是(C ,Z C . B =30°,/115° A = 75°,则/ E 的度数为D . 105°a 2?a = a 35. (4分)不等式1-x > x - 1的解集是 A . x > 1B . x >- 1C . x w 1D . x <- 1& ( 4分)如图,正比例函数 y = kx 与反比例函数y=JL 的图象相交于 A 、C 两点,过点 A作x 轴的垂线交x 轴于点B ,连接BC ,则厶ABC 的面积等于(9. ( 4 分)如图,在△ ABC 中,CA = CB = 4, cosC =丄,贝U sinB 的值为(411. (4分)如图,在△ AOC 中,0A = 3cm , OC = 2口,将厶AOC 绕点 0顺时针旋转 90 ° )cm 2.C .4Vio10. (4 分)如图,在△ ABC 中,D 在 AC 边上,AD : DC = 1 : 2, O 是BD 的中点,连接AO并延长交BC 于E ,则BE : EC =( )B . 1: 3C . 1 : 4后得到△ BOD ,则AC 边在旋转过程中所扫过的图形的面积为( A . 8B . 6 A •匸A . 1: 2A . 1B . 2C . 3D . 4二、填空题(共 5个小题,每小题 4分,共20分)f x+y=:1013. (4分)方程组* c “的解是 _____________ .⑵+E614. (4分)方程 一 +1的解是 _______ .x-1 l-x z15. (4分)如图所示,AB 是O O 的直径,弦CD 丄AB 于H , / A = 30°, CD = 2 ■:,则O OAC 相交于 F ,则 S A AEF : S A CBF 是 ______ .217 . (4分)将抛物线y =( x -3) - 2向左平移 _________ 个单位后经过点 A ( 2, 2). 三、解答题(共5小题,共32分)~2B . 2n1719212 . (4分)二次函数y = ax +bx+c 的部分图象如图所示,有以下结论:2① 3a - b = 0;② b -4ac >0;③5a - 2b+c > 0;④4b+3c > 0,其中错误结论的个数是()E 将AD 分为2: 3的两部分,连接BE 、的半径是 ________18. (5 分)计算:tan45° + (*::、—H 'T ) 0- ■ ) 2+| : - 2|.219. (5 分)先化简,再求值:(a+3) 2—( a+1) (a — 1) — 2 ( 2a+4),其中 a =-丄.220 . (6分)如图,正方形ABCD 的对角线 AC 、BD 相交于点 O, E 是OC 上一点,连接EB .过点A 作AM 丄BE ,垂足为 M , AM 与BD 相交于点F .求证:OE = OF .B C21 . (8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1 )参加此次诗词大会预选赛的同学共有 __________ 人;(2) ____________________________________________________________ 在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ________________________________ ;(3) 将条形统计图补充完整;(4) 若获得一等奖的同学中有 一来自七年级,-来自九年级,其余的来自八年级,学校4 2决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图 方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22 . ( 8分)如图,点 D 是以AB 为直径的O O 上一点,过点 B 作O O 的切线,交 AD 的延 长线于点C , E 是BC 的中点,连接 DE 并延长与AB 的延长线交于点 F . (1) 求证:DF 是O O 的切线; (2) 若 OB = BF , EF = 4,求 AD 的长.个人数13—-101——获奖痔;兄扇形统计圏8642086420获奖痔况条形统计图四、B 卷填空题(共2小题,每小题5分,共10分)223. (5分)当O w x w 3时,直线y = a 与抛物线y =( x - 1)- 3有交点,则a 的取值范围是.24. (5分)如图,正方形 ABCD 中,AB = 12, AE =^AB ,点P 在BC 上运动(不与 B 、C4重合),过点P 作PQ 丄EP ,交CD 于点Q ,贝U CQ 的最大值为2y = x +x+a 的图象与x 轴交于A ( x i,0)、B (X 2,0)两点,且一—+=1,求a 的值.26. (10分)根据有理数乘法(除法)法则可知:① 若ab >0 (或?>0),贝Ub② 若ab v 0 (或二v 0),贝Ub根据上述知识,求不等式(x -2) ( x+3)> 0的解集X -2^* 0f x 0解:原不等式可化为:(1)*或(2) 丿.x+3>0x+3<0由( 1)得,x > 2, 由(2)得,x v- 3,•••原不等式的解集为:x v- 3或x >2.25.( 8分)已知二次函数c共40分)请你运用所学知识,结合上述材料解答下列问题:(1) __________________________________ 不等式X 2- 2x - 3v 0的解集为 . (2) 求不等式 三匕v 0的解集(要求写出解答过程)1-x27. (10 分)如图,/ ABD = Z BCD = 90°, DB 平分/ ADC ,过点 B 作 BM // CD 交 AD 于M •连接CM 交DB 于N .2(1) 求证:BD 2= AD ?CD ;(2) 若 CD = 6, AD = 8,求 MN 的长.228. (12 分)如图,抛物线 y = ax+bx+c 的图象过点 A (- 1, 0)、B (3, 0 )、C (0, 3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△ PAC 的周长最小,若存在,请求出点P 的坐标及厶PAC 的周长;若不存在,请说明理由; (3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得S请说明理由.2019年四川省凉山州中考数学试卷参考答案与试题解析、选择题(共 12个小题,每小题 4分,共48分)在每小题给出的四个选项中只有一项 是正确的,把正确选项的宇母填涂在答题卡上相应的位置【分析】根据相反数的意义,只有符号不同的数为相反数.故选:A .是(【分析】利用科学记数法表示即可 【解答】解: 11153 300 000 000 = 1.533 X 1011故选:C .【点评】本题主要考查科学记数法的表示, 把一个数表示成 (1 < a v 10, n 为整数),这种记数法叫做科学记数法.1. (4分)-2的相反数是(【解答】解:根据相反数的定义,2的相反数是2.【点评】 本题考查了相反数的意义. 注意掌握只有符号不同的数为相反数, 0的相反数是2. 0.(4分) 2018年凉山州生产总值约为 153300000000 ,用科学记数法表示数1533000000009A . 1.533 X 1010B . 1.533 X 1011C . 1.533 X 1012D . 1.533 X 10科学记数法表示: a 与10的n 次幕相乘的形式3. (4 分)如图,BD // EF , AE 与 BD 交于点 C ,/ B = 30°,/ A = 75°,则/ E 的度数为 C . 115°D . 105°【分析】直接利用三角形的外角性质得出/ACD 度数,再利用平行线的性质分析得出答( )案.【解答】解:•••/ B = 30°,/ A = 75°, •••/ ACD = 30° +75 ° = 105°, •/ BD // EF ,•••/ E =/ ACD = 105°. 故选:D .【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解 题关键.2 2 4A . 2a +3a = 5aD.二 a【分析】分别根据合并同类项的法则、同底数幕的乘法法则、幕的乘方法则以及二次根 式的性质解答即可.2 2 2【解答】解:A 、2a 2+3a 2= 5a 2,故选项A 不合题意; B 、a 2?a = a 3 4 5,故选项B 符合题意; C 、(a 2) 3= a 6,故选项C 不合题意; D 、一「=|a|,故选项D 不合题意. 故选:B .【点评】本题主要考查了合并同类项的法则、幕的运算法则以及二次根式的性质,熟练 掌握相关运算性质是解答本题的关键.-2x >- • x < 1. 故选:C .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要 改变符号这一点而出错.6. ( 4分)某班40名同学一周参加体育锻炼时间统计如表所示:4. (4分)下列各式正确的是(B . a 2?a = a 35. (4分)不等式1-x > x - 1的解集是 A . x > 1B . x >- 1C. xw 1 D . x <- 1【分析】 移项、合并同类项,系数化为1即可求解.【解答】 解: 1- x >x - 1 ,那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 17, 8.5B . 17, 9 C. 8, 9 D. 8, 8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20 , 21两个数的平均数就是中位数,•••这组数据的中位数为三 =8.5;2故选:D.【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7. (4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦•其中,真命题的个数是()A . 1B . 2 C. 3 D. 4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定& ( 4分)如图,正比例函数 y = kx 与反比例函数y=JL 的图象相交于 A 、C 两点,过点 A作x 轴的垂线交x 轴于点B ,连接BC ,则厶ABC 的面积等于(A . 8B . 6C . 4 【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则 据反比例函数系数 k 的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所 围成的直角三角形面积 S 是个定值, 即 s =—|k|.2所以△ ABC 的面积等于2X _l |k|= |k|= 4.2故选:C .【点评】主要考查了反比例函数 y = 中k 的几何意义,即过双曲线上任意一点引 x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想, 做此类题一定要正确理解k 的几何意义•图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S = 1 |k|.29. ( 4 分)如图,在△ ABC 中,CA = CB = 4, cosC =丄,贝U sinB 的值为()【分析】 过点A 作AD 丄BC ,垂足为 D ,在Rt △ ACD 中可求出AD , CD 的长,在 Rt△D . 2S ^OBA = S A OBC ,再根A/10C- JA/10ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sinB的值.【解答】解:过点A作AD丄BC,垂足为D,如图所示.在Rt△ ACD 中,CD = CA?cosC= 1,••• AD = ::|r'- ■ ■-;在Rt△ ABD 中,BD = CB- CD = 3, AD = 〒,•AB= : . 1 ji2',• sinB ='” = '」.A5 4【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD, AB的长是解题的关键.10. (4分)如图,在△ ABC中,D在AC边上,AD : DC = 1 : 2, O是BD的中点,连接AO并延长交BC于E,则BE : EC=( )A . 1: 2B . 1: 3 C. 1: 4 D. 2: 3【分析】过0作BC的平行线交AC与G,由中位线的知识可得出AD: DC = 1 : 2,根据已知和平行线分线段成比例得出AD = DG = GC , AG: GC = 2 : 1 , AO: OF = 2: 1,再由同高不同底的三角形中底与三角形面积的关系可求出BF : FC的比.【解答】解:如图,过0作0G // BC,交AC于G ,•/ 0是BD的中点,• G是DC的中点.又AD : DC = 1: 2,• AD = DG= GC ,••• AG : GC = 2: 1 , AO : OE = 2 : 1, 二 S A AOB : S ^BOE = 2设 S ^BOE =S , S ^AOB = 2S,又 BO = OD , •- S A A OD = 2S, S A ABD = 4S, •/ AD : DC = 1: 2,•- S A BDC = 2S\ABD = 8S , S 四边形 CDOE = 7S , • S ^AEC = 9S, S A ABE = 3S,【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练 运用中位线定理和三角形面积公式.11. (4分)如图,在△ AOC 中,OA = 3cm , OC = 2口,将厶AOC 绕点 O 顺时针旋转 90 后得到△ BOD ,则AC 边在旋转过程中所扫过的图形的面积为()cm 2.A . -B . 2 nC .17 197t【分析】根据旋转的性质可以得到阴影部分的面积=扇形 OAB 的面积-扇形 OCD 的面积,利用扇形的面积公式即可求解.【解答】解:•••△ AOC ◎△ BOD , •阴影部分的面积=扇形OAB 的面积-扇形 OCD 的面积==2 n,故选:B .【点评】 本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇 形OAB 的面积-扇形 OCD 的面积是解题关键.2 212. (4分)二次函数 y = ax+bx+c 的部分图象如图所示,有以下结论: ①3a - b = 0;②b-4ac >0;③5a - 2b+c > 0;④4b+3c > 0,其中错误结论的个数是()【分析】①对称轴为x =-;,得b = 3a;4b+3c = 3b+ b+3c = 3b+3a+3c = 3 ( a+b+c )v 0; 【解答】解:由图象可知 a v 0, c >0,对称轴为x =-23 b…x =-—=- ,2 2ab = 3a , ① 正确;•••函数图象与x 轴有两个不同的交点,2/•△= b - 4ac >0, ② 正确;当 x =- 1 时,a - b+c >0, 当 x =- 3 时,9a - 3b+c >0, •••10a - 4b+2c >0,JI-4 -3 -2 :-1(91 2/i■ _ 3A . 1B .C . 3②函数图象与x 轴有两个不同的交点,得△= 2 ,小b - 4ac > 0;③ 当 x =- 1 时,a - b+c >0,当 x =- 3 时, 9a - 3b+c > 0,得 5a - 2b+c > 0;④ 由对称性可知x = 1时对应的y 值与x =-4时对应的y 值相等,当x = 1时a+b+c v 0,::25a - 2b+c> 0,2③ 正确;由对称性可知x = 1时对应的y 值与x =- 4时对应的y 值相等, •••当 x = 1 时 a+b+c v 0,T b = 3a ,•- 4b+3c = 3b+ b+3c = 3b+3a+3c = 3 (a+b+c )v 0,• 4b+3c v 0,④ 错误; 故选:A .【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函 数解析式相结合解题是关键.二、填空题(共 5个小题,每小题 4分,共20分)x+y=10 (x=613. (4分)方程组、 的解是_ _.【分析】利用加减消元法解之即可. 【解答】解:®,l2x+y=16 ②②-①得: x = 6,把x = 6代入①得: 6+y = 10, 解得:y = 4,方程组的解为: 故答案为:x=6” ,产4【点评】 14. (4 分)本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键. 2方程 ,+. = 1的解是 x =- 2 .X_1【分析】 去分母,把分式方程化为整式方程,求解并验根即可.2去括号, 2 2得 2x +x - 3= x - 1【解答】2x-l去分母, 得(2x - 1) (x+1)- 2 =( x+1) ( x - 1)移项并整理,得x2+x-2 = 0所以(x+2)(x- 1)= 0解得x=- 2或x= 1经检验,x=- 2是原方程的解.故答案为:x=- 2.【点评】本题考查了分式方程、一元二次方程的解法•掌握分式方程的解法是解决本题的关键.注意验根.15. (4分)如图所示,AB是O O的直径,弦CD丄AB于H , / A = 30°, CD = 2 :,则O O的半径是 2 .~ D【分析】连接BC,由圆周角定理和垂径定理得出/ ACB = 90°, CH = DH = —CD =二,2由直角三角形的性质得出AC= 2CH = 2二,AC= 二BC = 2二,AB= 2BC,得出BC= 2,AB= 4,求出OA= 2即可.【解答】解:连接BC,如图所示:•/ AB是O O的直径,弦CD丄AB于H ,•••/ACB= 90° , CH = DH = 1CD = 乙,•••/ A= 30°,• AC= 2CH = 2 ';,在Rt△ ABC 中,/ A = 30°,AC= 'BC = 2 ':, AB = 2BC,• BC= 2, AB = 4,• OA= 2,即O O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30。

【中考真题】2019年四川省凉山州中考数学真题试卷(附答案)

【中考真题】2019年四川省凉山州中考数学真题试卷(附答案)

○…………订班级:___________○…………订绝密★启用前【中考真题】2019年四川省凉山州中考数学真题试卷(附答案)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、单选题1.2-的相反数是( ) A .2-B .2C .12D .12-2.2018年某州生产总值约为153300000000,用科学记数法表示数153300000000是( ) A .91.53310⨯B .101.53310⨯C .111.53310⨯D .121.53310⨯3.如图,//BD EF ,AE 与BD 交于点C ,3075B A ∠∠=,=,则E ∠的度数为( )A .135?B .125C .115?D .1054.下列各式正确的是( ) A .224235a a a += B .23a a a ⋅= C .235)(?a a =D a5.不等式11x x ≥﹣﹣的解集是( ) A .1x ≥B .1x ≥﹣C .1x ≤D .1x ≤﹣6.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) A .17,8.5B .17,9C .8,9D .8,8.57.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的………○……………○…………………○…………线※※请※※※※装※※订※※线※※※※题※※………○……………○…………………○…………线个数是( ) A .1B .2C .3D .48.如图,正比例函数y kx =与反比例函数4y x=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则ABC ∆的面积等于( )A .8B .6C .4D .29.如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为( )A B C D 10.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:311.如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为( )2cm .…外…………○…………订…………线…………○……班级:___________考号:______…内…………○…………订…………线…………○……A .2π B .2πC .178π D .198π 12.二次函数2y ax bx c ++=的部分图象如图所示,有以下结论:①30a b ﹣=;②240b ac ﹣>;③520ab c +﹣>;④430b c +>,其中错误结论的个数是( )A .1B .2C .3D .4二、填空题 13.方程组10216x y x y +=⎧⎨+=⎩的解是_______.14.方程2212111x x x -+=--的解是_______. 15.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H ,30,A CD ︒∠==,则⊙O的半径是_______.16.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.17.将抛物线23)2y x =(﹣﹣向左平移_______个单位后经过点(22)A ,.……外…………○……装…………○……………线……※※不※※要※※在※※装※※订……内…………○……装…………○……………线……18.当03x ≤≤时,直线y a =与抛物线2(1)3y x =﹣﹣有交点,则a 的取值范围是_______. 19.如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为_______.三、解答题20.计算:21tan 45|2|2-︒︒⎛⎫+--+ ⎪⎝⎭.21.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-. 22.如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AM BE ⊥,垂足为M ,AM 与BD 相交于点F .求证:OE OF =.23.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有 人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ; (3)将条形统计图补充完整;……○…………线_______……○…………线(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.24.如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F(1)求证:DF 是⊙O 的切线;(2)若4OB BF EF ==,,,求AD 的长.25.已知二次函数2y x x a =++的图象与x 轴交于12(0)(0)A x B x ,、,两点,且2212111x x +=,求a 的值. 26.根据有理数乘法(除法)法则可知:①若0ab >(或0ab >),则00a b >⎧⎨>⎩或00a b <⎧⎨<⎩;②若0ab <(或a0b <),则00a b >⎧⎨<⎩或00a b <⎧⎨>⎩.根据上述知识,求不等式(2)(3)0x x -+>的解集:解:原不等式可化为:(1)2030x x ->⎧⎨+>⎩或(2)2030x x -<⎧⎨+<⎩.由(1)得,2x >,由(2)得,3x <﹣, ∴原不等式的解集为:3x <﹣或2x >请你运用所学知识,结合上述材料解答下列问题: (1)不等式2230x x ﹣﹣<的解集为 . (2)求不等式401x x+<-的解集(要求写出解答过程) 27.如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .…………订…………○…线…………○……订※※线※※内※※答※※题※※…………订…………○…线…………○……(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.28.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.参考答案1.B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.C 【解析】 【分析】利用科学记数法表示即可 【详解】解:科学记数法表示:11158300000000 1.53310=⨯. 故选:C . 【点睛】考查科学记数法的表示,把一个数表示成a 与10的n 次幂相乘的形式(110a ≤<,n 为整数),这种记数法叫做科学记数法. 3.D 【解析】 【分析】直接利用三角形的外角性质得出ACD ∠度数,再利用平行线的性质分析得出答案. 【详解】 解:3075B A ∠︒∠︒=,=,3075105ACD ∴∠︒+︒︒==, //BD EF ,105E ACD ∴∠∠︒==.故选:D .【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键. 4.B 【解析】 【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可. 【详解】解:A 、222235a a a +=,故选项A 不合题意; B 、23a a a ⋅=,故选项B 符合题意;C 、236a a ()=,故选项C 不合题意;D ||a =,故选项D 不合题意. 故选:B . 【点睛】考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键. 5.C 【解析】 【分析】移项、合并同类项,系数化为1即可求解. 【详解】 解:11x x ≥﹣﹣,22x ≥﹣﹣ 1x ∴≤故选:C . 【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.D【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.5 2+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.A【解析】【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.C【解析】 【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则OBA OBC S S ∆∆=,再根据反比例函数系数k 的几何意义作答即可. 【详解】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值, 即1||2S k =. 所以ABC ∆的面积等于12||||42k k ⨯==. 故选:C . 【点睛】考查了反比例函数ky x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即12S k =. 9.D 【解析】 【分析】过点A 作AD BC ⊥,垂足为D ,在Rt ACD ∆中可求出AD ,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值. 【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示. 在Rt ACD ∆中,1CD CA cosC ⋅==,AD ∴=在Rt ABD ∆中,3BD CB CD AD =﹣=,AB ∴==AD sin AB B ∴==. 故选:D .【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.10.B【解析】【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴=== 故选:B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.B【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式即可求解.【详解】解:AOC BOD ∆∆≌,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积229039012360360πππ⋅⨯⋅⨯=-= 故选:B .【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题关键.12.A【解析】【分析】 ①对称轴为32x =-,得3b a =; ②函数图象与x 轴有两个不同的交点,得240b ac ∆=﹣>;③当1x =-时,0a b c +﹣>,当3x =-时,930a b c +﹣>,得520a b c +﹣>;④由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,当1x =时0433333330a b c b c b b c b a c a b c +++++++++<,===()<【详解】解:由图象可知00a c <,>,对称轴为32x =-, 322b x a∴=-=-, 3,b a ∴=,①正确;∵函数图象与x 轴有两个不同的交点,240b ac ∴∆=﹣>,, ②正确;当1x =﹣时,0a b c +->,当3x =-时,930a b c +﹣>,10420a b c ∴+﹣>,520a b c ∴+﹣>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时0a b c ++<,3b a =,433333330b c b b c b a c a b c ∴+++++++===()<,430b c ∴+<,④错误;故选:A .【点睛】考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.13.64x y =⎧⎨=⎩【解析】【分析】利用加减消元法解之即可.【详解】解:10216x y x y +=⎧⎨+=⎩①②, ②﹣①得:6x =,把6x =代入①得:610y +=,解得:4y =, 方程组的解为:64x y =⎧⎨=⎩, 故答案为:64x y =⎧⎨=⎩【点睛】考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.2x =-【解析】【分析】去分母,把分式方程化为整式方程,求解并验根即可.【详解】 解:21211(1)(1)x x x x --=-+- 去分母,得(21)(1)2(1)(1)x x x x -+-=+-去括号,得22231x x x +-=-移项并整理,得220x x +-=所以(2)(1)0x x +-=解得2x =-或1x =经检验,2x =-是原方程的解.故答案为:2x =-【点睛】考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根. 15.2【解析】【分析】连接BC ,由圆周角定理和垂径定理得出190,2ACB CH DH CD ︒∠====三角形的性质得出22AC CH AC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC ,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H ,1902ACB CH DH CD ∴∠︒=,== 30A ∠︒=,2AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,2AC AB BC ∴==,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时, 同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.3【解析】【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【详解】解:∵将抛物线232y x =(﹣)﹣向左平移后经过点22A (,), ∴设平移后解析式为:232y xa +=(﹣)﹣,则22232a +=(﹣)﹣,解得:3a =或1a =﹣(不合题意舍去), 故将抛物线232y x =(﹣)﹣向左平移3个单位后经过点22A (,). 故答案为:3.【点睛】考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.18.31a -≤≤【解析】【分析】 直线y a =与抛物线213y x =(﹣)﹣有交点,则可化为一元二次方程组利用根的判别式进行计算.【详解】解:法一:y a =与抛物线213y x =(﹣)﹣有交点 则有213a x =(﹣)﹣,整理得2220x x a ﹣﹣﹣=244420b ac a ∴∆++≥=﹣=()解得3a ≥﹣,03x ≤≤,对称轴1x =23131y ∴=(﹣)﹣=1a ∴≤法二:由题意可知,∵抛物线的 顶点为13(,﹣),而03x ≤≤∴抛物线y 的取值为31y ≤≤﹣ y a =,则直线y 与x 轴平行,∴要使直线y a =与抛物线213y x =(﹣)﹣有交点, ∴抛物线y 的取值为31y ≤≤﹣,即为a 的取值范围, ∴31a ≤≤﹣故答案为:31a -≤≤【点睛】考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.19.4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒=,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BP PC CQ∴= 设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--, 整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.20.【解析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【详解】解:原式114(2=+-+-=【点睛】考查了实数的运算法则,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.21.1【解析】【分析】注意到23a +()可以利用完全平方公式进行展开,11a a +()(﹣)利润平方差公式可化为21a (﹣),,则将各项合并即可化简,最后代入12a =-进行计算. 【详解】解:原式2269148a a a a ++-=(﹣)-﹣22a += 将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭【点睛】考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.22.见解析.【解析】【分析】根据正方形的性质对角线垂直且平分,得到OB OA =,根据AM BE ⊥,即可得出90MEA MAE AFO MAE ∠+∠︒∠+∠==,从而证出Rt BOE Rt AOF ∆∆≌,得到OE OF =.证明:∵四边形ABCD 是正方形.90BOE AOF OB OA ∴∠∠︒==,=.又AM BE ⊥,90MEA MAE AFO MAE ∴∠+∠︒∠+∠==,MEA AFO ∴∠∠=.BOE AOF AAS ∴∆∆≌().OE OF ∴=.【点睛】考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.23.(1)40;(2)90°;(3)见解析;(4)见解析,13. 【解析】【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A 、B 、C 分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【详解】解:(1)参加此次诗词大会预选赛的同学共有1845%40÷=(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040︒︒⨯=, 故答案为:90°.(3)获二等奖的人数4020%8=⨯=,一等奖的人数为40810184---=(人), 条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人, 画树状图为:(用A 、B 、C 分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4, 所以所选出的两人中既有七年级又有九年级同学的概率41123=. 【点睛】考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图. 24.(1)见解析;(2)6AD =.【解析】【分析】(1)连接OD ,由AB 为⊙O 的直径得90BDC ︒∠=,根据BE EC =知13∠=∠、由OD OB =知24∠∠=,根据BC 是⊙O 的切线得3490︒∠+∠=,即1290︒∠+∠=,得证;(2)根据直角三角形的性质得到130,22F BE EF ︒∠===,求得2DE BE ==,得到6DF =,根据三角形的内角和得到OD OA =,求得1302A ADO BOD ︒∠=∠=∠=,根据等腰三角形的性质即可得到结论.【详解】解:(1)如图,连接OD ,BD ,∵AB 为⊙O 的直径,90ADB BDC ∴∠∠︒==,在Rt BDC ∆中,BE EC =,DE EC BE ∴==,13∴∠∠=,∵BC 是⊙O 的切线,3490∴∠+∠︒=,1490∴∠+∠︒=,又24∠∠=,1290∴∠+∠︒=,∴DF 为⊙O 的切线;(2)OB BF =,2OF OD ∴=,30F ∴∠︒=,90FBE ∠︒=,122BE EF ∴==, 2DE BE ∴==,6DF ∴=,3090F ODF ∠︒∠︒=,=,60FOD ∴∠︒=,OD OA =,1302A ADO BOD ∴∠∠∠︒===, A F ∴∠∠=6AD DF ∴==.【点睛】考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.25.1a =-【解析】【分析】由韦达定理得12121x x x x a +⋅=﹣,=,,将式子2212111x x +=化简代入即可; 【详解】 解:2y x x a ++=的图象与x 轴交于1200A x B x (,)、(,)两点,∴=1-40a ∆> 即14a < 12121x x x x a ∴+⋅=-,=()()222121212222222121212211121x x x x x x ax x x x a x x +-+-+==== 1a ∴=-+舍)或1a =-【点睛】考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键. 26.(1)13x -<<;(2)1x >或4x <-. 【解析】【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【详解】解:(1)原不等式可化为:①3010x x ->⎧⎨+<⎩或②3010x x -<⎧⎨+>⎩. 由①得,空集,由②得,13x ,∴原不等式的解集为:13x,故答案为:13x. (2)由401x x +<-知①4010x x +>⎧⎨-<⎩或②4010x x +<⎧⎨->⎩, 解不等式组①,得:1x >;解不等式组②,得:4x <-; 所以不等式401x x +<-的解集为1x >或4x <-. 【点睛】考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(1)见解析;(2)MN =【解析】【分析】(1)通过证明ABD BCD ∆∆∽,可得AD BD BD CD=,可得结论; (2)由平行线的性质可证MBD BDC ∠∠=,即可证4AM MD MB ===,由2BD AD CD ⋅=和勾股定理可求MC 的长,通过证明MNB CND ∆∆∽,可得23BM MN CD CN ==,即可求MN 的长. 【详解】证明:(1)∵DB 平分ADC ∠,ADB CDB ∴∠∠=,且90ABD BCD ∠∠︒==,ABD BCD ∴∆∆∽AD BD BD CD∴= 2BD AD CD ∴⋅=(2)//BM CDMBD BDC ∴∠∠=ADB MBD ∴∠∠=,且90ABD ∠︒=BM MD MAB MBA ∴∠∠=,=4BM MD AM ∴===2BD AD CD ⋅=,且68CD AD =,=,248BD ∴=,22212BC BD CD ∴=﹣=22228MC MB BC ∴+==MC ∴=//BM CDMNB CND ∴∆∆∽23BM MN CD CN ∴==且MC =MN ∴=【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(1)223y x x =++-;(2)存在,点(12)P ,;(3)存在,点M坐标为(14), 【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小.如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称 PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C (﹣,)、(,)、(,)AC BC ∴==PAC C AC CB ∆∴+==设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆ (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA ∴1012A P (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.。

2019年四川省凉山州中考数学试卷附分析答案

2019年四川省凉山州中考数学试卷附分析答案

28.(12 分)如图,抛物线 y=ax2+bx+c 的图象过点 A(﹣1,0)、B(3,0)、C(0,3). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在一点 P,使得△PAC 的周长最小,若存在,请求出点 P 的坐标及△PAC 的周长;若不存在,请说明理由; (3)在(2)的条件下,在 x 轴上方的抛物线上是否存在点 M(不与 C 点重合),使得 S △PAM=S△PAC?若存在,请求出点 M 的坐标;若不存在,请说明理由.
故选:C.
3.(4 分)如图,BD∥EF,AE 与 BD 交于点 C,∠B=30°,∠A=75°,则∠E 的度数为
()
A.135°
B.125°
C.115°
【解答】解:∵∠B=30°,∠A=75°,
∴∠ACD=30°+75°=105°,
∵BD∥EF,
∴∠E=∠ACD=105°.
故选:D.
4.(4 分)下列各式正确的是( )
21.(8 分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了 如下两幅不完整的统计图.请结合图中相关数据解答下列问题:
(1)参加此次诗词大会预选赛的同学共有
人;
(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为

(3)将条形统计图补充完整;
(4)若获得一等奖的同学中有 来自七年级, 来自九年级,其余的来自八年级,学校决 定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方 法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率. 22.(8 分)如图,点 D 是以 AB 为直径的⊙O 上一点,过点 B 作⊙O 的切线,交 AD 的延 长线于点 C,E 是 BC 的中点,连接 DE 并延长与 AB 的延长线交于点 F. (1)求证:DF 是⊙O 的切线; (2)若 OB=BF,EF=4,求 AD 的长.

2019年四川省凉山州市中考数学试卷及答案(解析版)

2019年四川省凉山州市中考数学试卷及答案(解析版)

四川省凉山州市2019年中考数学试卷数 学(考试时间:120分钟 满分:150分) 本试卷分为A 卷(100分)、B 卷(50分)A 卷(共100分) 第Ⅰ卷(选择题 共48分)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的字母填涂在答题卡上相应的位置. 1.2-的相反数是( )A .2B .2-C .12D .12-2.2018年凉山州生产总值约为153 300 000 000,用科学记数法表示数153 300 000 000是( )A .91.53310⨯B .101.53310⨯C .111.53310⨯D .121.53310⨯3.如图,BD EF ∥,AE 与BD 交于点C ,B 30∠=︒,A 75∠=︒,则E ∠的度数为( )第3题图A .135︒B .125︒C .115︒D .105︒ 4.下列各式正确的是( )A .224235a a a +=B .23a a a =gC .()325a a =Da5.不等式11x x --≥的解集是( )A .1x ≥B .1x -≥C .1x ≤D .1x -≤6那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) A .17,8.5B .17,9C .8,9D .8,8.57.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是( ) A .1B .2C .3D .48.如图,正比例函数y kx =与反比例函数4y x=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则ABC △的面积等于( ) A .8B .6C .4D .2第8题图第9题图第10题图9.如图,在ABC △中,AC CB 4==,1cosC 4=,则sinB 的值为( )A.2B.3C.4D.410.如图,在ABC △中,D 在AC 边上,AD:DC 1:2=,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE:EC =( )A .1:2B .1:3C .1:4D .2:311.如图,在AOC △中,OA 3cm =,OC 1cm =,将AOC △绕点O 顺时针旋转90︒后得到BOD △,则AC 边在旋转过程中所扫过的图形的面积为( )2cm . A .π2B .2πC .17π8D .19π8第11题图第12题图12.二次函数2y ax bx c =++的部分图象如图所示,有以下结论:①30a b -=;②240b ac ->;③520a b c -+>;④430b c +>,其中错误结论的个数是 ( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共52分)二、填空题(共5个小题,每小题4分,共20分) 13.方程组10216x y x y +=⎧⎨+=⎩的解是 .14.方程212111x x x-+=--的解是 . 15.如图所示,AB 是O e 的直径,弦CD AB ⊥于H ,30A ∠=︒,CD =,则O e 的半径是 .第15题图16.在□ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF :S S △△是 .17.将抛物线()232y x =--向左平移 个单位后经过点()A 2,2).三、解答题(共5小题,共32分) 18.(5分)计算:21tan 4522-⎛⎫︒+--+ ⎪⎝⎭.19.(5分)先化简,再求值:()()()()2311224a a a a +-+--+,其中12a =-.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM BE⊥,垂足为M,AM与BD相交于点F.求证:OE OF=.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D 是以AB 为直径的O e 上一点,过点B 作O e 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F . (1)求证:DF 是O e 的切线; (2)若OB BF =,EF 4=,求AD 的长.B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.当03x ≤≤时,直线y a =与抛物线()213y x =--有交点,则a 的取值范围是 .24.如图,正方形ABCD 中,AB 12=,1AE AB 4=,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为 .五、解答题(共4小题,共40分)25.(8分)已知二次函数2y x x a =++的图象与x 轴交于()1,0A x 、()2,0B x 两点,且2212111x x +=,求a 的值.26.(10分)根据有理数乘法(除法)法则可知: ①若0ab >(或0b a>),则00a b ⎧⎨⎩>>或00a b ⎧⎨⎩<< ②若0ab <(或0b a <),则00a b ⎧⎨⎩><或00a b ⎧⎨⎩<> 根据上述知识,求不等式()()230x x -+>的解集. 解:原不等式可化为:(1) 2030x x -⎧⎨+⎩>>或(2) 2030x x -⎧⎨+⎩<<,由(1)得,2x >, 由(2)得,3x -<,∴原不等式的解集为:3x -<或2x >.请你运用所学知识,结合上述材料解答下列问题: (1)不等式2230x x --<的解集为 . (2)求不等式401x x+-<的解集(要求写出解答过程).27.(10分)如图,ABD BCD 90∠=∠=︒,DB 平分ADC ∠,过点B 作BM CD ∥交AD 于M .连接CM 交DB 于N . (1)求证:2BD AD CD =g ; (2)若CD 6=,AD 8=,求MN 的长.28.(12分)如图,抛物线2y ax bx c =++的图象过点()A 1,0-、()B 3,0、()C 0,3. (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC △的周长最小,若存在,请求出点P 的坐标及PAC △的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.四川省凉山州市2019年中考数学试卷数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义,2-的相反数是2. 故选:A .【考点】相反数的意义 2.【答案】C【解析】科学记数法表示:11153 300 000 000 1.53310=⨯. 故选:C .【考点】科学记数法的表示3.【答案】D【解析】30B ∠=︒Q ,75A ∠=︒,3075105ACD ∴∠=︒+︒=︒,BD EF Q ∥,105E ACD ∴∠=∠=︒.故选:D .【考点】平行线的性质以及三角形的外角 4.【答案】B【解析】A 、222235a a a +=,故选项A 不合题意; B 、23a a a =g ,故选项B 符合题意; C 、()632a a =,故选项C 不合题意;Da ,故选项D 不合题意. 故选:B .【考点】合并同类项的法则,幂的运算法则以及二次根式的性质 5.【答案】C 【解析】11x x --≥,22x --≥ 1x ∴≤.故选:C .【考点】解简单不等式 6.【答案】D【解析】众数是一组数据中出现次数最多的数,即8; 由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.52+=; 故选:D .【考点】中位数、众数的概念,众数与中位数的意义 7.【答案】A【解析】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题; ②两点之间线段最短;真命题; ③相等的圆心角所对的弧相等;假命题; ④平分弦的直径垂直于弦;假命题; 真命题的个数是1个; 故选:A .【考点】命题与定理 8.【答案】C【解析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值, 即12S k =. 所以ABC △的面积等于1242k k ⨯==. 故选:C .【考点】反比例函数ky x=中k 的几何意义 9.【答案】D【解析】过点A 作AD ⊥BC ,垂足为D ,如图所示. 在Rt ACD △中,cos 1CD CA C ==g ,AD ∴=;在Rt ABD △中,3BD CB CD =-=,AD =AB ∴==sin AD B AB ∴==. 故选:D .【考点】解直角三角形以及勾股定理 10.【答案】B【解析】如图,过O 作OG BC ∥,交AC 于G ,O Q 是BD 的中点, G ∴是DC 的中点.又:1:2AD DC =,AD DG GC ∴==,:2:1AG GC ∴=,:2:1AO OE =, 2:AOB BOE S S ∴=△△设BOE S S =△,2AOB S S =△,又BO OD =,2AOD S S ∴=△,4ABD S S =△,:1:2AD DC =Q ,28BDC ABD S S S ∴==△△,7CDOE S S =四边形, 9AEC S S ∴=△,3ABE S S =△, 3193ABE AEC S BE S EC S S ∴===△△ 故选:B .【考点】平行线分线段成比例及三角形的中位线 11.【答案】B故选:B .【考点】旋转的性质以及扇形的面积公式 12.【答案】A【解析】由图象可知0a <,0c >,对称轴为32x =-,322bx a ∴=-=-,3b a ∴=,①正确;Q 函数图象与x 轴有两个不同的交点,240b ac ∴∆=->,②正确;当1x =-时,0a b c -+>, 当3x =-时,930a b c -+>,10420a b c ∴-+>, 520a b c ∴-+>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时0a b c ++<,3b a =Q ,()433333330b c b b c b a c a b c ∴+=++=++=++<,430b c ∴+<,④错误;故选:A . 【考点】二次函数的图象及性质第Ⅱ卷二、填空题13.【答案】64x y =⎧⎨=⎩ 【解析】10216x y x y +=⎧⎨+=⎩①②, -②①得:6x =,把6x =代入①得:610y +=,解得:4y =,方程组的解为:64x y =⎧⎨=⎩, 故答案为:64x y =⎧⎨=⎩. 【考点】解二元一次方程组14.【答案】2x =-【解析】()()2121111x x x x --=-+- 去分母,得()()()()211211x x x x -+-=+-去括号,得22231x x x -+=-移项并整理,得220x x +-=所以()()210x x +-=解得2x =-或1x =经检验,2x =-是原方程的解.故答案为:2x =-.【考点】分式方程、一元二次方程的解法15.【答案】2【解析】连接BC ,如图所示:AB Q 是O e 的直径,弦CD AB ⊥于H ,90ACB ∴∠=︒,12CH DH CD === 30A ∠=︒Q ,2AC CH ∴==在Rt ABC △中,30A ∠=︒,AC ∴==2AB BC =,2BC ∴=,4AB =,2OA ∴=,即O e 的半径是2;故答案为:2.【考点】垂径定理,圆周角定理,含30︒角的直角三角形的性质,勾股定理16.【答案】4:25或9:25【解析】①当:2:3AE ED =时,Q 四边形ABCD 是平行四边形,AD BC ∴∥,:2:5AE BC =,AEF CBF ∴△∽△,22:54:25AEF CBF S S ⎛⎫== ⎪⎝⎭∴△△; ②当:3:2AE ED =时, 同理可得,23:59:25AEF CBF S S ⎛⎫== ⎪⎝⎭△△, 故答案为:4:25或9:25.【考点】相似三角形的判定和性质,平行四边形的性质17.【答案】3【解析】Q 将抛物线()232y x =--向左平移后经过点()22A ,, ∴设平移后解析式为:()232y x a =-+-, 则()22232a =-+-,解得:3a =或1a =-(不合题意舍去),故将抛物线()232y x =--向左平移3个单位后经过点()22A ,. 故答案为:3.【考点】二次函数图象与几何变换三、解答题18.【答案】2-【解析】原式(11222=+-+=【考点】实数的运算法则19.【答案】1【解析】原式()2269148a a a a =---++-22a =+ 将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭. 【考点】整式的混合运算20.【答案】证明:Q 四边形ABCD 是正方形.90BOE AOF ∴∠=∠=︒,OB OA =.又AM BE ⊥Q ,90MEA MAE AFO MAE ∴∠+∠=︒=∠+∠,MEA AFO ∴∠=∠.BOE AOF ∴△≌△(AAS ). OE OF ∴=.【解析】证明:Q 四边形ABCD 是正方形.90BOE AOF ∴∠=∠=︒,OB OA =.又AM BE ⊥Q ,90MEA MAE AFO MAE ∴∠+∠=︒=∠+∠,MEA AFO ∴∠=∠.BOE AOF ∴△≌△(AAS ). OE OF ∴=.【考点】正方形的性质,三角形全等的性质和判定21.【答案】(1)40(2)90︒(3)(4)1 3【解析】(1)参加此次诗词大会预选赛的同学共有1845%40÷=(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040︒⨯=︒,故答案为:90︒.(3)获二等奖的人数4020%8=⨯=,一等奖的人数为40810184---=(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率41 123=.【考点】列表法与树状图法22.【答案】(1)证明:如图,连接OD,BD,Q AB为Oe的直径,90ADB BDC∴∠=∠=︒,在Rt BDC△中,BE EC=Q,DE EC BE ∴==,13∴∠=∠,Q BC 是O e 的切线,3490∴∠+∠=︒,1490∴∠+∠=︒,又24∠=∠Q ,1290∴∠+∠=︒,∴DF 为O e 的切线;(2)OB BF =Q ,2OF OD ∴=,30F ∴∠=︒,90FBE ∠=︒Q ,122BE EF ∴==, 2DE BE ∴==,6DF ∴=,30F ∠=︒Q ,90ODF ∠=︒,60FOD ∴∠=︒,OD OA =Q ,1302A ADO BOD ∴∠=∠=∠=︒, A F ∴∠=∠,6AD DF ∴==.【解析】(1)如图,连接OD ,BD ,Q AB 为O e 的直径,90ADB BDC ∴∠=∠=︒,在Rt BDC △中,BE EC =Q ,DE EC BE ∴==,13∴∠=∠,Q BC 是O e 的切线,3490∴∠+∠=︒,1490∴∠+∠=︒,又24∠=∠Q ,1290∴∠+∠=︒,∴DF 为O e 的切线;(2)OB BF =Q ,2OF OD ∴=,30F ∴∠=︒,90FBE ∠=︒Q ,122BE EF ∴==, 2DE BE ∴==,6DF ∴=,30F ∠=︒Q ,90ODF ∠=︒,60FOD ∴∠=︒,OD OA =Q ,1302A ADO BOD ∴∠=∠=∠=︒, A F ∴∠=∠,6AD DF ∴==.【考点】切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质B 卷四、填空题23.【答案】31a -≤≤【解析】法一:y a =与抛物线()213y x =--有交点则有()213a x =--,整理得2220x x a ---=()244420b ac a ∴∆=-=++≥解得3a -≥, 03x Q ≤≤,对称轴1x =,()23131y ∴=--=, 1a ∴≤.法二:由题意可知,Q 抛物线的顶点为()13-,,而03x ≤≤, ∴抛物线y 的取值为31y ﹣≤≤y a =Q ,则直线y 与x 轴平行,∴要使直线y a =与抛物线()213y x =--有交点, ∴抛物线y 的取值为31y -≤≤,即为a 的取值范围,31a ∴-≤≤.故答案为:31a -≤≤.【考点】二次函数图象的性质及交点的问题24.【答案】4【解析】90BEP BPE ∠+∠=︒Q ,90QPC BPE ∠+∠=︒,BEP CPQ ∴∠=∠.又90B C ∠=∠=︒,BPE CQP ∴△∽△.BE BP PC CQ∴=. 设CQ y =,BP x =,则12CP x =-.912x x y ∴=-,化简得()21129y x x -=-, 整理得()21649y x --+=, 所以当6x =时,y 有最大值为4.故答案为4.【考点】正方形的性质,相似三角形的判定和性质,二次函数最值问题五、解答题25.【答案】1a =-1a =-【解析】2y x x a =++的图象与x 轴交于()10A x ,、()20B x ,两点, 121x x ∴=+-,12x x a =g ,()()222121212222222121212211121x x x x x x a x x x x a x x +-+-+====Q ,1a ∴=-或1a =-【考点】二次函数的性质26.【答案】(1)13x -<<(2)1x >或4x -<【解析】(1)原不等式可化为:①3010x x -⎧⎨+⎩><或②3010x x -⎧⎨+⎩<>. 由①得,空集,由②得,13x -<<,∴原不等式的解集为:13x -<<, 故答案为:13x -<<.(2)由401x x +-<知①4010x x +⎧⎨-⎩><或②4010x x +⎧⎨-⎩<>, 解不等式组①,得:1x >;解不等式组②,得:4x -<; 所以不等式401x x+-<的解集为1x >或4x -<. 【考点】解不等式、不等式组27.【答案】(1)证明:Q DB 平分ADC ∠,ADB CDB ∴∠=∠,且90ABD BCD ∠=∠=︒,ABD BCD ∴△∽△AD BD BD CD∴= 2BD AD CD ∴=g(2)BM CD Q ∥MBD BDC ∴∠=∠ADB MBD ∴∠=∠,且90ABD ∠=︒BM MD ∴=,MAB MBA ∠=∠4BM M D AM ∴===2BD AD CD =Q g ,且6CD =,8AD =,248BD ∴=,22212BC BD CD ∴=-=22228MC MB BC +∴==MC ∴=BM CD Q ∥MNB CND ∴△∽△23BM MN CD CN ∴==,且MC =MN ∴【解析】(1)证明:Q DB 平分ADC ∠,ADB CDB ∴∠=∠,且90ABD BCD ∠=∠=︒,ABD BCD ∴△∽△AD BD BD CD∴= 2BD AD CD ∴=g(2)BM CD Q ∥MBD BDC ∴∠=∠ADB MBD ∴∠=∠,且90ABD ∠=︒BM MD ∴=,MAB MBA ∠=∠4BM M D AM ∴===2BD AD CD =Q g ,且6CD =,8AD =,248BD ∴=,22212BC BD CD ∴=-=22228MC MB BC +∴==MC ∴=BM CD Q ∥MNB CND ∴△∽△23BM MN CD CN ∴==,且MC =MN ∴【考点】相似三角形的判定和性质,勾股定理,直角三角形的性质28.【答案】(1)Q 抛物线与x 轴交于点()10A -,、()30B , ∴可设交点式()()13y a x x =+-把点()03C ,代入得:33a -= 1a ∴=-()()21323y x x x x ∴=-+-=-++∴抛物线解析式为223y x x =-++(2)在抛物线的对称轴上存在一点P ,使得PAC △的周长最小. 如图1,连接PB 、BCQ 点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称 PA PB ∴=PAC C AC PC PA AC PC PB ∴++=++=△Q 当C 、P 、B 在同一直线上时,PC PB CB +=最小()10A -Q ,、()30B ,、()03C ,AC ∴==BC =PAC C AC CB ∴+==△最小设直线BC 解析式为3y kx =+把点B 代入得:330k +=,解得:1k =-∴直线BC :3y x =-+132P y ∴+-==∴点()12P ,使PAC △+ (3)存在满足条件的点M ,使得PAM PAC S S =△△.PAM PAC S S =Q △△∴当以P A 为底时,两三角形等高∴点C 和点M 到直线P A 距离相等Q M 在x 轴上方CM PA ∴∥()10A -Q ,,()12P ,,设直线AP 解析式为y px d =+02p d p d -+=⎧∴⎨+=⎩解得:11p d =⎧∴⎨=⎩∴直线AP :1y x =+∴直线CM 解析式为:3y x =+2323y x y x x =+⎧⎨=-++⎩Q 解得:1100x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为()14,.【解析】(1)Q 抛物线与x 轴交于点()10A -,、()30B , ∴可设交点式()()13y a x x =+-把点()03C ,代入得:33a -= 1a ∴=-()()21323y x x x x ∴=-+-=-++∴抛物线解析式为223y x x =-++.(2)在抛物线的对称轴上存在一点P ,使得PAC △的周长最小.如图1,连接PB 、BCQ 点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∴++=++=△Q 当C 、P 、B 在同一直线上时,PC PB CB +=最小()10A -Q ,、()30B ,、()03C ,AC ∴==BC =PAC C AC CB ∴+==△最小设直线BC 解析式为3y kx =+把点B 代入得:330k +=,解得:1k =-∴直线BC :3y x =-+132P y ∴+-==∴点()12P ,使PAC △+ (3)存在满足条件的点M ,使得PAM PAC S S =△△.PAM PAC S S =Q △△∴当以P A 为底时,两三角形等高∴点C 和点M 到直线P A 距离相等Q M 在x 轴上方CM PA ∴∥()10A -Q ,,()12P ,,设直线AP 解析式为y px d =+02p d p d -+=⎧∴⎨+=⎩解得:11p d =⎧∴⎨=⎩∴直线AP :1y x =+∴直线CM 解析式为:3y x =+2323y x y x x =+⎧⎨=-++⎩Q 解得:1100x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为()14,.【考点】待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法。

2019年四川凉山中考数学真题--含解析

2019年四川凉山中考数学真题--含解析

2019年四川省凉山市初中毕业、升学考试数学学科(满分150分,考试时间120分钟) 一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中只有一项是 正确的,把正确选项的字母填涂在答题卡上相应的位置. 1.(2019四川省凉山市,1,4) 1.-2的相反数是( ▲ )A.2B.-2C.21 D .21-【答案】A【解析】-2的相反数是2,故选A. 【知识点】相反数 2.(2019四川省凉山市,2,4)2018年凉山州生产总值约为153 300 000 000元,用科学记数法表示数153 300 000 000是 ( ▲ )A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 【答案】C【解析】153 300 000 000用科学记数表示成111.5310⨯,故选C.【知识点】科学记数法 3.(2019四川省凉山市,3,4) 如图,BD ∥EF , AE 与 BD 交于点 C ,∠B =30°,∠A =75°,则 ∠E 的度数为( ▲ )A. 135°B.125° C . 115° D .105°第3题图 【答案】D【解析】∵∠ACD =∠A +∠B =30°+75°=105°,BD ∥EF ,∴∠E =∠ACD =105°,故选D. 【知识点】三角形的外角;平行线的性质 4.(2019四川省凉山市,4,4)下列各式正确的是( ▲ ) A. 2a 2 + 3a 2 =5a 4 B.a 2 •a = a 3 C .( a 2)3 = a 5 D . a a =2【答案】B【解析】∵222235a a a +=;23a a a ⋅=;236()a a =2a a = ,故选B.【知识点】整式的加减;同底数幂的乘法;同底数幂的乘方;二次根式的性质 5.(2019四川省凉山市,5,4) 不等式1–x ≥x -1的解集是( ▲ ) A.x ≥1 B.x ≥-1 C .x ≤1 D .x ≤-1【答案】C【解析】∵11x x -≥-,∴22x ≥ ,∴1x ≤,故选C. 【知识点】一元一次不等式的解法 6.(2019四川省凉山市,6,:人数(人) 3 17 13 7时间(小时) 78910那么该班40 ▲ )A.17, 8.5B.17, 9 C . 8, 9 D .8, 8.5 【答案】D【解析】由于8出现了17次,故这组数据的众数为8,而第20,21位数分别为8和9,这组数的中位为8.5.故选D.【知识点】众数;中位数7.(2019四川省凉山市,7,4)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数(▲) A . 1 B . 2 C . 3 D . 4 【答案】A【解析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;两点之间线段最短;在同圆或等圆中,相等的圆心角所对的弧相等;平分弦(不是直径)的直径垂直于弦,所以只有①是对的,故选A.【知识点】点到直线的距离概念;线段基本事实;在同圆或等圆中圆心角与弧的关系;垂径定理的推论8.(2019四川省凉山市,8,4)如图,正比例函数y =kx 与反比例函数y =x4的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( ▲ ) A.8 B.6 C.4 D .2第8题图【答案】C【思路分析】根据点A 在反比例函数图像上假设点A 坐标,利用对称性求出C 的坐标,最后求得△ABC 的面积.【解题过程】设A 点的坐标为(m ,4m),则C 点的坐标为(-m ,-4m),∴1414422ABC OBC OAB S S S m mm m∆∆∆=+=⨯+-⨯-=,故选C.【知识点】正比例函数与反比例函数图像的对称性;三角形的面积9.(2019四川省凉山市,9,4) 如图,在△A B C 中,CA = CB = 4,cos C =14,则 sin B 的值为( ▲ ) A .102B .153C .64D .104第9题图【答案】D 【思路分析】过点A 作AD ⊥BC 于点D ,先利用cos C 求CD ,再借助勾股定理求AD 、AB ,最后求sin B . 【解题过程】过点A 作AD ⊥BC 于点D ,∵cos C =14,AC =4,∴CD =1,∴BD =3,AD 224115-,在Rt △ABD 中,AB 22(15)326+=sin B =151026AD AB ==,故选D.B第9题答图【知识点】锐角三角函数;勾股定理10.(2019四川省凉山市,10,4)如图,在△ABC 中,D 在AC 边上,AD ∶DC = 1∶2,O 是BD 的中点,连接A 0并延长交BC 于 E ,则BE ∶EC =( ▲ ) A. 1∶2 B . 1∶3 C . 1∶4 D . 2∶3 【答案】B【思路分析】过点D 作DF ∥AE ,利用平行线分线段成比例定理求BE ∶EF , EF ∶FC ,再求BE ∶EC .【解题过程】过点D 作DF ∥AE ,则1==OD BO EF BE ,21==CD AD FC EF ,∴BE ∶EF ∶FC =1∶1∶2,∴BE ∶EC =1∶3.故选B .【知识点】平行线分线段成比例定理 11.(2019四川省凉山市,11,4) 如图,在△AOC 中,OA =3cm ,OC =lcm ,将△AOC 绕点D 顺时针旋转90 °后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( ▲ )cm 2A .2π B .2π C .178π D .198π第11题图 【答案】B【思路分析】先用三角形与扇形的面积和差表示AC 边在旋转过程中所扫过的图形的面积,再借助全等转化为扇环的面积,最后求出扇环的面积.【解析】AC 边在旋转过程中所扫过的图形的面积=S △OCA +S 扇形OAB - S 扇形OCD - S △ODB ①,由旋转知:△OCA ≌△ODB ,∴S △OCA =S △ODB ,∴①式= S 扇形OAB - S 扇形OCD =3603902⨯π-3601902⨯π=2π,故选B .第11题答图【知识点】旋转性质;扇形面积12.(2019四川省凉山市,12,4)二次函数y =ax 2+bx +c 的部分图象如图所示,有以下结论:①3a –b =0;②b 2-4ac >0;③5a -2b +c >0; ④4b +3c >0,其中错误结论的个数是( ▲ ) A. 1 B . 2 C . 3 D . 4第12题图【答案】A【思路分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解析】根据对称轴232-=-a b 得b =3a ,故可得3a –b =0,所以结论①正确;由于抛物线与x 轴有两个不同的交点,所以b 2-4ac >0,结论②正确;根据结论①可知b =3a ,∴5a -2b +c =5a -6a +c =-a +c ,观察图像可知a <0,c >0,∴5a -2b +c =-a +c >0,结论③正确;根据抛物线的轴对称性可知抛物线与x 轴的右交点在原点与(1,0)之间(不含这两点),所以当x =1时,y =a +b +c <0,∵a =b 31,∴b 34+c <0,∴4b +3c <0,所以结论④错误.故选 A.【知识点】二次函数图象与系数的关系二、填空题:本大题共5小题,每小题4分,共20分.不需写出解答过程,请把最后结果填在题中横线上. 13.(2019四川省凉山市,13,4) 方程10216x y x y +=⎧⎨+=⎩,的解是 .【答案】64x y =⎧⎨=⎩,【解析】由方程②减去方程①,得x =6,把x =6 代入x +y =10,得y =4,∴⎩⎨⎧==46y x .故答案为64x y =⎧⎨=⎩,.【知识点】二元一次方程组的解法14.(2019四川省凉山市,14,4)方程1121122=-+--x x x 解是 ▲ . 【答案】x =-2【解析】解析:原方程可化为1)1)(1(2112=-+---x x x x ,去分母得(2x -1)(x +1)-2=(x +1)(x -1),解得x 1=1,x 2=-2,经检验x 1=1是增根,x 2=-2是原方程的解,∴原方程的解为x =-2.故答案为x =-2.【知识点】分式方程的解法15.(2019四川省凉山市,15,4)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A =30°,CD =23,则⊙O的半径是.第15题图【答案】2【解析】连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°,∵OB⊥CD,CD=23,∴CH=3,∴OH=1,∴OC=2.第15题答图【知识点】等腰三角形性质;三角形外角性质;垂径定理;勾股定理16.(2019四川省凉山市,16,4)在□ABCD中,E是AD上一点,且点E将AD分为2∶3的两部分,连接BE、AC相交于F,则S△AEF∶S△CBF是▲ .【答案】4:25或9∶25【思路分析】分AE∶DE=2∶3与AE∶DE=3∶2两种情况讨论,借助相似三角形的性质求出面积比. 【解题过程】在□ABCD中,∵AD∥BC,∴△AEF∽△CBF.如答图1,当AE∶DE=2∶3时,AE∶AD=2∶5,∵AD=BC,∴AE∶BC=2∶5, ∴S△AEF∶S△CBF=4∶25;如答图2,当AE∶DE=3∶2时,AE∶AD=3∶5,∵AD=BC,∴AE∶BC=3∶5, ∴S△AEF∶S△CBF=9∶25.故答案为4∶25或9∶25.(第16题图答图1)(第16题图答图2)【知识点】三角形相似的判定与性质;分类讨论思想17.(2019四川省凉山市,17,4)将抛物线y=(x-3)2-2向左平移个单位后经过点A(2,2).【答案】3【思路分析】先假设平移后抛物线解析式,再代入A (2,2)求参数m .【解题过程】设抛物线向左平移m 个单位,则平移后的解析式为y =(x -3+m )2-2,将A (2,2)代入,有2=(2-3+m )2-2,解得:m 1=-1(舍去),m 2=3,∴m =3.故答案为3. 【知识点】抛物线的平移规律;待定系数法三、解答题(本大题共5小题,满分32分,解答应写出文字说明、证明过程或演算步骤)18.(2019四川省凉山市,18,5)计算:tan45° + (3-2)0-(-21)-2 + ︱3-2︱.【答案】-3【思路分析】先化简绝对值、求特殊角的三角函数值及实数的零指数幂、负指数幂的运算,把各个结果相加即可【解题过程】解:原式=1+1-(-2)2+2-3=2-4+2-3=-3.【知识点】绝对值;特殊角的三角函数值;实数的零指数幂;实数的负指数幂19.(2019四川省凉山市,19,5)先化简,再求值:(a +3)2- (a +1)(a -l )-2(2a +4),其中a =-12. 【思路分析】先利用完全平方公式、平方差公式、单项式乘多项式去括号化简,合并同类项;最后将a =-12代入化简后的式子即可得到结果.【解题过程】原式=a 2+6a +9-a 2+1-4a -8=2a +2,当a =-21时,原式==2×(-21)+2=-1+2=1. 【知识点】完全平方公式;平方差公式;单项式乘以多项式;代数式的值 20.(2019四川省凉山市,20,6)如图,正方形ABCD 的对角线AC 、BD 相交于点0,E 是OC 上一点,连接EB .过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .求证:OE = OF .【思路分析】先根据垂直定义以及正方形性质证明∠FAO =∠EBO ,OA =OB ,再证△AOF ≌△BOE 得出结论.【解题过程】证明:在正方形ABCD 中,∵AC ⊥BD ,AM ⊥BE ,∴∠AOF =∠BOE =∠AME =90°,∴∠FAO +∠AEB =∠EBO +∠AEB =90°,∴∠FAO =∠EBO ,∵AC =BD ,OA =21AC ,OB =21BD ,∴OA =OB ,∴△AOF ≌△BOE (AAS ),∴OE = OF .【知识点】正方形性质;三角形全等的判定与性质; 21.(2019四川省凉山市,21,8)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.第21题图(1)参加此次诗词大会预选赛的同学共有 ▲ 人; (2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ▲ ; (3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率. 【思路分析】(1)根据样本容量=鼓励奖人数÷鼓励奖百分率为求样本容量; (2)根据三等奖所对应的圆心角=样本数10÷样本容量×360°求圆心角; (3)先求二等奖人数,再得一等奖人数,最后画出条形图;(4)求出七年级、八年级、九年级的人数,画出树状图,再根据树状图求出概率. 【解题过程】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人)(2)三等奖所对应的圆心角=4010×360°=90°;(3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:第21题答图①(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:第21题答图②由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.【知识点】扇形统计图;条形统计图;列表法与树状图法 22.(2019四川省凉山市,22,8)如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F . (1)求证:DF 是⊙O 的切线;(2)若OB =BF ,EF =4,求 AD 的长.【思路分析】(1)连接OD .先根据直径所对圆周角为直角证∠CDB =90°,再证ED =EB 得出∠EDB =∠EBD ,转化得到∠ODF =90°从而得出结论;(2)先利用锐角三角函数求∠F ,再证△ODB 是等边三角形,得出AD 、BD 的关系,最后借助锐角三角函数与勾股定理求得DB 的长从而得出结论. 【解题过程】(1)证明:连接OD .∵⊙O 的切线,∴BC ⊥OB ,∴∠OBC =90°.∵AB 为⊙O 直径,∴∠ADB =90°,∵∠ADB +∠CDB =180°,∴∠CDB =90°.∵E 是BC 的中点,∴ED =EB =21BC ,∴∠EDB =∠EBD .∵OD =OB ,∴∠ODB =∠OBD ,∴∠ODF =∠OBC =90°,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)由(1)知∠ODB =90°,∵OD =OB =BF ,∴sin ∠F =21=OF OD ,∴∠F =30°,∵∠DOB +∠F =90°,∴∠DOB =60°,∴△ODB 是等边三角形,∴∠OBD =60°,∴tan ∠OBD =BDAD=3,∴AD =3BD .∵BC⊥AF ,∴=BF BE sin ∠F =21,∵EF =4,∴BE =2,∴BF =22BE EF -=23=OB =DB ,∴AD =3BD =6.【知识点】B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.(2019四川省凉山市,23,5)当0≤x ≤3时,直线y =a 与抛物线y =(x -l)2-3有交点,则a 的取值范围是 . 【答案】-3≤a ≤-2【解题过程】 抛物线y =(x -1)2-3的顶点坐标为(1,-3),当x =0时,y =-2,当x =3时,y =1,∴当0≤x ≤3时,-3≤y ≤-2,∴直线y =a 与抛物线有交点时,a 的取值范围为-3≤a ≤-2. 【知识点】二次函数的最值;数形结合思想24.(2019四川省凉山市,24,5)如图,正方形ABCD 中,AB =12, AE =41AB ,点P 在BC 上运动 (不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 ▲ .第24题图【思路分析】根据正方形形的性质得到∠B =∠C =90°,根据余角的性质得到∠BEP =∠CPQ ,根据相似三角形的性质得到CQ =4)6(912+--x ,根据二次函数的性质即可得到结论.【解题过程】在正方形ABCD 中,∵AB =12, AE =41AB =3,∴BC =AB =12,BE =9,设BP =x ,则CP =12-x .∵PQ ⊥EP ,∴∠EPQ =∠B =∠C =90°,∴∠BEP +∠BPE =∠CPQ +∠BPE =90°,∴∠BEP =∠CPQ ,∴△EBP∽△PCQ ,∴BE PC BP CQ =,∴912x x CQ -=,整理得CQ =4)6(912+--x ,∴当x =6时,CQ 取得最大值为4.故答案为4.【知识点】相似三角形的性质;正方形的性质;二次函数的最值五、解答题(共4小题,共40分) 25.(2019四川省凉山市,25,8)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,且221211x x +=1,求a 的值.【思路分析】根据抛物线与x 轴的交点得出x 1+x 2与x 1x 2,再将222111x x +用x 1+x 2与x 1x 2表示,最后列方程求a 的值并检验是否符合题意.【解题过程】解:对于抛物线y =x 2+x +a ,令y =0,∴x 2+x +a =0,∵抛物线与x 轴交于点A (x 1,0),(x 2,0),∴x 1+x 2=-1,x 1x 2=a ,∵222111x x +=22212221x x x x +=1,∴x 12+x 22=x 12x 22,∴(x 1+x 2)2-2x 1x 2==x 12x 22,代入x 1+x 2=-1,x 1x 2=a ,有:1-2a =a 2,解得a =-1 2±,∵方程有两个实数根,则△=1-4a >0,解得a <41,∴a =-1-2.【知识点】抛物线与x 轴的交点问题;根与系数的关系;一元二次方程的解法;根的判别式. 26.(2019四川省凉山市,26,10)根据有理数乘法(除法)法则可知:①若ab >0(或b a>0),则⎩⎨⎧>>00b a 或⎩⎨⎧<<00b a ;②若ab <0(或b a<0),则⎩⎨⎧<>00b a 或⎩⎨⎧><00b a .根据上述知识,求不等式(x -2)(x +3)>0的解集.解:原不等式可化为:(1)⎩⎨⎧>+>-0302x x 或(2)⎩⎨⎧<+<-0302x x ,由(1)得,x >2,由(2)得,x <-3,∴原不等式的解集为:x < -3或x >2.请你运用所学知识,结合上述材料解答下列问题: (1)不等式0322<--x x 的解集为 ▲ ..(2)求不等式xx -+14<0的解集(要求写出解答过程). 【思路分析】(1)将二次三项式因式分解,根据“异号得负”并将问题转化为两个不等式组来解决;(2)根据“异号得负”xx -+14<0转化成两个不等式组来解决问题.【解题过程】(1)-1<x <3,解析:原不等式可化为(x -3)(x +1)<0,从而可化为①⎩⎨⎧<+>-0103x x 或②⎩⎨⎧>+<-0103x x ,由①得不等式组无解;由②得-1<x <3,∴原不等式的解集为:-1<x <3.故答案为:-1<x <3.(2)原不等式可化为①⎩⎨⎧<->+0104x x 或②⎩⎨⎧>-<+0104x x ,由①得x >1;由②得x <-4,∴原不等式的解集为x >1或x <-4.【知识点】十字相乘法;不等式组的解法;转化思想 27.(2019四川省凉山市,27,10)如图,∠ABD =∠BCD =90°,DB 平分∠ADC ,过点B 作BM ∥CD 交AD 于M .连接CM 交DB 于N . (1)求证:BD 2 =AD ·CD ;(2)若CD =6,AD =8,求MN 的长.第27题图【思路分析】(1)利用两角分别相等证△DAB ∽△DBC ,再由相似性质得到结论;(2)先利用相似性质与勾股定理求 BD 、AB 的长,再借助角的关系得到△ABM 是等边三角形求得BM 的长,最后利用相似和勾股定理求BC 、CM 、MN 的长. 【解题过程】(1)证明:∵BD 平分∠ADC ,∴∠ADB =∠BDC ,∵∠ABD =∠BCD =90°,∴△DAB ∽△DBC ,∴CD BD =BDAD,∴BD 2=AD CD .(2)由(1)可知:BD 2=ADCD .∵CD =6,AD =8,∴BD =43,又AD =8,∴AB 4=,∴AB =12AD ,∴∠ADB =30°,∠BDC =∠ABD =30°,又∠ABD =∠BCD =90°,∴∠A =∠DBC =60°,∵BM ∥CD ,∴∠BDC =∠MBD =30°,∠ABM =∠ABD -∠MBD =60°,∴△ABM 是等边三角形,故BM =AB =4,∵△ABD ∽△BCD ,∴AB DBBC CD =,∴=AB CD BC DB ⨯,∵BM ∥CD ,∴∠CBM =180°-∠BCD=90°,∴CM =BM ∥CD ,∴△BMN ∽△DCN ,∴4263MN MB CN CD ===,∴CN =1.5MN ,又CN +MN =CM =MN【知识点】相似三角形的判定与性质;勾股定理;等边三角形的判定与性质;转化思想 28.(2019四川省凉山市,28,12)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点 P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △PAM =S △PAC ,若存在,请求出点M 的坐标;若不存在,请说明理由. 【思路分析】(1)把A (-1,0)、B (3,0)、C (0,3)分别代入函数解析式,列出关于系数的方程组,通过解方程组解答问题;(2)在抛物线对称轴上存在一点P ,使得△PAC 周长最小,由题意可知A 和B 关于对称轴x =1对称,连接BC 交直线x =1于P ,此时PA +PC 的值最小,即△PAC 的周长的值最小,由待定系数法求得直线BC 的解析式,把x =1即可求得点P 的纵坐标,最后借助垂直平分线性质与勾股定理求△PAC 的周长;(3)存在.先求 S △PAC ,再求AP 解析式,最后分类讨论求M :①过点C 作AP 的平行线交x 轴上方的抛物线于M ,求M 坐标;②设抛物线对称轴交x 轴于点E (1,0),则S △PAC =21×2×2=2= S △PAC .过点E作AP 的平行线交x 轴上方的抛物线于M ,求M 坐标.【解题过程】解:(1)由题知⎪⎩⎪⎨⎧==++=+-30390c c b a c b a ,解得⎪⎩⎪⎨⎧==-=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△PAC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴PA =PB ,∴△PAC 的周长=AC +PC +PA = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△PAC 的周长为10+32;(3)存在.由题知AB =4,∴S △PAC = S △ABC - S △PAB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则⎩⎨⎧=+=+-20n m n m ,解得⎩⎨⎧==11n m ,∴AP :y =x +1.①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由⎩⎨⎧++-=+=3232x x y x y 解得⎩⎨⎧==3011y x ,⎩⎨⎧==4122y x ,∴M (1,4); ②设抛物线对称轴交x 轴于点E (1,0),则S △PAC =21×2×2=2= S △PAC .过点E 作AP 的平行线交x 轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由⎩⎨⎧++-=-=3212x x y x y 解得⎪⎪⎩⎪⎪⎨⎧--=-=2171217111y x (舍),⎪⎪⎩⎪⎪⎨⎧+-=+=2171217122y x ,∴M (2171+,2171+-). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+-).【知识点】待定系数法求二次函数解析式,二次函数图象上点的坐标特征;待定系数法求一次函数解析式;三角形的面积的求法;数形结合。

2019年四川省凉山州中考数学试题(word版,含解析)(1)

2019年四川省凉山州中考数学试题(word版,含解析)(1)

2019 年四川省凉山州中考数学试卷一、选择题(共 12 个小题,每题 4 分,共 48 分)在每题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的地点1.( 4 分)﹣ 2 的相反数是( )A .2B .﹣ 2C .D .﹣2.( 4 分) 2018 年凉山州生产总值约为 ,用科学记数法表示数是()9101112A .× 10B .× 10C .× 10D .× 103.( 4 分)如图, BD ∥ EF , AE 与 BD 交于点 C ,∠ B =30°,∠ A = 75°,则∠ E 的度数为( )A .135°B .125°C . 115°D . 105°4.( 4 分)以下各式正确的选项是( )22423A .2a +3 a =5aB . a ?a = aC .(a 2) 3= a 5D .= a 5.( 4 分)不等式 1﹣ x ≥ x ﹣ 1 的解集是( )A .x ≥ 1B .x ≥﹣ 1C . x ≤ 1D . x ≤﹣ 16.( 4 分)某班 40 名同学一周参加体育锻炼时间统计如表所示:人数(人)3 17 13 7 时间(小时)78910那么该班 40 名同学一周参加体育锻炼时间的众数、中位数分别是( ) A .17,B .17, 9C .8,9D . 8,7.( 4 分)以下命题: ① 直线外一点到这条直线的垂线段,叫做点到直线的距离; ② 两点之间线段最短; ③ 相等的圆心角所对的弧相等; ④ 均分弦的直径垂直于弦.此中,真命 题的个数是( )A .1B .2C . 3D . 48.( 4 分)如图,正比率函数y= kx 与反比率函数y=的图象订交于A、 C 两点,过点 A 作 x 轴的垂线交x 轴于点B,连结BC,则△ABC 的面积等于()A .89.( 4 分)如图,在△B.6C.4ABC 中, CA =CB= 4, cosC=,则D. 2sinB 的值为()A.B.10.( 4 分)如图,在△ ABC 中, D 在 AC 并延伸交BC 于 E,则 BE: EC=(C.边上, AD :DC= 1:2,O 是)D.BD 的中点,连结AOA .1:2B.1:3C.1:4D.2:311.( 4 分)如图,在△AOC 中, OA= 3cm, OC= 1cm,将△ AOC 绕点 O 顺时针旋转90°后获取△ BOD ,则 AC 边在旋转过程中所扫过的图形的面积为()cm2.A .B .2πC.πD.π12.( 4 分)二次函数2 2 y= ax +bx+c 的部分图象以下图,有以下结论:① 3a﹣ b= 0;② b﹣ 4ac>0;③ 5a﹣2b+c> 0;④ 4b+3c> 0,此中错误结论的个数是()A .1B .2 C. 3 D. 4二、填空题(共 5 个小题,每题 4 分,共20 分)13.( 4 分)方程组的解是.14.( 4 分)方程+ =1 的解是.15.( 4 分)以下图,AB 是⊙ O 的直径,弦CD⊥ AB 于 H ,∠A= 30°, CD= 2 ,则⊙O 的半径是.16.( 4 分)在 ? ABCD 中, E 是 AD 上一点,且点 E 将 AD 分为 2: 3 的两部分,连结BE、AC 订交于 F,则 S.△ AEF:S△ CBF 是17.( 4 分)将抛物线 y=( x﹣ 3)2﹣ 2 向左平移个单位后经过点 A( 2, 2).三、解答题(共 5 小题,共 32 分)18.( 5 分)计算: tan45°+(﹣﹣(﹣)﹣ 2﹣2|.)+|19.( 5 分)先化简,再求值:( a+3)2﹣( a+1 )(a﹣ 1)﹣ 2( 2a+4),此中 a=﹣.20.( 6 分)如图,正方形 ABCD 的对角线点 A 作 AM⊥BE,垂足为 M,AM 与AC、BD 订交于点 O,E 是 OC 上一点,连结 EB.过BD 订交于点 F .求证: OE=OF.21.( 8 分)某校初中部举行诗词大会预选赛,学校正参赛同学获奖状况进行统计,绘制了以下两幅不完好的统计图.请联合图中有关数据解答以下问题:( 1)参加此次诗词大会预选赛的同学共有人;( 2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;( 3)将条形统计图增补完好;( 4)若获取一等奖的同学中有来自七年级,来自九年级,其他的来自八年级,学校决定从获取一等奖的同学中任选两名同学参加全市诗词大会竞赛,请经过列表或树状图方法求所选两名同学中,恰巧是一名七年级和一名九年级同学的概率.22.( 8 分)如图,点 D 是以 AB 为直径的⊙ O 上一点,过点 B 作⊙ O 的切线,交 AD 的延长线于点C, E 是 BC 的中点,连结DE 并延伸与AB 的延伸线交于点F.(1)求证: DF 是⊙ O 的切线;(2)若 OB= BF, EF= 4,求 AD 的长.四、 B 卷填空题(共 2 小题,每题 5 分,共10 分)23.( 5 分)当 0≤ x≤ 3 时,直线y= a 与抛物线y=( x﹣ 1)2﹣ 3 有交点,则a 的取值范围是.24.( 5 分)如图,正方形ABCD 中, AB = 12, AE=AB,点 P 在 BC 上运动(不与B、 C 重合),过点 P 作 PQ⊥ EP,交 CD 于点 Q,则 CQ 的最大值为.五、解答题(共 4 小题,共 40 分)225.( 8 分)已知二次函数 y= x +x+a 的图象与 x 轴交于 A( x1,0)、B( x2,0)两点,且+= 1,求 a 的值.26.( 10 分)依占有理数乘法(除法)法例可知:①若 ab> 0(或> 0),则或;②若 ab< 0(或< 0),则依据上述知识,求不等式(解:原不等式可化为:( 1)或.x﹣ 2)( x+3)> 0 的解集或( 2).由( 1)得, x>2,由( 2)得, x<﹣ 3,∴原不等式的解集为:x<﹣ 3 或 x>2.请你运用所学知识,联合上述资料解答以下问题:( 1)不等式 x2﹣ 2x﹣ 3< 0 的解集为.( 2)求不等式<0的解集(要求写出解答过程)27.( 10 分)如图,∠ ABD =∠ BCD = 90°, DB 均分∠ ADC ,过点 B 作 BM∥ CD 交 AD 于M.连结 CM 交 DB 于 N.(1)求证: BD 2= AD ?CD ;(2)若 CD = 6, AD =8,求 MN 的长.228.( 12 分)如图,抛物线y=ax +bx+c 的图象过点A(﹣ 1, 0)、 B(3, 0)、 C( 0,3).(1)求抛物线的分析式;(2)在抛物线的对称轴上能否存在一点P,使得△ PAC 的周长最小,若存在,恳求出点P 的坐标及△ PAC 的周长;若不存在,请说明原因;( 3)在( 2)的条件下,在x 轴上方的抛物线上能否存在点M(不与 C 点重合),使得 S △PAM= S△PAC?若存在,恳求出点M 的坐标;若不存在,请说明原因.2019 年四川省凉山州中考数学试卷参照答案与试题分析一、选择题(共12 个小题,每题 4 分,共 48 分)在每题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的地点1.( 4 分)﹣2 的相反数是()A .2 B.﹣ 2 C.D.﹣【剖析】依据相反数的意义,只有符号不一样的数为相反数.【解答】解:依据相反数的定义,﹣ 2 的相反数是2.应选: A.【评论】本题考察了相反数的意义.注意掌握只有符号不一样的数为相反数,0 的相反数是0.2.( 4 分) 2018 年凉山州生产总值约为,用科学记数法表示数是()9 10C.× 10 11 12A .× 10B .× 10 D.× 10【剖析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=× 1011应选: C.【评论】本题主要考察科学记数法的表示,把一个数表示成 a 与 10 的 n 次幂相乘的形式( 1≤ a< 10, n 为整数),这种记数法叫做科学记数法.3.( 4 分)如图, BD ∥ EF, AE 与 BD 交于点 C,∠ B=30°,∠ A= 75°,则∠ E 的度数为()A .135°B .125°C. 115°D. 105°【剖析】直接利用三角形的外角性质得出∠ACD 度数,再利用平行线的性质剖析得出答案.【解答】 解:∵∠ B = 30°,∠ A = 75°,∴∠ ACD = 30°+75 °= 105°,∵ BD ∥ EF ,∴∠ E =∠ ACD = 105°.应选: D .【评论】 本题主要考察了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题重点.4.( 4 分)以下各式正确的选项是()22423A .2a +3 a =5aB . a ?a = aC .(a 2) 3= a5D .= a【剖析】 分别依据归并同类项的法例、同底数幂的乘法法例、幂的乘方法例以及二次根式的性质解答即可.222【解答】 解: A 、 2a +3a = 5a ,应选项 A 不合题意;23B 、 a ?a = a ,应选项 B 切合题意;C 、(a2) 3= a 6,应选项 C 不合题意; D 、= |a|,应选项 D 不合题意.应选: B .【评论】 本题主要考察了归并同类项的法例、幂的运算法例以及二次根式的性质,娴熟掌握有关运算性质是解答本题的重点.5.( 4 分)不等式1﹣ x ≥ x ﹣ 1 的解集是()A .x ≥ 1B .x ≥﹣ 1C . x ≤ 1D . x ≤﹣ 1【剖析】 移项、归并同类项,系数化为1 即可求解.【解答】 解: 1﹣ x ≥ x ﹣ 1,﹣ 2x ≥﹣ 2∴ x ≤ 1.应选: C .【评论】 本题考察认识简单不等式的能力,解答这种题学生常常在解题时不注意移项要改变符号这一点而犯错.6.( 4 分)某班 40 名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10 那么该班40 名同学一周参加体育锻炼时间的众数、中位数分别是()A .17,B .17, 9 C.8,9 D. 8,【剖析】依据中位数、众数的观点分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21 两个数的均匀数就是中位数,∴这组数据的中位数为=;应选: D.【评论】本题考察了中位数、众数的观点.本题为统计题,考察众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)从头摆列后,最中间的那个数(最中间两个数的均匀数),叫做这组数据的中位数.7.( 4 分)以下命题:① 直线外一点到这条直线的垂线段,叫做点到直线的距离;② 两点之间线段最短;③ 相等的圆心角所对的弧相等;④ 均分弦的直径垂直于弦.此中,真命题的个数是()A .1B.2C.3D.4【剖析】依据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:① 直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;② 两点之间线段最短;真命题;③ 相等的圆心角所对的弧相等;假命题;④ 均分弦的直径垂直于弦;假命题;真命题的个数是 1 个;应选: A.【评论】本题考察了命题与定理:判断一件事情的语句,叫做命题.很多命题都是由题设和结论两部分构成,题设是已知事项,结论是由已知事项推出的事项,一个命题能够写成“假如那么”形式.有些命题的正确性是用推理证明的,这样的真命题叫做定理.8.( 4 分)如图,正比率函数y= kx 与反比率函数y=的图象订交于A、 C 两点,过点 A 作 x 轴的垂线交x 轴于点 B,连结 BC,则△ ABC 的面积等于()A .8B.6C.4D.2【剖析】因为点 A、 C 位于反比率函数图象上且对于原点对称,则S△OBA= S△OBC,再根据反比率函数系数k 的几何意义作答即可.【解答】解:因为过双曲线上随意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即 S=|k|.因此△ ABC 的面积等于2×|k|= |k|= 4.应选: C.【评论】主要考察了反比率函数y=中k的几何意义,即过双曲线上随意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是常常考察的一个知识点;这里表现了数形联合的思想,做此类题必定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=|k|.9.( 4 分)如图,在△ ABC 中, CA =CB= 4, cosC=,则sinB的值为()A.B.C.D.【剖析】过点 A 作 AD⊥ BC,垂足为D,在 Rt△ ACD 中可求出AD, CD 的长,在Rt △ABD 中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出【解答】解:过点 A 作 AD⊥ BC,垂足为 D ,以下图.sinB 的值.在 Rt△ACD 中, CD = CA?cosC= 1,∴ AD==;在 Rt△ABD 中, BD =CB﹣ CD= 3,AD =,∴ AB== 2 ,∴ sinB==.应选: D.【评论】本题考察认识直角三角形以及勾股定理,经过解直角三角形及勾股定理,求出AD, AB 的长是解题的重点.10.( 4 分)如图,在△ ABC 中, D 在 AC 边上, AD :DC= 1:2,O 是 BD 的中点,连结AO 并延伸交BC 于 E,则 BE: EC=()A .1:2【剖析】过O作BCB.1:3的平行线交AC 与C.1:4G,由中位线的知识可得出D.2:3AD:DC = 1:2,依据已知和平行线分线段成比率得出AD= DG =GC ,AG: GC= 2: 1, AO:OF = 2: 1,再由同高不一样底的三角形中底与三角形面积的关系可求出BF:FC 的比.【解答】解:如图,过O 作OG∥ BC,交AC 于 G,∵ O 是BD 的中点,∴ G 是DC 的中点.又 AD:DC=1:2,∴ AD= DG= GC,∴AG: GC=2: 1, AO: OE= 2: 1,∴S△AOB: S△BOE= 2设 S△BOE= S,S△AOB=2S,又 BO=OD ,∴ S△AOD= 2S, S△ABD= 4S,∵ AD: DC=1: 2,∴S△BDC= 2S△ABD=8S, S 四边形CDOE=7S,∴S△AEC= 9S, S△ABE=3S,∴应选: B.【评论】本题考察平行线分线段成比率及三角形的中位线的知识,难度较大,注意娴熟运用中位线定理和三角形面积公式.11.( 4 分)如图,在△AOC 中, OA= 3cm, OC= 1cm,将△ AOC 绕点 O 顺时针旋转90°后获取△ BOD ,则 AC 边在旋转过程中所扫过的图形的面积为()cm2.A .B .2πC.πD.π【剖析】依据旋转的性质能够获取暗影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式即可求解.【解答】解:∵△ AOC≌△ BOD ,∴暗影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积=﹣=2π,应选: B.【评论】本题考察了旋转的性质以及扇形的面积公式,正确理解:暗影部分的面积=扇形 OAB 的面积﹣扇形OCD 的面积是解题重点.12.( 4 分)二次函数2 2 y= ax +bx+c 的部分图象以下图,有以下结论:① 3a﹣ b= 0;② b﹣ 4ac>0;③ 5a﹣2b+c> 0;④ 4b+3c> 0,此中错误结论的个数是()A .1B .2 C. 3 D. 4 【剖析】①对称轴为 x=﹣,得 b= 3a;②函数图象与 x 轴有两个不一样的交点,得△=2﹣ 4ac> 0;b③当 x=﹣ 1 时, a﹣ b+c> 0,当 x=﹣ 3 时, 9a﹣ 3b+c> 0,得 5a﹣ 2b+c> 0;④由对称性可知x= 1 时对应的y 值与 x=﹣ 4 时对应的y 值相等,当x= 1 时 a+b+c< 0,4b+3c=3b+b+3c=3b+3a+3c=3( a+b+c)< 0;【解答】解:由图象可知a< 0, c>0,对称轴为x=﹣,∴ x=﹣=﹣,∴b= 3a,① 正确;∵函数图象与x 轴有两个不一样的交点,∴△= b 2﹣ 4ac> 0,② 正确;当 x=﹣ 1 时, a﹣ b+c> 0,当 x=﹣ 3 时, 9a﹣ 3b+c>0,∴ 10a﹣ 4b+2c> 0,∴ 5a﹣2b+c> 0,③ 正确;由对称性可知x=1 时对应的y 值与 x=﹣ 4 时对应的y 值相等,∴当 x=1 时 a+b+c< 0,∵b= 3a,∴4b+3c= 3b+b+3c= 3b+3 a+3c= 3( a+b+c)< 0,∴4b+3c< 0,④ 错误;应选: A.【评论】本题考察二次函数的图象及性质;娴熟掌握从函数图象获守信息,将信息与函数分析式相联合解题是重点.二、填空题(共 5 个小题,每题 4 分,共 20 分)13.( 4 分)方程组的解是.【剖析】利用加减消元法解之即可.【解答】解:,②﹣①得:x= 6,把 x= 6 代入①得:6+y= 10,解得: y= 4,方程组的解为:,故答案为:.【评论】本题考察认识二元一次方程组,正确掌握加减消元法是解题的重点.14.( 4 分)方程+=1的解是x=﹣ 2.【剖析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣ 1)( x+1)﹣ 2=( x+1)( x﹣ 1)去括号,得2x 2 2+x﹣3= x ﹣ 12移项并整理,得 x +x﹣ 2= 0因此( x+2)( x﹣ 1)= 0解得 x=﹣ 2 或 x=1经查验, x=﹣ 2 是原方程的解.故答案为: x=﹣ 2.【评论】本题考察了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的重点.注意验根.15.( 4 分)以下图, AB 是⊙ O 的直径,弦 CD⊥ AB 于 H ,∠A= 30°, CD= 2 ,则⊙O 的半径是 2 .【剖析】连结 BC,由圆周角定理和垂径定理得出∠由直角三角形的性质得出 AC= 2CH= 2 ,AC=ACB= 90°, CH = DH=CD=,BC =2,AB=2BC,得出BC=2,AB= 4,求出 OA= 2 即可.【解答】解:连结BC,以下图:∵AB 是⊙O 的直径,弦CD⊥AB 于 H,∴∠ ACB= 90°, CH= DH =CD =∵∠ A= 30°,∴ AC= 2CH =2,,在 Rt△ABC 中,∠ A= 30°,∴AC= BC= 2 , AB =2BC,∴BC= 2,AB =4,∴OA= 2,即⊙O 的半径是2;故答案为: 2.【评论】本题考察的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;娴熟掌握圆周角定理和垂径定理是解题的重点.16.( 4 分)在? ABCD 中,E是AD 上一点,且点 E 将AD 分为2: 3 的两部分,连结BE、AC 订交于 F ,则 S△AEF: S△CBF是4: 25 或 9:25 .【剖析】分 AE:ED = 2:3、AE:ED = 3:2 两种状况,依据相像三角形的性质计算即可.【解答】解:①当 AE:ED=2:3 时,∵四边形ABCD 是平行四边形,∴AD∥ BC,AE : BC=2: 5,∴△ AEF ∽△ CBF ,∴S△AEF: S△CBF=()2= 4: 25;②当 AE:ED=3: 2 时,同理可得, S△AEF: S△CBF=()2= 9:25,故答案为: 4: 25 或 9: 25.【评论】本题考察的是相像三角形的判断和性质、平行四边形的性质,掌握相像三角形的面积比等于相像比的平方是解题的重点.17.( 4 分)将抛物线 y=( x﹣ 3)2﹣ 2 向左平移3个单位后经过点A( 2,2).【剖析】直接利用二次函数的平移规律联合二次函数图象上点的性质从而得出答案.2∴设平移后分析式为:y=( x﹣ 3+a)2﹣ 2,则 2=( 2﹣ 3+a)2﹣ 2,解得: a= 3 或 a=﹣ 1(不合题意舍去),故将抛物线y=( x﹣ 3)2﹣ 2 向左平移3 个单位后经过点A( 2,2).故答案为: 3.【评论】 本题主要考察了二次函数图象与几何变换,正确记忆平移规律是解题重点.三、解答题(共 5 小题,共 32 分)18.( 5 分)计算: tan45°+( ﹣﹣(﹣ ) ﹣ 2﹣2|.) +|【剖析】 分别进行特别角的三角函数值的运算, 任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,而后依据实数的运算法例进行计算求得结果. 【解答】 解:原式= 1+1 ﹣2+( 2﹣)= .【评论】 本题考察了实数的运算法例,属于基础题,解答本题的重点是娴熟掌握负整数指数幂、特别角的三角函数值等知识.19.( 5 分)先化简,再求值: ( a+3)2﹣( a+1 )(a ﹣ 1)﹣ 2( 2a+4),此中 a =﹣.【剖析】 注意到( a+3 )2能够利用完好平方公式进行睁开, ( a+1)(a ﹣ 1)收益平方差公式可化为( a 2﹣ 1),则将各项归并即可化简,最后辈入a =进行计算.【解答】 解:22﹣ 1)﹣ 4a ﹣ 8 原式= a +6a+9﹣( a = 2a+2将 a =﹣代入原式= 2×(﹣ ) +2=1【评论】 本题主要考察整式的混淆运算,灵巧运用两条乘法公式:完好平方公式和平方差公式是解题的重点,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.( 6 分)如图,正方形 ABCD 的对角线 AC 、BD 订交于点 O ,E 是 OC 上一点,连结 EB .过点 A 作 AM ⊥BE ,垂足为 M , AM 与 BD 订交于点 F .求证: OE =OF .【剖析】 依据正方形的性质对角线垂直且均分,获取OB = OA ,依据 AM ⊥ BE ,即可得出∠ MEA+∠ MAE = 90°=∠ AFO +∠ MAE ,从而证出 Rt △ BOE ≌ Rt △ AOF ,获取 OE =OF.【解答】证明:∵四边形ABCD 是正方形.∴∠ BOE=∠ AOF= 90°, OB =OA.又∵ AM⊥ BE,∴∠ MEA+∠ MAE = 90°=∠ AFO +∠ MAE ,∴∠ MEA=∠ AFO .∴△ BOE≌△ AOF( AAS).∴OE= OF.【评论】本题主要考察了正方形的性质、三角形全等的性质和判断,在应用全等三角形的判准时,要注意三角形间的公共边和公共角,必需时增添适合协助线结构三角形.21.( 8 分)某校初中部举行诗词大会预选赛,学校正参赛同学获奖状况进行统计,绘制了以下两幅不完好的统计图.请联合图中有关数据解答以下问题:( 1)参加此次诗词大会预选赛的同学共有40 人;( 2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;( 3)将条形统计图增补完好;( 4)若获取一等奖的同学中有来自七年级,来自九年级,其他的来自八年级,学校决定从获取一等奖的同学中任选两名同学参加全市诗词大会竞赛,请经过列表或树状图方法求所选两名同学中,恰巧是一名七年级和一名九年级同学的概率.【剖析】( 1)利用鼓舞奖的人数除以它所占的百分比获取的总人数;( 2)用 360°乘以二等奖人数占被检查人数的比率即可得;( 3)计算出一等奖和二等奖的人数,而后补全条形统计图;( 4)画树状图(用 A、 B、C 分别表示七年级、八年级和九年级的学生)展现全部12 种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,而后利用概率公式求解.【解答】解:( 1)参加此次诗词大会预选赛的同学共有18÷ 45%= 40(人),故答案为: 40;( 2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为: 90°.(3)获二等奖的人数= 40× 20%= 8,一等奖的人数为 40﹣ 8﹣ 10﹣ 18= 4(人),条形统计图为:( 4)由题意知,获一等奖的学生中,七年级有 1 人,八年级有 1 人,九年级有 2 人,画树状图为:(用 A、 B、 C 分别表示七年级、八年级和九年级的学生)共有 12 种等可能的结果数,此中所选出的两人中既有七年级又有九年级同学的结果数为4,因此所选出的两人中既有七年级又有九年级同学的概率=.【评论】本题考察了列表法与树状图法:利用列表法或树状图法展现全部等可能的结果n,再从中选出切合事件 A 或 B 的结果数量m,而后利用概率公式求事件 A 或 B 的概率.也考察了统计图.22.( 8 分)如图,点 D 是以 AB 为直径的⊙ O 上一点,过点 B 作⊙ O 的切线,交 AD 的延长线于点C, E 是 BC 的中点,连结DE 并延伸与AB 的延伸线交于点F.( 1)求证: DF 是⊙ O 的切线;( 2)若 OB= BF, EF= 4,求 AD 的长.【剖析】( 1)连结 OD ,由 AB 为⊙O 的直径得∠ BDC= 90°,依据 BE= EC 知∠ 1=∠ 3、由 OD = OB 知∠ 2=∠ 4,依据 BC 是⊙ O 的切线得∠ 3+ ∠ 4= 90°,即∠ 1+∠ 2= 90°,得证;( 2)依据直角三角形的性质获取∠F = 30°, BE = EF= 2,求得 DE = BE= 2,获取DF = 6,依据三角形的内角和获取OD = OA,求得∠ A=∠ ADO =BOD = 30°,根据等腰三角形的性质即可获取结论.【解答】解:( 1)如图,连结OD ,BD,∵ AB 为⊙O 的直径,∴∠ ADB=∠ BDC= 90°,在 Rt△BDC 中,∵ BE= EC,∴ DE= EC=BE ,∴∠ 1=∠ 3,∵BC 是⊙O 的切线,∴∠ 3+∠ 4= 90°,∴∠ 1+∠ 4= 90°,又∵∠ 2=∠ 4,∴∠1+∠ 2= 90°,∴ DF为⊙O 的切线;( 2)∵ OB= BF,∴ OF= 2OD,∴∠ F= 30°,∵∠ FBE =90°,∴ BE= EF=2,∴ DE= BE= 2,∴DF= 6,∵∠ F= 30°,∠ ODF = 90°,∴∠ FOD = 60°,∵ OD =OA,∴∠ A=∠ ADO=∴∠ A=∠ F,∴AD= DF=6.BOD= 30°,【评论】本题考察了切线的判断和性质,直角三角形的性质,等腰三角形的判断和性质,正确的作出协助线是解题的重点.四、 B 卷填空题(共 2 小题,每题 5 分,共 10 分)23.( 5 分)当 0≤ x≤ 3 时,直线y= a 与抛物线 y=( x﹣ 1)2﹣ 3 有交点,则 a 的取值范围是﹣3≤ a≤ 1 .2 【剖析】直线 y= a 与抛物线 y=( x﹣ 1)﹣3 有交点,则可化为一元二次方程组利用根的鉴别式进行计算.法一: y= a 与抛物线y=( x﹣ 1)2﹣ 3 有交点2 2则有 a=( x﹣ 1)﹣ 3,整理得x ﹣ 2x﹣2﹣ a= 0 2∴△= b ﹣ 4ac= 4+4( 2+a)≥ 0解得 a≥﹣ 3,∵ 0≤ x≤ 3,对称轴x= 1∴y=( 3﹣ 1)2﹣3= 1∴a≤ 1法二:由题意可知,∵抛物线的极点为( 1,﹣ 3),而 0≤ x≤ 3 ∴抛物线y 的取值为﹣ 3≤y≤ 1∵ y= a,则直线y 与x 轴平行,∴要使直线y= a 与抛物线y=( x﹣ 1)2﹣ 3 有交点,∴抛物线y 的取值为﹣ 3≤y≤ 1,即为 a 的取值范围,∴﹣ 3≤ a≤ 1故答案为:﹣3≤ a≤ 1【评论】本题主要考察二次函数图象的性质及交点的问题,此类问题,往常可化为一元二次方程,利用根的鉴别式或根与系数的关系进行计算.B、 C 24.( 5 分)如图,正方形ABCD 中, AB = 12, AE=AB,点 P 在 BC 上运动(不与重合),过点 P 作 PQ⊥ EP,交 CD 于点 Q,则 CQ 的最大值为4.【剖析】先证明△ BPE∽△ CQP,获取与CQ 有关的比率式,设CQ=y, BP= x,则 CP =12﹣x,代入分析式,获取 y 与 x 的二次函数式,依据二次函数的性质可求最值.【解答】解:∵∠ BEP+∠ BPE=90°,∠ QPC+∠BPE= 90°,∴∠ BEP=∠ CPQ .又∠ B=∠ C= 90°,∴△ BPE∽△ CQP .∴.设 CQ=y, BP= x,则 CP= 12﹣ x.∴,化简得y=﹣(x2﹣12x),2整理得 y=﹣(x﹣6)+4,因此当 x= 6 时, y 有最大值为4.故答案为4.【评论】本题主要考察了正方形的性质、相像三角形的判断和性质,以及二次函数最值问题,几何最值用二次函数最值求解考察了树形联合思想.五、解答题(共 4 小题,共 40 分)25.( 8 分)已知二次函数2y= x +x+a 的图象与 x 轴交于 A( x1,0)、B( x2,0)两点,且+= 1,求 a 的值.【剖析】有韦达定理得x1+x2=﹣ 1, x1?x2= a,将式子+=1化简代入即可;2【解答】解: y=x +x+a 的图象与x 轴交于 A(x1, 0)、 B( x2, 0)两点,∴x1+x2=﹣ 1, x1?x2= a,∵+===1,∴ a=﹣ 1+或a=﹣1﹣;【评论】本题考察二次函数的性质;灵巧运用完好平方公式,掌握根与系数的关系是解题的重点.26.( 10 分)依占有理数乘法(除法)法例可知:①若 ab> 0(或>0),则或;②若 ab< 0(或<0),则或.依据上述知识,求不等式(x﹣ 2)( x+3)> 0 的解集解:原不等式可化为:( 1)或(2).由( 1)得, x>2,由( 2)得, x<﹣ 3,∴原不等式的解集为:x<﹣ 3 或 x>2.请你运用所学知识,联合上述资料解答以下问题:( 1)不等式x2﹣ 2x﹣ 3< 0 的解集为﹣ 1< x< 3 .( 2)求不等式< 0 的解集(要求写出解答过程)【剖析】( 1)依占有理数乘法运算法例可得不等式组,模仿有理数乘法运算法例得出两个不等式组,分别求解可得.( 2)依占有理数除法运算法例可得不等式组,模仿有理数除法运算法例得出两个不等式组,分别求解可得.【解答】 解:( 1)原不等式可化为: ①由 ① 得,空集,由 ② 得,﹣ 1< x <3,∴原不等式的解集为:﹣1< x < 3,故答案为:﹣ 1< x < 3.(2)由<0 知① 或② ,解不等式组 ① ,得: x > 1;解不等式组 ② ,得: x <﹣ 4;因此不等式< 0 的解集为 x > 1 或 x <﹣ 4.或 ②.【评论】 本题主要考察解不等式、不等式组的能力,将原不等式转变为两个不等式组是解题的重点.27.( 10 分)如图,∠ ABD =∠ BCD = 90°, DB 均分∠ ADC ,过点 B 作 BM ∥ CD 交 AD 于M .连结 CM 交 DB 于 N .( 1)求证: BD 2= AD ?CD ;( 2)若 CD = 6, AD =8,求 MN 的长.【剖析】( 1)经过证明△ ABD ∽△ BCD ,可得,可得结论;( 2)由平行线的性质可证∠ MBD =∠ BDC ,即可证 AM =MD = MB = 4,由 BD 2= AD?CD和勾股定理可求 MC 的长,经过证明△ MNB ∽△ CND ,可得,即可求 MN 的长.【解答】 证明:( 1)∵ DB 均分∠ ADC ,∴∠ ADB =∠ CDB ,且∠ ABD =∠ BCD = 90°,∴△ ABD ∽△ BCD∴∴ BD 2= AD ?CD( 2)∵ BM ∥ CD∴∠ MBD =∠ BDC∴∠ ADB =∠ MBD ,且∠ ABD =90°∴ BM =MD ,∠ MAB =∠ MBA∴ BM =MD = AM = 4∵ BD 2= AD ?CD ,且 CD =6, AD =8, ∴ BD 2= 48,∴ BC 2= BD 2﹣CD 2= 12222= 28∴ MC =MB +BC∴MC =2∵ BM ∥CD∴△ MNB ∽△ CND∴,且 MC = 2∴ MN =【评论】 本题考察了相像三角形的判断和性质,勾股定理,直角三角形的性质,求MC的长度是本题的重点.228.( 12 分)如图,抛物线 y =ax +bx+c 的图象过点A (﹣ 1, 0)、B (3, 0)、C ( 0,3).( 1)求抛物线的分析式;( 2)在抛物线的对称轴上能否存在一点P ,使得△ PAC 的周长最小,若存在,恳求出点P 的坐标及△ PAC 的周长;若不存在,请说明原因;( 3)在( 2)的条件下,在 x 轴上方的抛物线上能否存在点M (不与C 点重合),使得S△PAM = S △ PAC ?若存在,恳求出点 M 的坐标;若不存在,请说明原因.【剖析】( 1)因为条件给出抛物线与 x 轴的交点 A (﹣ 1,0)、 B ( 3, 0),故可设交点式 y = a (x+1)( x ﹣ 3),把点 C 代入即求得 a 的值,减小计算量.( 2)因为点 A 、 B 对于对称轴:直线x = 1 对称,故有 PA =PB ,则 C △ PAC = AC+PC+PA= AC+PC+PB ,因此当 C 、P 、 B 在同向来线上时, C △ PAC = AC+CB 最小.利用点 A 、 B 、 C 的坐标求 AC 、CB 的长,求直线 BC 分析式,把 x =1 代入即求得点 P 纵坐标. ( 3)由 S △PAM = S △PAC 可得,当两三角形以 PA 为底时,高相等,即点 C 和点 M 到直线PA 距离相等.又因为 M 在 x 轴上方,故有CM ∥ PA .由点 A 、P 坐标求直线 AP 分析式,即获取直线 CM 分析式.把直线 CM 分析式与抛物线分析式联立方程组即求得点 M 坐标.【解答】 解:( 1)∵抛物线与 x 轴交于点 A (﹣ 1,0)、 B ( 3, 0) ∴可设交点式 y =a ( x+1)( x ﹣ 3) 把点 C ( 0, 3)代入得:﹣ 3a =3∴ a =﹣ 1∴ y =﹣( x+1 )( x ﹣ 3)=﹣ x 2+2x+3∴抛物线分析式为 2y =﹣ x +2x+3( 2)在抛物线的对称轴上存在一点P ,使得△ PAC 的周长最小.如图 1,连结 PB 、 BC∵点 P 在抛物线对称轴直线x = 1 上,点 A 、 B 对于对称轴对称∴ PA = PB∴ C △PAC =AC+PC+PA =AC+PC+PB∵当 C、 P、B 在同向来线上时,PC+PB= CB 最小∵ A(﹣ 1, 0)、 B( 3, 0)、 C( 0, 3)∴ AC=,BC=∴ C△PAC=AC+CB=最小设直线 BC 分析式为y= kx+3把点 B 代入得: 3k+3= 0,解得: k=﹣ 1∴直线 BC :y=﹣ x+3∴y P=﹣ 1+3= 2∴点 P( 1, 2)使△ PAC 的周长最小,最小值为.( 3)存在知足条件的点M,使得 S△PAM= S△PAC.∵S△PAM= S△PAC∴当以 PA 为底时,两三角形等高∴点 C 和点 M 到直线 PA 距离相等∵M 在 x 轴上方∴CM∥PA∵A(﹣ 1, 0), P( 1, 2),设直线 AP 分析式为 y= px+d ∴解得:∴直线 AP :y= x+1∴直线 CM 分析式为: y=x+3∵解得:(即点C),∴点 M 坐标为( 1,4)【评论】本题考察了待定系数法求二次函数分析式、一次函数分析式,轴对称的最短路径问题,勾股定理,平行线间距离到处相等,一元二次方程的解法.此中第(3)题条件给出点 M 在 x 轴上方,无需分类议论,解法较惯例而简单.。

2019凉山州中考数学 答案

2019凉山州中考数学 答案

2019年凉山州高中阶段教育学校招生统一考试数 学 试 题参考答案A 卷(共100分) 第Ⅰ卷(选择题 共48分)一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置。

第Ⅱ卷(非选择题 共52分)二、填空题:(共5个小题,每小题4分,共20分) 13.64x y =⎧⎨=⎩14.2x =- 15.2 16.425或92517.3三、解答题:(共5小题,共32分)18.(5分)计算:201tan 45+2|2-⎛⎫+-- ⎪⎝⎭o 。

解:原式1142=+-+4分 =5分19.(5分)先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-。

解:原式22=69+148a a a a ++---22a =+……………………………………………………………………………………3分当12a =-时,原式1221212⎛⎫=⨯-+=-+= ⎪⎝⎭。

………………………………………………5分20.(6分)证明:∵正方形ABCD 的对角线AC 、BD 相交于点O ,∴90AOF ∠=o,OA OB =。

……………………………1分 ∵AM BE ⊥,∴90AME ∠=o 。

……………………………………………2分 ∴90OBE OAF OEB ∠=∠=-∠o。

……………………3分 ∴在Rt AOF △和Rt BOE △中,FAO EBO OA OBAOF BOE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt AOF △≌Rt BOE △(ASA ) ………………………5分 ∴OE OF =。

(全等三角形对应边相等)………………6分ABCDOEMF(第20题图)21.(8分)(1)40; ………………………………………………………………………………………………1分 (2)90o;………………………………………………………………………………………………2分(3)如下图所示:(4)在一等奖中,七年级占14=14⨯(人),九年级占14=22⨯(人),八年级占4211--=(人)。

2019年四川凉山州中考数学试题(附详细解题分析)

2019年四川凉山州中考数学试题(附详细解题分析)

2019年凉山州高中阶段教育学校招生统一考试数学试题A 卷(共100分)第Ⅰ卷(选择题共48分){题型:1-选择题}—、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是 正确的,把正确选项的字母填涂在答题卡上相应的位置. {题目}1.(2019年凉山州)-2的相反数是( ▲ ) A .2 B .-2 C .21 D .21- {答案}A .{解析}本题考查了相反数的定义,数a 的相反数是-a ,解析:-2的相反数是2,因此本题选A . {分值}4{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2019年凉山州)2018年凉山州生产总值约为153 300 000 000元,用科学记数法表示数153 300 000 000是 ( ▲ )A .1.533×109B .1.533×1010C .1.533×1011D .1.533×1012{答案}C .{解析}本题考查了科学记数法,将一个数写成a ×10n的形式,叫做科学记数法.其中a 是整数数位有且仅有一位的数,即a 应满足1≤|a|<10;当原数的绝对值不小于1时,n 等于原数的整数位数减去1所得的差;当原数的绝对值小于1时,n 等于原数左起第一位非零数字前面所有0的个数的相反数.153 300 000 000用科学记数表示成:111.5310⨯ ,因此本题选C . {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}3.(2019年凉山州)如图,BD ∥EF , AE 与 BD 交于点 C ,∠B =30°,∠A =75°,则 ∠E 的度数为( ▲ )A . 135°B .125°C . 115°D .105°{答案}D .{解析}本题考查了平行线的性质和三角形内角和定理关于外角的推论,由三角形外角的性质可知∠ACD =∠A +∠B =30°+75°=105°,∵BD ∥EF ,∴∠E =∠ACD =105°,因此本题选D . {分值}{章节:[1-5-3]平行线的性质}{章节:[1-11-2]与三角形有关的角} {考点:两直线平行同位角相等} {考点:三角形的外角} {类别:常考题} {难度:2-简单}{题目}4.(2019年凉山州)下列各式正确的是( ▲ )A . 2a 2+ 3a 2=5a 4B .a 2•a = a 3C .( a 2)3= a 5D . a a =2{答案}B .{解析}本题考查了合并同类项、幂的有关运算以及二次根式的性质,A 项考查了合并同类项,正确结果应该是5a 2;B 项考查的是同底数幂的乘法,结果正确;C 项考查的是幂的乘方,正确的结果应该是a 10;D 项考查了二次根式的性质,结果应为|a|.因此本题选B . {分值}4{章节:[1-2-2]整式的加减} {章节:[1-15-2-3]整数指数幂} {章节:[1-16-1]二次根式} {考点:合并同类项} {考点:同底数幂的乘法} {考点:幂的乘方}{考点:平方的算术平方根} {类别:常考题} {难度:2-简单}{题目}5.(2019年凉山州)不等式1–x ≥x -1的解集是( ▲ ) A .x ≥1 B .x ≥-1 C .x ≤1 D .x ≤-1 {答案}C .{解析}本题考查了一元一次不等式的解法,移项、合并同类项得22x ≥ ,∴1x ≤,因此本题选C . {分值}4{章节:[1-9-2]一元一次不等式} {考点:解一元一次不等式} {类别:常考题} {难度:2-简单}: 人数(人)317 13 7 时间(小时) 78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ▲ ) A .17, 8.5 B .17,9 C . 8, 9 D .8, 8.5 {答案}D .{解析}本题考查了众数和中位数的定义,由于8出现了17次,故这组数据的众数为8;而第20,21位数分别为8和9,这两个数的平均数伟8.5,所以这组数的中位为8.5.因此本题选D . {分值}4{章节:[1-20-1-2]中位数和众数} {考点:中位数} {考点:众数} {类别:常考题} {难度:2-简单}{题目}7.(2019年凉山州)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是(▲) A . 1 B . 2 C . 3 D . 4 {答案}A .{解析}本题考查了点到直线的距离、线段的基本性质、圆心角与弧的关系,垂径定理的逆命题以及命题的真假的判断等几何知识.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故命题①为假命题;两点之间线段最短为线段的基本性质,属于基本事实,故命题②为真命题;命题③漏了“在同圆或等圆中”,因而是假命题;当被平分线的弦是直径时,平分弦的直径不一定垂直于弦,所以命题④为假命题.因此本题选A . {分值}4{章节:[1-5-4] 命题、定理、证明} {章节:[1-4-2]直线、射线、线段} {章节:[1-5-1-2]垂线}{章节:[1-24-1-2]垂直于弦的直径} {章节:[1-24-1-3]弧、弦、圆心角} {考点:垂径定理}{考点:圆心角、弧、弦的关系} {考点:命题}{考点:点到直线的距离} {考点:线段公理} {难度:3-中等难度}{题目}8.(2019年凉山州)如图,正比例函数y =kx 与反比例函数y =x4的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( ▲ ) A .8 B .6 C .4 D .2{答案}C .{解析}本题考查了反比例函数k 的几何意义,设A 点的坐标为(m ,4m),则C 点的坐标为(-m ,-4m),由双曲线的中心对称性可知,1414422ABC OBC OAB S S S m m m m ∆∆∆=+=⨯+-⨯-=,因此本题选C .{分值}4{章节:[1-26-1]反比例函数的图像和性质} {考点:反比例函数的几何意义}{考点:反比例函数与一次函数的综合} {类别:常考题} {难度:3-中等难度}{题目}9.(2019年凉山州)如图,在△A B C 中,CA = CB = 4,cos C =14,则 sinB 的值为( ▲ ) A .10 B .15 C .6 D .10{答案}D .{解析}本题考查了,构造直角三角形求锐角三角函数值,过点A 作AD ⊥BC 于点D ,∵cosC =14,AC =4,∴CD =1,∴BD =3,AD =224115-=,在Rt △ABD 中,AB =22(15)326+,∴sinB =151026AD AB ==,因此本题选D . B{分值}4{章节:[1-28-3]锐角三角函数} {考点:正弦} {考点:余弦} {类别:常考题} {难度:3-中等难度}{题目}10.(2019年凉山州)如图,在△ABC 中,D 在AC 边上,AD :DC = 1:2,0是BD 的中点,连接A 0并延长交BC 于 E ,则BE :EC =( ▲ ) A . 1:2 B . 1:3 C . 1:4 D . 2:3{答案}B .{解析}本题考查了平行线分线段成比例,也可以用相似三角形的性质来解决.过点D 作DF ∥AE ,则1==OD BO EF BE ,21==CD AD FC EF ,∴BE :EF :FC =1:1:2,∴BE :EC =1:3.因此本题选B .{分值}4{章节:[1-27-1-2]相似三角形的性质} {考点:平行线分线段成比例} {考点:相似三角形的性质} {类别:常考题} {难度:4-较高难度}{题目}11.(2019年凉山州)如图,在△AOC 中,OA =3cm ,OC =lcm ,将△AOC 绕点D 顺时针旋转90 °后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( ▲ )cm 2 A .2π B .2π C .178πD .198π{答案}B .{解析}本题考查了利用扇形面积求不规则图形的面积,关键在于将不规则图形的面积转化为规则图形的面积来求,AC 边在旋转过程中所扫过的图形的面积=S △OCA +S 扇形OAB - S 扇形OCD - S △ODB ①,由旋转知:△OCA ≌△ODB ,∴S △OCA =S △ODB ,∴①式= S 扇形OAB - S 扇形OCD =3603902⨯π-3601902⨯π=2π,因此本题选B .{分值}4{章节:[1-24-4]弧长和扇形面积} {考点:扇形的面积} {类别:常考题}{难度:3-中等难度}{题目}12.(2019年凉山州)二次函数y =ax 2+bx +c 的部分图象如图所示,有以下结论:①3a –b =0;②b 2-4ac >0;③5a -2b +c >0; ④4b +3c >0,其中错误结论的个数是( ▲ ) A . 1 B . 2 C . 3 D . 4{答案}A .{解析}本题考查了二次函数的图象性质中系数与图象的关系,以及抛物线与一元二次方程的关系.根据对称轴232-=-a b 得b =3a ,故可得3a –b =0,所以结论①正确;由于抛物线与x 轴有两个不同的交点,所以b 2-4ac >0,结论②正确;根据结论①可知b =3a ,∴5a -2b +c =5a -6a +c =-a +c ,观察图像可知a <0,c >0,∴5a -2b +c =-a +c >0,结论③正确;根据抛物线的轴对称性可知抛物线与x 轴的右交点在原点与(1,0)之间(不含这两点),所以当x =1时,y =a +b +c <0,∵a =b 31,∴b 34+c <0,∴4b +3c <0,所以结论④错误.因此本题选A . {分值}4{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数y =ax2+bx+c 的性质} {考点:二次函数的系数与图象的关系} {考点:抛物线与一元二次方程的关系}{类别:思想方法}{类别:常考题}{类别:易错题} {难度:5-高难度}第Ⅱ卷(非选择题共52分)二、填空题(共5个小题,每小题4分,共20分){题目}13.(2019年凉山州)方程10216x y x y +=⎧⎨+=⎩,的解是 .13.⎩⎨⎧==46y x ,解析:{答案}⎩⎨⎧==46y x .{解析}本题考查了二元一次方程组的解法.把两个方程相减,得x =6,把x =6 代入x +y =10,得y =4,∴⎩⎨⎧==46y x .故答案为⎩⎨⎧==46y x . {分值}4{章节:[1-8-2]消元——解二元一次方程组} {考点:加减消元法} {类别:常考题} {难度:2-简单}{题目}14.(2019年凉山州)方程1121122=-+--x x x 解是 ▲ . {答案}x =-2.{解析}本题考查了分式方程的解法,原方程可化为1)1)(1(2112=-+---x x x x ,去分母得(2x -1)(x +1)-2=(x +1)(x -1),解得x 1=1,x 2=-2,经检验x 1=1是增根,x 2=-2是原方程的解,∴原方程的解为x =-2.故答案为x =-2. {分值}4{章节:[1-15-3]分式方程} {考点:稍复杂的分式方程} {类别:易错题} {难度:3-中等难度}{题目}15.(2019年凉山州)如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于H ,∠A =30°, CD =23,则⊙O 的半径是 .{答案}2.{解析}本题考查了垂径定理,,接OC ,则OA =OC ,∴∠A =∠ACO =30°,∴∠COH =60°,∵OB ⊥CD ,CD =23,∴CH =3,∴OH =1,∴OC =2.因此本题应填:2.{分值}4{章节:[1-24-1-2]垂直于弦的直径}{章节:[1-28-2-1]特殊角}{考点:垂径定理}{考点:解直角三角形}{类别:常考题}{难度:3-中等难度}{题目}16.(2019年凉山州)在□ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是▲ .(第16题图答图1)(第16题图答图2){答案}4:25或9:25.{解析}本题考查了似三角形的性质中相似三角形面积比与相似比的关系,在□ABCD中,∵AD∥BC,∴△AEF∽△CBF.如答图1,当AE:DE=2:3时,AE:AD=2:5,∵AD=BC,∴AE:BC=2:5, ∴S△AEF:S△CBF=4:25;如答图2,当AE:DE=3:2时,AE:AD=3:5,∵AD=BC,∴AE:BC=3:5, ∴S :S△CBF=9:25.故本题答案为4:25或9:25.△AEF{分值}4{章节:[1-27-1-2]相似三角形的性质}{考点:相似三角形面积的性质}{类别:易错题}{难度:4-较高难度}{题目}17.(2019年凉山州)将抛物线y=(x-3)2-2向左平移个单位后经过点A(2,2).{答案}3.{解析}本题考查了二次函数图象的平移与系数的关系,设抛物线向左平移m个单位,则平移后的解析式为y=(x-3+m)2-2,将A(2,2)代入,有:2=(2-3+m)2-2,解得:m1=-1(舍去),m2=3,∴m=3.故本题答案为:3.{分值}4{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质}{考点:二次函数图象的平移}{类别:常考题}{难度:3-中等难度}{题型:4-解答题}三、解答题(共5小题,共32分){题目}18.(2019年凉山州)(5分)计算:tan 45° + (3-2)0-(-21)-2+ ︱3-2︱. {解析}本题考查了实数的计算,涉及特殊角的锐角三角函数、0指数幂、负指数幂以及绝对值的化简,先根据上述知识分别求出各个项,然后再进行加减即可. {答案}解:原式=1+1-(-2)2+2-3=2-4+2-3=-3.{分值}5.{章节:[1-28-2-1]特殊角} {难度:3-中等难度} {类别:常考题}{考点:特殊角的三角函数值}{题目}19.(2019年凉山州)(5分)先化简,再求值:(a +3)2- (a +1)(a -1)-2(2a +4),其中a =-12. {解析}本题考查了整式的乘法与化简求值,先利用乘法公式以及整式乘法的有关法则进行计算,再代入求值.{答案}解:原式=a 2+6a +9-a 2+1-4a -8=2a +2,当a =-21时,原式==2×(-21)+2=-1+2=1.{分值}5{章节:[1-14-2]乘法公式} {难度:2-简单} {类别:常考题}{考点:乘法公式的综合应用}{题目}20. (2019年凉山州)(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点0,E 是OC 上一点,连接EB .过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .求证:OE = OF .{解析}本题考查了正方形的性质.关键是利用正方形的性质找出一对全等三角形来证明OE = OF . {答案}证明:在正方形ABCD 中,∵AC ⊥BD ,AM ⊥BE ,∴∠AOF =∠BOE =∠AME =90°,∴∠F AO +∠AEB =∠EBO +∠AEB =90°,∴∠F AO =∠EBO ,∵AC =BD ,OA =21AC ,OB =21BD ,∴OA =OB ,∴△AOF ≌△BOE (AAS ),∴OE = OF . {分值}6{章节:[1-18-2-3] 正方形} {难度:3-中等难度} {类别:常考题}{考点:正方形的性质}{题目}21.(2019年凉山州)(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此次诗词大会预选赛的同学共有 ▲ 人; (2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ▲ ; (3)将条形统计图补充完整; (4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.{解析}本题考查了统计图的有关计算,以及求等可能条件下的概率.前三问根据统计图进行分析、计算、作图即可解决问题.最后一问先要进行等可能条件的分析(列表或树状图),再根据概率公式计算即可. {答案}解:(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人) (2)三等奖所对应的圆心角=4010×360°=90°; (3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,,分别记作A ,B ,C ,C ,用树状图,列表如下:一共有12种等可能事件,其中恰好是一名七年级和一名九所级学生有4种情形,所以恰好是一名七年级和一名九所级学生的概率为:124=31. {分值}8{章节:[1-25-2]用列举法求概率}{难度:2-简单}{类别:常考题}{考点:统计的应用问题}{考点:两步事件不放回}{题目}22. (2019年凉山州)(8分)如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F .(1)求证:DF 是⊙O 的切线;(2)若OB =BF ,EF =4,求 AD 的长.{解析}本题考查了切线的判定和利用特殊角的锐角三角函数求线段长.第一问关键是作出经过切点的半径并证明所证直线与这条半径垂直;第二问应借助特殊角的锐角三角函数以及勾股定理来解直角三角形.{答案}解:(1)证明:连接OD .∵⊙O 的切线,∴BC ⊥OB ,∴∠OBC =90°.∵AB 为⊙O 直径,∴∠ADB =90°,∵∠ADB +∠CDB =180°,∴∠CDB =90°.∵E 是BC 的中点,∴ED =EB =21BC ,∴∠EDB =∠EBD .∵OD =OB ,∴∠ODB =∠OBD ,∴∠ODF =∠OBC =90°,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)由(1)知∠ODB =90°,∵OD =OB =BF ,∴sin ∠F =21=OF OD ,∴∠F =30°,∵∠DOB +∠F =90°,∴∠DOB =60°,∴△ODB 是等边三角形,∴∠OBD =60°,∴tan ∠OBD =BDAD =3,∴AD =3BD .∵BC ⊥AF ,∴=BF BE sin ∠F =21,∵EF =4,∴BE =2,∴BF =22BE EF -=23=OB =DB ,∴AD =3BD =6.{分值}8.{章节:[1-24-2-2]直线和圆的位置关系}{章节:[1-28-2-1]特殊角}{章节:[1-28-1-2]解直角三角形}{难度:4-较高难度}{类别:常考题}{考点:切线的判定}{考点:解直角三角形}B 卷(共50分){题型:2-填空题}四、填空题(共2小题,每小题5分,共10分){题目}23.(2019年凉山州)当0≤x ≤3时,直线y =a 与抛物线y =(x -1)2-3有交点,则a 的取值范围是 .{答案}-3≤a ≤1.{解析}本题考查了二次函数与一元二次方程的关系,主要是抛物线与相关直线的位置关系问题,由题知抛物线y =(x -1)2-3的顶点坐标为(1,-3),当x =0时,y =-2,当x =3时,y =1,∴当0≤x ≤3时,-3≤y ≤1,∴直线y =a 与抛物线有交点时,a 的取值范围为-3≤a ≤1.因此本题答案为-3≤a ≤1. {分值}5{章节:[1-22-2]二次函数与一元二次方程}{考点:抛物线与一元二次方程的关系}{类别:思想方法}{难度:4-较高难度}{题目}24.(2019年凉山州)如图,正方形ABCD 中,AB =12, AE =41AB ,点P 在BC 上运动 (不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 ▲ .{答案}4{解析}本题考查了,,因此本题选.在正方形ABCD 中,∵AB =12, AE =41AB =3,∴BC =AB =12,BE =9,设BP =x ,则CP =12-x .∵PQ ⊥EP ,∴∠EPQ =∠B =∠C =90°,∴∠BEP +∠BPE =∠CPQ +∠BPE =90°,∴∠BEP =∠CPQ ,∴△EBP ∽△PCQ ,∴BE PC BP CQ =,∴912x x CQ -=,整理得CQ =21(6)49x --+,∴当x =6时,CQ 取得最大值为4.故本题答案为4.{分值}5{章节:[1-22-3]实际问题与二次函数}{考点:几何图形最大面积问题}{类别:思想方法}{类别:常考题}{难度:3-中等难度}{题型:4-解答题}五、解答题(共4小题,共40分){题目}25.(2019年凉山州)(8分)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,且221211x x +=1,求a 的值.{解析}本题考查了二次函数与一元二次方程的关系,先利用韦达定理列出方程求出待定系数,再代入根的判别式进行检验,删除不合理的答案,从而得到正确答案.{答案}解:对于抛物线y =x 2+x +a ,令y =0,∴x 2+x +a =0,∵抛物线与x 轴交于点A (x 1,0),(x 2,0),∴x 1+x 2=-1,x 1x 2=a ,∵222111x x +=22212221x x x x +=1,∴x 12+x 22=x 12x 22,∴(x 1+x 2)2-2x 1x 2==x 12x 22,代入x 1+x 2=-1,x 1x 2=a ,有:1-2a =a 2,解得a =-1 2±,∵方程有两个实数根,则△=1-4a >0,解得a <41,∴a =-1-2.{分值}8{章节:[1-22-2]二次函数与一元二次方程}{难度:3-中等难度}{类别:易错题}{考点:抛物线与一元二次方程的关系}{题目}26.(2019年凉山州)(10分)根据有理数乘法(除法)法则可知:①若ab >0(或b a >0),则⎩⎨⎧>>00b a 或⎩⎨⎧<<00b a ; ②若ab <0(或b a <0),则⎩⎨⎧<>00b a 或⎩⎨⎧><00b a . 根据上述知识,求不等式(x -2)(x +3)>0的解集.解:原不等式可化为:(1)⎩⎨⎧>+>-0302x x 或(2)⎩⎨⎧<+<-0302x x , 由(1)得,x >2,由(2)得,x <-3,∴原不等式的解集为:x < -3或x >2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式0322<--x x 的解集为 ▲ ..(2)求不等式xx -+14<0的解集(要求写出解答过程). {解析}本题考查了一些特殊不等式的解法,解题的关键是先要读懂阅读理解部分的含义,学会其方法,然后利用学到的方法,把所面对的特殊不等式转化为学过的一元一次不等式组来解决.{答案}解:(1)-1<x <3,解析:原不等式可化为(x -3)(x +1)<0,从而可化为①⎩⎨⎧<+>-0103x x 或②⎩⎨⎧>+<-0103x x ,由①得不等式组无解;由②得-1<x <3,∴原不等式的解集为:-1<x <3.故答案为:-1<x <3.(2)原不等式可化为①⎩⎨⎧<->+0104x x 或②⎩⎨⎧>-<+0104x x ,由①得x >1;由②得x <-4,∴原不等式的解集为x >1或x <-4.{分值}10{章节:[1-9-3]一元一次不等式组}{难度:1-最简单}{难度:2-简单}{难度:3-中等难度}{难度:4-较高难度}{难度:5-高难度}{难度:6-竞赛题}{类别:发现探究}{考点:解一元一次不等式组}{题目}27.(2019年凉山州)(10分)如图,∠ABD =∠BCD =90°,DB 平分∠ADC ,过点B 作BM ∥CD 交AD 于M .连接CM 交DB 于N .(1)求证:BD 2 =AD ·CD ;(2)若CD =6,AD =8,求MN 的长.{解析}本题考查了相似三角形的判定与性质。

四川省凉山州2019年中考[数学]考试真题与答案解析

四川省凉山州2019年中考[数学]考试真题与答案解析

四川省凉山州2019年中考[数学]考试真题与答案解析一、选择题在每小题给出的四个选项中只有一项是正确的,把正确选项的字母填涂在答题卡上相应的位置.1.﹣12020=()A.1B.﹣1C.2020D.﹣2020答案:B.2.如图,下列几何体的左视图不是矩形的是()A.B.C.D.答案:B.3.点P (2,3)关于x轴对称的点P'的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(3,2)答案:A.4.已知一组数据1,0,3,﹣1,x,2,3的平均数是1,则这组数据的众数是()A.﹣1B.3C.﹣1和3D.1和3答案:C.5.一元二次方程x2=2x的根为()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2答案:C.6.下列等式成立的是()A.=±9B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2D.(tan45°﹣1)0=1答案:C.7.若一次函数y=(2m+1)x+m﹣3的图象不经过第二象限,则m的取值范围是()A.m>﹣B.m<3C.﹣<m<3D.﹣<m≤3答案:D.8.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm 或8cm D.2cm 或4cm答案:C.9.下列命题是真命题的是()A.顶点在圆上的角叫圆周角B.三点确定一个圆C.圆的切线垂直于半径D.三角形的内心到三角形三边的距离相等答案:D.10.如图所示,△ABC的顶点在正方形网格的格点上,则tanA的值为()A.B.C.2D.2答案:A.11.如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:2答案:B.12.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个答案:D.二、填空题13.函数y=中,自变量x的取值范围是x≥﹣1 .14.因式分解:a3﹣ab2=a(a+b)(a﹣b).15.如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于16 .16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是π,则半圆的半径OA的长为3 .17.如图,矩形OABC的面积为,对角线OB与双曲线y=(k>0,x>0)相交于点D,且OB:OD=5:3,则k的值为12 .三、解答题解答应写出文字说明、证明过程或演算步骤.18.解方程:x﹣=1+.解:去分母,得:6x﹣3(x﹣2)=6+2(2x﹣1),去括号,得:6x﹣3x+6=6+4x﹣2,移项,得:6x﹣3x﹣4x=6﹣6﹣2,合并同类项,得:﹣x=﹣2,系数化为1,得:x=2.19.化简求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=.解:原式=4x2﹣9﹣(x2+4x+4)+4x+12=4x2﹣9﹣x2﹣4x﹣4+4x+12=3x2﹣1,当x=时,原式=3×()2﹣1=3×2﹣1=6﹣1=5.20.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC 上,这个正方形零件的边长是多少?答案:正方形零件的边长为48mm.21.某校团委在“五•四”青年节举办了一次“我的中国梦”作文大赛,分三批对全校20个班的作品进行评比.在第一批评比中,随机抽取A、B、C、D四个班的征集作品,对其数量进行统计后,绘制如图两幅不完整的统计图.(1)第一批所抽取的4个班共征集到作品24 件;在扇形统计图中表示C班的扇形的圆心角的度数为150° ;(2)补全条形统计图;(3)第一批评比中,A班D班各有一件、B班C班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品来自两个不同班级的概率.答案:24、150°;(2)补全图形如下:(3)列表如下:A B B C C DA BA BA CA CA DAB AB BB CB CB DBB AB BB CB CB DBC AC BC BC CC DCC AC BC BC CC DCD AD BD BD CD CD由表可知,共有30种等可能结果,其中抽取的作品来自两个不同班级的有26种结果,∴抽取的作品来自两个不同班级的概率为=.22.如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分∠BAC交半圆于点D,过点D作DH⊥AC与AC的延长线交于点H.(1)求证:DH是半圆的切线;(2)若DH=2,sin∠BAC=,求半圆的直径.解析:(1)证明:连接OD,∵OA=OD,∴∠DAO=∠ADO,∵AD平分∠BAC,∴∠CAD=∠OAD,∴∠CAD=∠ADO,∴AH∥OD,∵DH⊥AC,∴OD⊥DH,∴DH是半圆的切线;(2)解:连接BC交OD于E,∵AB是半圆AOB的直径,∴∠ACB=90°,∴四边形CEDH是矩形,∴CE=DH=2,∠DEC=90°,∴OD⊥BC,∴BC=2CE=4,∵sin∠BAC==,∴AB=12,即半圆的直径为12.四、填空题23.若不等式组恰有四个整数解,则a的取值范围是﹣≤a<﹣.答案:﹣≤a<﹣.24.如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F 是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为10 .答案:10.五、解答题解答应写出文字说明、证明过程或演算步骤.25.如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.(1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.解:(1)证明:如图1,∵△ABC是等边三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△ACM的外角,∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC∵∠BAC=60°,∴∠QMC=60°;(3)如图2,点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC 不变理由:同理可得,△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°,即若点P、Q在运动到终点后继续在射线AB、BC上运动,∠QMC的度数为120°.26.如图,已知直线l:y=﹣x+5.(1)当反比例函数y=(k>0,x>0)的图象与直线l在第一象限内至少有一个交点时,求k的取值范围.(2)若反比例函数y=(k>0,x>0)的图象与直线1在第一象限内相交于点A(x1,y1)、B(x2,y2),当x2﹣x1=3时,求k的值,并根据图象写出此时关于x的不等式﹣x+5<的解集.解:(1)将直线l的表达式与反比例函数表达式联立并整理得:x2﹣5x+k=0,由题意得:△=25﹣4k≥0,解得:k≤,故k的取值范围0<k≤;(2)设点A(m,﹣m+5),而x2﹣x1=3,则点B(m+3,﹣m+2),点A、B都在反比例函数上,故m(﹣m+5)=(m+3)(﹣m+2),解得:m =1,故点A、B的坐标分别为(1,4)、(4,1);将点A的坐标代入反比例函数表达式并解得:k=4×1=4,观察函数图象知,当﹣x+5<时,0<x<1或x>4.27.如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c.(1)求证:===2R;(2)若∠A=60°,∠C=45°,BC=4,利用(1)的结论求AB的长和sin ∠B的值.解析:(1)证明:作直径BE,连接CE,如图所示:则∠BCE=90°,∠E=∠A,∴sinA=sinE==,∴=2R,同理:=2R,=2R,∴===2R;(2)解:由(1)得:=,即==2R,∴AB==4,2R==8,过B作BH⊥AC于H,∵∠AHB=∠BHC=90°,∴AH=AB•cos60°=4×=2,CH=BC=2,∴AC=AH+CH=2(),∴sin∠B===.28.如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.解:(1)将点O、A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2﹣x;(2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x 负半轴的夹角为60°,故设CD的表达式为:y=﹣x+b,而OB中点的坐标为(,),将该点坐标代入CD表达式并解得:b=,故直线CD的表达式为:y=﹣x+;(3)过点P作y轴额平行线交CD于点H,设点P(x,x2﹣x),则点H(x,﹣x+),则PH=﹣x+﹣(x2﹣x)=﹣x2﹣x+,∵<0,故PH有最大值,此时点P的坐标为(﹣,).。

2019年四川省凉山州中考数学试题及参考答案

2019年四川省凉山州中考数学试题及参考答案

2019年四川省凉山州中考数学试卷一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.23.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b24.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或95.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.58.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<812.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=.14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为克.15.若实数x满足x2﹣x﹣1=0,则=.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为cm2.三、解答题:(共2小题,每小题6分,共12分)18.计算:.19.先化简,再求值:,其中实数x、y满足.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有个.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB 的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置.1.的倒数的绝对值是()A.﹣2016 B.C.2016 D.【解答】解:的倒数是﹣2016,﹣2016的绝对值是2016.故选:C.2.如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何体所用的正方体的个数是()A.6 B.4 C.3 D.2【解答】解:综合三视图可知,这个几何体的底层有3个小正方体,第2层有1个小正方体,第3层有1个小正方体,第4层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1+1+1=6个.故选:A.3.下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.4.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或9【解答】解:设内角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.5.在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是()A.2个B.3个C.4个D.5个【解答】解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.6.已知x1、x2是一元二次方程3x2=6﹣2x的两根,则x1﹣x1x2+x2的值是()A. B.C. D.【解答】解:∵x1、x2是一元二次方程3x2=6﹣2x的两根,∴x1+x2=﹣=﹣,x1•x2==﹣2,∴x1﹣x1x2+x2=﹣﹣(﹣2)=.故选D.7.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选A8.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.10.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、6.应该选()参加.A.甲B.乙C.甲、乙都可以 D.无法确定【解答】解:由题意可得,甲的平均数为:,方差为:=0.8,乙的平均数为:,方差为:=2,∵0.8<2,∴选择甲射击运动员,故选A.11.已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2 B.8 C.2或8 D.2<O2O2<8【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.12.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【解答】解:∵2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.二、填空题:(共5个小题,每小题4分,共20分)13.分解因式:a3b﹣9ab=ab(a+3)(a﹣3).【解答】解:a3b﹣9ab=a(a2﹣9)=ab(a+3)(a﹣3).故答案为:ab(a+3)(a﹣3).14.今年西昌市的洋葱喜获丰收,据估计洋葱的产量约是325 000 000千克,这个数据用科学记数法表示为 3.25×1011克.【解答】解:325 000 000千克=325 000 000 000克=3.25×1011,故答案为:3.25×1011.15.若实数x满足x2﹣x﹣1=0,则=10.【解答】解:∵x2﹣x﹣1=0,∴,∴,∴,即,∴,故答案为:10.16.将抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣x2﹣6x﹣11.【解答】解:抛物线y=﹣x2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为y=﹣(x﹣3)2﹣2即y=﹣x2+6x﹣11,故答案为y=﹣x2﹣6x﹣11.17.如图,△ABC的面积为12cm2,点D、E分别是AB、AC边的中点,则梯形DBCE的面积为9cm2.【考点】三角形中位线定理.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,再求出△ABC和△ADE的面积比值求出,进而可求出梯形DBCE的面积.【解答】解:∵点D、E分别是AB、AC边的中点,∴DE是三角形的中位线,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴,∵△ABC的面积为12cm2,∴△ADE的面积为3cm2,∴梯形DBCE的面积=12﹣3=9cm2,故答案为:9.三、解答题:(共2小题,每小题6分,共12分)18.计算:.【解答】解:=﹣1﹣3+2+1+1=1.19.先化简,再求值:,其中实数x、y满足.【解答】解:原式=•=,∵y=﹣+1,∴x﹣2≥0,2﹣x≥0,即x﹣2=0,解得:x=2,y=1,则原式=2.四、解答题:(共3小题,每小题8分,共24分)20.如图,▱ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.【解答】解:AE与CF的关系是平行且相等.理由:∵在,▱ABCD中,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF且AE=CF,即AE与CF的关系是平行且相等.21.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:A1 A2 B1 B2A1 A1,A2 A1,B1 A1,B2A2 A2,A1 A2,B1 A2,B2B1 B1,A1 B1,A2 B1,B2B2 B2,A1 B2,A2 B2,B1由上表可知,从这两个班级任选两名学生进行帮扶共有12种等可能结果,其中被选中的两名学生来自同一班级的有4种结果,∴被选中的两名学生来自同一班级的概率为=.22.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.【解答】解:(1)所求作△A1B1C如图所示:由A(4,3)、B(4,1)可建立如图所示坐标系,则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);(2)∵AC===,∠ACA1=90°∴在旋转过程中,△ABC所扫过的面积为:+S△ABCS扇形CAA1=+×3×2=+3.五、解答题:(共2小题,每小题8分,共16分)23.为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【解答】解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备x台,则购买B型污水处理设备(20﹣x)台,则解得,12.5≤x≤15,第一种方案:当x=13时,20﹣x=7,花费的费用为:13×12+7×10=226万元;第二种方案:当x=14时,20﹣x=6,花费的费用为:14×12+6×10=228万元;第三种方案;当x=15时,20﹣x=5,花费的费用为:15×12+5×10=230万元;即购买A型污水处理设备13台,则购买B型污水处理设备7台时,所需购买资金最少,最少是226万元.24.阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.【解答】解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.六、B卷填空题:(共2小题,每小题5分,共10分)25.已知关于x的不等式组仅有三个整数解,则a的取值范围是﹣1<a<﹣.【考点】一元一次不等式组的整数解.【分析】根据解方程组,可得方程组的解,根据方程组的解是整数,可得答案.【解答】解:由4x+2>3x+3a,解得x>3a﹣2,由2x>3(x﹣2)+5,解得3a﹣2<x<﹣1,由关于x的不等式组仅有三个整数解,得﹣5<3a﹣2<﹣4,解得﹣1<a<﹣,故答案为:﹣1<a<﹣.26.如图,四边形ABCD中,∠BAD=∠DC=90°,AB=AD=,CD=,点P是四边形ABCD四条边上的一个动点,若P到BD的距离为,则满足条件的点P有2个.【考点】点到直线的距离.【分析】首先作出AB、AD边上的点P(点A)到BD的垂线段AE,即点P到BD的最长距离,作出BC、CD的点P(点C)到BD的垂线段CF,即点P到BD的最长距离,由已知计算出AE、CF的长为,比较得出答案.【解答】解:过点A作AE⊥BD于E,过点C作CF⊥BD于F,∵∠BAD=∠ADC=90°,AB=AD=,CD=2,∴∠ABD=∠ADB=45°,∴∠CDF=90°﹣∠ADB=45°,∵sin∠ABD=,∴AE=AB•sin∠ABD=3•sin45°=3>,CF=2<,所以在AB和AD边上有符合P到BD的距离为的点2个,故答案为:2.七、B卷解答题:(共2小题,27题8分,28题12分,共20分)27.如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB 的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.28.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,﹣3)代入抛物线y=ax2+bx+c中,得:,解得:故抛物线的解析式:y=x2﹣2x﹣3.(2)当P点在x轴上,P,A,B三点在一条直线上时,点P到点A、点B的距离之和最短,此时x=﹣=1,故P(1,0);(3)如图所示:抛物线的对称轴为:x=﹣=1,设M(1,m),已知A(﹣1,0)、C(0,﹣3),则:MA2=m2+4,MC2=(3+m)2+1=m2+6m+10,AC2=10;①若MA=MC,则MA2=MC2,得:m2+4=m2+6m+10,解得:m=﹣1,②若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;③若MC=AC,则MC2=AC2,得:m2+6m+10=10,得:m1=0,m2=﹣6;当m=﹣6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为M(1,)(1,﹣)(1,﹣1)(1,0).。

【真题】2019年凉山州中考数学试卷包含答案解析

【真题】2019年凉山州中考数学试卷包含答案解析

2019年四川省凉山州中考数学试卷一、选择题(本大题共10小题,共30分)1.比1小2的数是A. B. C. D. 1【答案】A【解析】解:.故选:A.求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、应为,故本选项错误;B、应为,故本选项错误;C、,正确;D、应为,故本选项错误.故选:C.根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3.长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A. 米B. 米C. 米D. 米【答案】D【解析】解:米故选D.先将25100用科学记数法表示为,再和相乘.中,a的整数部分只能取一位整数,此题中的n应为负数.4.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A. B. C. D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是,故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.7.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A. B. C. D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A、,,,所以正确.B、,,EDB正确.D、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,是的外接圆,已知,则的大小为A.B.C.D.【答案】A【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知 ∽ 且::2,则AB:______.【答案】1:【解析】解: ∽ ,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知一个正数的平方根是和,则这个数是______.【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16.将绕点B逆时针旋转到,使A、B、在同一直线上,若,,,则图中阴影部分面积为______.【答案】【解析】解:,,,,,,,阴影部分面积扇形扇形.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C 在点B的北偏西方向上.是否穿过原始森林保护区,为什么?参考数据:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有个面,共有2n 个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n棱柱一定有个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有个面,2n个顶点和3n条棱是解题关键.22.如图,在方格纸中请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.求从中随机抽取出一个黑球的概率是多少?若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x轴相切于点D.求直线l的解析式;将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26.如图,已知抛物线经过,两点,顶点为D.求抛物线的解析式;将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N的坐标.【答案】解:已知抛物线经过,,,解得,所求抛物线的解析式为;,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点,将原抛物线沿y轴向下平移1个单位后过点C.平移后的抛物线解析式为:;点N在上,可设N点坐标为,将配方得,时,如图,,,此时,点的坐标为.当时,如图,同理可得,,此时,点N的坐标为.当时,由图可知,N点不存在,舍去.综上,点N的坐标为或.【解析】利用待定系数法,将点A,B的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.第11页,共11页。

2019年四川省凉山州中考数学试卷(word版,答案)

2019年四川省凉山州中考数学试卷(word版,答案)

2019年四川省凉山州中考数学试卷(word版,含答案)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1 C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人) 3 17 13 7时间(小时)7 8 9 10那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1 B.2 C.3 D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8 B.6 C.4 D.29.(4分)如图,在△ABC中,CA=CB=4,cosC=,则sinB的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC于E,则BE:EC=()A.1:2 B.1:3 C.1:4 D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM =S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.。

2019四川省凉山州中考数学试题(解析版).doc

2019四川省凉山州中考数学试题(解析版).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A 作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO 并延长交BC于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题关键.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O 的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣2+(2﹣)=.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=1【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE=90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤1【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C 重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP =12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD 和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.△P AM【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有P A=PB,则C△P AC=AC+PC+P A =AC+PC+PB,所以当C、P、B在同一直线上时,C△P AC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△P AM=S△P AC可得,当两三角形以P A为底时,高相等,即点C和点M到直线P A距离相等.又因为M在x轴上方,故有CM∥P A.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△P AC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴P A=PB∴C△P AC=AC+PC+P A=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△P AC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△P AC的周长最小,最小值为.(3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC∴当以P A为底时,两三角形等高∴点C和点M到直线P A距离相等∵M在x轴上方∴CM∥P A∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

2019年四川省凉山州中考数学试题

2019年四川省凉山州中考数学试题

绝密★启用前四川省凉山州2019年中考数学试题第I 卷(选择题)评卷人得分一、单选题1.2-的相反数是A.2B.2-C.12D.12-【答案】A 【解析】【详解】﹣2的相反数是2,故选A.2.2018年某州生产总值约为153300000000,用科学记数法表示数153300000000是()A.91.53310⨯B.101.53310⨯C.111.53310⨯D.121.53310⨯【答案】C 【解析】【分析】利用科学记数法表示即可【详解】解:科学记数法表示:11158300000000 1.53310=⨯.故选:C.【点睛】考查科学记数法的表示,把一个数表示成a 与10的n 次幂相乘的形式(110a ≤<,n 为整数),这种记数法叫做科学记数法.3.如图,//BD EF ,AE 与BD 交于点C,3075B A ∠∠=,=,则E ∠的度数为()A.135 B.125C.115 D.105【答案】D 【解析】【分析】直接利用三角形的外角性质得出ACD ∠度数,再利用平行线的性质分析得出答案.【详解】解:3075B A ∠︒∠︒=,=,3075105ACD ∴∠︒+︒︒==,//BD EF ,105E ACD ∴∠∠︒==.故选:D.【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.下列各式正确的是()A.224235a a a +=B.23a a a ⋅=C.235)( a a =a【答案】B 【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【详解】解:A、222235a a a +=,故选项A 不合题意;B、23a a a ⋅=,故选项B 符合题意;C、236a a ()=,故选项C 不合题意;||a =,故选项D 不合题意.故选:B.【点睛】考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.不等式11x x ≥﹣﹣的解集是()A.1x ≥B.1x ≥﹣C.1x ≤D.1x ≤﹣【答案】C 【解析】【分析】移项、合并同类项,系数化为1即可求解.【详解】解:11x x ≥﹣﹣,22x ≥﹣﹣1x ∴≤故选:C.【点睛】考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【答案】D 【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.52+=;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【答案】A 【解析】【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【详解】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.【点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.如图,正比例函数y kx =与反比例函数4y x=的图象相交于A、C 两点,过点A 作x 轴的垂线交x 轴于点B,连接BC,则ABC ∆的面积等于()A.8B.6C.4D.2【答案】C【解析】【分析】由于点A、C 位于反比例函数图象上且关于原点对称,则OBA OBC S S ∆∆=,再根据反比例函数系数k 的几何意义作答即可.【详解】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即1||2S k =.所以ABC ∆的面积等于12||||42k k ⨯==.故选:C.【点睛】考查了反比例函数ky x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即12S k =.9.如图,在ABC ∆中,144CA CB cosC ==,=,则sinB 的值为()A.102B.3C.64D.104【答案】D 【解析】【分析】过点A 作AD BC ⊥,垂足为D,在Rt ACD ∆中可求出AD,CD 的长,在Rt ABD ∆中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sinB 的值.【详解】解:过点A 作AD BC ⊥,垂足为D,如图所示.在Rt ACD ∆中,1CD CA cosC ⋅==,AD ∴==;在Rt ABD ∆中,3BD CB CD AD =﹣=,,AB ∴==,AD sin AB 4B ∴==.故选:D.【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB 的长是解题的关键.10.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E,则BE EC :=()A.1:2B.1:3C.1:4D.2:3【答案】B 【解析】【分析】过O 作BC 的平行线交AC 与G,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=,3193ABE AEC S BE S EC S S ∆∆∴===故选:B.【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.如图,在AOC ∆中,31OA cm OC cm =,=,将△AOC 绕点O 顺时针旋转90后得到BOD ∆,则AC 边在旋转过程中所扫过的图形的面积为()2cm.A.2πB.2πC.178πD.198π【答案】B【解析】【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式即可求解.【详解】解:AOC BOD ∆∆≌,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积229039012360360πππ⋅⨯⋅⨯=-=故选:B.【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题关键.12.二次函数2y ax bx c ++=的部分图象如图所示,有以下结论:①30a b ﹣=;②240b ac ﹣>;③520ab c +﹣>;④430b c +>,其中错误结论的个数是()A.1B.2C.3D.4【答案】A 【解析】【分析】①对称轴为32x =-,得3b a =;②函数图象与x 轴有两个不同的交点,得240b ac ∆=﹣>;③当1x =-时,0a b c +﹣>,当3x =-时,930a b c +﹣>,得520a b c +﹣>;④由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,当1x =时0433333330a b c b c b b c b a c a b c +++++++++<,===()<【详解】解:由图象可知00a c <,>,对称轴为32x =-,322b x a∴=-=-,3,b a ∴=,①正确;∵函数图象与x 轴有两个不同的交点,240b ac ∴∆=﹣>,,②正确;当1x =﹣时,0a b c +->,当3x =-时,930a b c +﹣>,10420a b c ∴+﹣>,520a b c ∴+﹣>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时0a b c ++<,3b a =,433333330b c b b c b a c a b c ∴+++++++===()<,430b c ∴+<,④错误;故选:A.【点睛】考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.第II 卷(非选择题)评卷人得分二、填空题13.方程组10216x y x y +=⎧⎨+=⎩的解是_______.【答案】64x y =⎧⎨=⎩【解析】【分析】利用加减消元法解之即可.【详解】解:10216x y x y +=⎧⎨+=⎩①②,②﹣①得:6x =,把6x =代入①得:610y +=,解得:4y =,方程组的解为:64x y =⎧⎨=⎩,故答案为:64x y =⎧⎨=⎩【点睛】考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.方程2212111x x x -+=--的解是_______.【答案】2x =-【解析】【分析】去分母,把分式方程化为整式方程,求解并验根即可.【详解】解:21211(1)(1)x x x x --=-+-去分母,得(21)(1)2(1)(1)x x x x -+-=+-去括号,得22231x x x +-=-移项并整理,得220x x +-=所以(2)(1)0x x +-=解得2x =-或1x =经检验,2x =-是原方程的解.故答案为:2x =-【点睛】考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.如图所示,AB 是⊙O 的直径,弦CD AB ⊥于H,30,A CD ︒∠==,则⊙O 的半径是_______.【答案】2【解析】【分析】连接BC,由圆周角定理和垂径定理得出190,2ACB CH DH CD ︒∠====由直角三角形的性质得出22AC CH AC AB BC =====,得出2,4BC AB ==,求出2OA =即可.【详解】解:连接BC,如图所示:∵AB 是⊙O 的直径,弦CD AB ⊥于H,1902ACB CH DH CD ∴∠︒=,==30A ∠︒=,2AC CH ∴==,在Rt ABC ∆中,30A ∠︒=,2AC AB BC ∴==,24BC AB ∴=,=,2OA ∴=,即⊙O 的半径是2;故答案为:2【点睛】考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE、AC 相交于F,则AEF CBF S S ∆∆:是_______.【答案】425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:;②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:,故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.将抛物线23)2y x =(﹣﹣向左平移_______个单位后经过点(22)A ,.【答案】3【解析】【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【详解】解:∵将抛物线232y x =(﹣)﹣向左平移后经过点22A (,),∴设平移后解析式为:232y x a +=(﹣)﹣,则22232a +=(﹣)﹣,解得:3a =或1a =﹣(不合题意舍去),故将抛物线232y x =(﹣)﹣向左平移3个单位后经过点22A (,).故答案为:3.【点睛】考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.18.当03x ≤≤时,直线y a =与抛物线2(1)3y x =﹣﹣有交点,则a 的取值范围是_______.【答案】31a -≤≤【解析】【分析】直线y a =与抛物线213y x =(﹣)﹣有交点,则可化为一元二次方程组利用根的判别式进行计算.【详解】解:法一:y a =与抛物线213y x =(﹣)﹣有交点则有213a x =(﹣)﹣,整理得2220x x a ﹣﹣﹣=244420b ac a ∴∆++≥=﹣=()解得3a ≥﹣,03x ≤≤,对称轴1x =23131y ∴=(﹣)﹣=1a ∴≤法二:由题意可知,∵抛物线的顶点为13(,﹣),而03x ≤≤∴抛物线y 的取值为31y ≤≤﹣y a =,则直线y 与x 轴平行,∴要使直线y a =与抛物线213y x =(﹣)﹣有交点,∴抛物线y 的取值为31y ≤≤﹣,即为a 的取值范围,∴31a ≤≤﹣故答案为:31a -≤≤【点睛】考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.19.如图,正方形ABCD 中,1124AB AE AB ==,,点P 在BC 上运动(不与B、C 重合),过点P 作PQ EP ⊥,交CD 于点Q,则CQ 的最大值为_______.【答案】4【解析】【分析】先证明BPE CQP ∆∆∽,得到与CQ 有关的比例式,设CQ y BP x =,=,则12CP x =﹣,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【详解】解:9090BEP BPE QPC BPE ∠+∠︒∠+∠︒=,=,BEP CPQ ∴∠∠=.又90B C ∠∠︒==,BPE CQP ∴∆∆∽.BE BPPC CQ∴=设CQ y BP x =,=,则12CP x =﹣.912x x y ∴=-,化简得()21129y x x =--,整理得21(6)49y x =--+,所以当6x =时,y 有最大值为4.故答案为4.【点睛】考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.评卷人得分三、解答题20.计算:21tan 452|2-︒︒⎛⎫+--+ ⎪⎝⎭.【解析】【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【详解】解:原式114(2=+-+=.【点睛】考查了实数的运算法则,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.21.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.【答案】1【解析】【分析】注意到23a +()可以利用完全平方公式进行展开,11a a +()(﹣)利润平方差公式可化为21a (﹣),,则将各项合并即可化简,最后代入12a =-进行计算.【详解】解:原式2269148a a a a ++-=(﹣)-﹣22a +=将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭【点睛】考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.22.如图,正方形ABCD 的对角线AC、BD 相交于点O,E 是OC 上一点,连接EB.过点A 作AM BE ⊥,垂足为M,AM 与BD 相交于点F.求证:OE OF =.【答案】见解析.【解析】【分析】根据正方形的性质对角线垂直且平分,得到OB OA =,根据AM BE ⊥,即可得出90MEA MAE AFO MAE ∠+∠︒∠+∠==,从而证出Rt BOE Rt AOF ∆∆≌,得到OE OF =.【详解】证明:∵四边形ABCD 是正方形.90BOE AOF OB OA ∴∠∠︒==,=.又AM BE ⊥,90MEA MAE AFO MAE ∴∠+∠︒∠+∠==,MEA AFO ∴∠∠=.BOE AOF AAS ∴∆∆≌().OE OF ∴=.【点睛】考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.23.某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【答案】(1)40;(2)90°;(3)见解析;(4)见解析,13.【解析】【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C 分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【详解】解:(1)参加此次诗词大会预选赛的同学共有1845%40÷=(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040︒︒⨯=,故答案为:90°.(3)获二等奖的人数4020%8=⨯=,一等奖的人数为40810184---=(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C 分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率41123=.【点睛】考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B 的结果数目m,然后利用概率公式求事件A 或B 的概率.也考查了统计图.24.如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F(1)求证:DF 是⊙O 的切线;(2)若4OB BF EF ==,,,求AD 的长.【答案】(1)见解析;(2)6AD =.【解析】【分析】(1)连接OD,由AB 为⊙O 的直径得90BDC ︒∠=,根据BE EC =知13∠=∠、由OD OB =知24∠∠=,根据BC 是⊙O 的切线得3490︒∠+∠=,即1290︒∠+∠=,得证;(2)根据直角三角形的性质得到130,22F BE EF ︒∠===,求得2DE BE ==,得到6DF =,根据三角形的内角和得到OD OA =,求得1302A ADO BOD ︒∠=∠=∠=,根据等腰三角形的性质即可得到结论.【详解】解:(1)如图,连接OD,BD,∵AB 为⊙O 的直径,90ADB BDC ∴∠∠︒==,在Rt BDC ∆中,BE EC =,DE EC BE ∴==,13∴∠∠=,∵BC 是⊙O 的切线,3490∴∠+∠︒=,1490∴∠+∠︒=,又24∠∠=,1290∴∠+∠︒=,∴DF 为⊙O 的切线;(2)OB BF =,2OF OD ∴=,30F ∴∠︒=,90FBE ∠︒=,122BE EF ∴==,2DE BE ∴==,6DF ∴=,3090F ODF ∠︒∠︒=,=,60FOD ∴∠︒=,OD OA =,1302A ADO BOD ∴∠∠∠︒===,A F∴∠∠=6AD DF ∴==.【点睛】考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.25.已知二次函数2y x x a =++的图象与x 轴交于12(0)(0)A x B x ,、,两点,且2212111x x +=,求a 的值.【答案】12a =-.【解析】【分析】由韦达定理得12121x x x x a +⋅=﹣,=,,将式子2212111x x +=化简代入即可;【详解】解:2y x x a ++=的图象与x 轴交于1200A x B x (,)、(,)两点,∴=1-40a ∆>即14a <12121x x x x a∴+⋅=-,=()()222121212222222121212211121x x x x x x a x x x x a x x +-+-+====12a ∴=-12a =--【点睛】考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.根据有理数乘法(除法)法则可知:①若0ab >(或0ab >),则00a b >⎧⎨>⎩或00a b <⎧⎨<⎩;②若0ab <(或a0b <),则00a b >⎧⎨<⎩或00a b <⎧⎨>⎩.根据上述知识,求不等式(2)(3)0x x -+>的解集:解:原不等式可化为:(1)2030x x ->⎧⎨+>⎩或(2)2030x x -<⎧⎨+<⎩.由(1)得,2x >,由(2)得,3x <﹣,∴原不等式的解集为:3x <﹣或2x >请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x ﹣﹣<的解集为.(2)求不等式401x x+<-的解集(要求写出解答过程)【答案】(1)13x -<<;(2)1x >或4x <-.【解析】【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【详解】解:(1)原不等式可化为:①3010x x ->⎧⎨+<⎩或②3010x x -<⎧⎨+>⎩.由①得,空集,由②得,13x -<<,∴原不等式的解集为:13x -<<,故答案为:13x -<<.(2)由401x x +<-知①4010x x +>⎧⎨-<⎩或②4010x x +<⎧⎨->⎩,解不等式组①,得:1x >;解不等式组②,得:4x <-;所以不等式401x x+<-的解集为1x >或4x <-.【点睛】考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC,过点B 作BM CD ‖交AD 于M.连接CM 交DB 于N.(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.【答案】(1)见解析;(2)MN =.【解析】【分析】(1)通过证明ABD BCD ∆∆∽,可得AD BD BD CD=,可得结论;(2)由平行线的性质可证MBD BDC ∠∠=,即可证4AM MD MB ===,由2BD AD CD ⋅=和勾股定理可求MC 的长,通过证明MNB CND ∆∆∽,可得23BM MN CD CN ==,即可求MN 的长.【详解】证明:(1)∵DB 平分ADC ∠,ADB CDB ∴∠∠=,且90ABD BCD ∠∠︒==,ABD BCD∴∆∆∽AD BD BD CD∴=2BD AD CD∴⋅=(2)//BM CDMBD BDC∴∠∠=ADB MBD ∴∠∠=,且90ABD ∠︒=BM MD MAB MBA∴∠∠=,=4BM MD AM ∴===2BD AD CD ⋅=,且68CD AD =,=,248BD ∴=,22212BC BD CD ∴=﹣=22228MC MB BC ∴+==27MC ∴=//BM CDMNB CND∴∆∆∽23BM MN CD CN ∴==且27MC =475MN ∴=【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M(不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032+;(3)存在,点M 坐标为(14),【解析】【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C、P、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A、B、C 的坐标求AC、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣)把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P,使得PAC ∆的周长最小.如图1,连接PB、BC∵点P 在抛物线对称轴直线1x =上,点A、B 关于对称轴对称PA PB∴=PAC C AC PC PA AC PC PB∆∴++++==∵当C、P、B 在同一直线上时,PC PB CB +=最小103003A B C (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=+=最小设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣∴直线BC:3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆的周长最小,最小值为1032+.(3)存在满足条件的点M,使得PAM PAC S S ∆∆=.∵PAM PAC S S ∆∆=S △PAM =S △PAC∴当以PA 为底时,两三角形等高∴点C 和点M 到直线PA 距离相等∵M 在x 轴上方//CM PA∴1012A P (﹣,),(,),设直线AP 解析式为y px d +=02p d p d -+=⎧∴⎨+=⎩解得:p 1d 1=⎧⎨=⎩∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩解得:1103x y =⎧⎨=⎩(即点C),2214x y =⎧⎨=⎩∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M在x轴上方,无需分类讨论,解法较常规而简单.。

2019年四川省凉山州中考数学试卷

2019年四川省凉山州中考数学试卷

2019年四川省凉山州中考数学试卷、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置6人数(人)317137时间(小时)78910A . 17, 8.5B . 17, 9C . 8, 9D . 8, 8.57. (4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A . 1B . 2C . 3D . 41.(4分) -2的相反数是(2.3.4.(4分)是(C.2018年凉山州生产总值约为A . 1.533 X 109B . 1.533 X 10153300000000,用科学记数法表示数15330000000010C. 1.533 X 1011 D . 1.533 X 1012(4分)如图,BD // EF, AE与BD交于点)(A . 135°B . 125°(4分)下列各式正确的是(C,ZC.B=30°,/115°A= 75°,则/ E的度数为D. 105°a2?a= a35.(4分)不等式1-x> x- 1的解集是A . x> 1B . x>- 1 C. x w 1 D . x<- 1& ( 4分)如图,正比例函数 y = kx 与反比例函数y -的图象相交于 A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则厶ABC 的面积等于()A . 8B . 6C . 4D . 2C . —D .10. (4分)如图,在△ ABC 中,D 在AC 边上,AD : DC = 1 : 2, O 是BD 的中点,连接 AO并延长交BC 于E ,则BE : EC =(11. (4分)如图,在△ AOC 中,0A = 3cm , OC = 2口,将厶AOC 绕点 0顺时针旋转 90 后得到△ BOD ,则AC 边在旋转过程中所扫过的图形的面积为()cm 2.A . 1: 2B . 1: 3C . 1 :4-,则sinB 的值为(C . —n2 212. (4分)二次函数 y = ax+bx+c 的部分图象如图所示,有以下结论: ①3a - b = 0;②b-4ac >0;③5a - 2b+c > 0;④4b+3c > 0,其中错误结论的个数是()A . 1B . 2C . 3D . 4二、填空题(共 5个小题,每小题 4分,共20分) 13. (4分)方程组 的解是 _______ . 14 . (4分)方程1的解是 ________ .15 . (4分)如图所示,AB 是O O 的直径,弦 CD 丄AB 于H ,/ A = 30 ° , CD = 2 一,则O O AC 相交于 F ,则 S A AEF : S A CBF 是 _____ .2B . 2nE 将AD 分为2: 3的两部分,连接 BE 、17 . (4分)将抛物线y=(x-3) - 2向左平移_________ 个单位后经过点A (2, 2).三、解答题(共5小题,共32分)0 - 2 —18. (5 分)计算:tan45° + ( ) -( -) +| 2|,219. (5 分)先化简,再求值:(a+3) -( a+1) (a - 1) - 2 ( 2a+4),其中a -.20. (6分)如图,正方形ABCD的对角线AC、BD相交于点O, E是OC上一点,连接EB.过点A作AM丄BE,垂足为M , AM与BD相交于点F .求证:OE = OF .A j0占C21. ( 8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:获雲清况奚形烷计图获奖tw;兄蜃形统计圜(1 )参加此次诗词大会预选赛的同学共有__________ 人;(2) 在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为___________(3) 将条形统计图补充完整;(4) 若获得一等奖的同学中有 -来自七年级,-来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22. ( 8分)如图,点D是以AB为直径的O O上一点,过点B作O O的切线,交AD的延长线于点C, E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是O O的切线;(2)若OB = BF, EF = 4,求AD 的长.四、B 卷填空题(共2小题,每小题5分,共10分)223. (5分)当O w x w 3时,直线y = a 与抛物线y =( x - 1) - 3有交点,则a 的取值范围24. (5分)如图,正方形 ABCD 中,AB = 12, AE -AB ,点P 在BC 上运动(不与 B 、C重合),过点P 作PQ 丄EP ,交CD 于点Q ,贝U CQ 的最大值为 ________ .五、解答题(共4小题,共40分)225. ( 8分)已知二次函数y = x +x+a 的图象与x 轴交于A ( xi,0)、B ( X2, 0)两点,且 1,求a 的值.26. (10分)根据有理数乘法(除法)法则可知:① 若ab > 0 (或一 >0),则② 若ab v 0 (或一 V 0),则根据上述知识,求不等式(解:原不等式可化为:(1)由( 1)得,x > 2,由(2)得,x V- 3, >或V ;>V>或VV>x - 2)(x+3)> 0的解集> 或 V (2)>V•••原不等式的解集为:x v- 3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1) __________________________________ 不等式X2- 2x- 3v 0的解集为.(2) 求不等式——V0的解集(要求写出解答过程)27. (10 分)如图,/ ABD = Z BCD = 90°, DB 平分/ ADC,过点B 作BM // CD 交AD 于M •连接CM交DB于N.2(1)求证:BD2=AD?CD;(2)若CD = 6, AD = 8,求MN 的长.228. (12 分)如图,抛物线y= ax+bx+c 的图象过点A (- 1, 0)、B (3, 0 )、C (0, 3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△ PAC 的周长最小,若存在,请求出点P的坐标及厶PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M (不与C点重合),使得S△PAM= S A PAC?若存在,请求出点M的坐标;若不存在,请说明理由.r 勺4€/\~-2 71 O~i 2 i 4 S?-1-22019年四川省凉山州中考数学试卷参考答案与试题解析、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置故选:A.是()【解答】解:•••/ B = 30°,/ A = 75•••/ ACD = 30° +75 ° = 105°,•/ BD // EF,• / E=/ ACD = 105°故选:D.4 . (4分)下列各式正确的是(a2?a= a31.(4分)-2的相反数是(C.【解答】解:根据相反数的定义, 2的相反数是2.2. (4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000A . 1.533 x 109B . 1.533 x 1010C.1.533 x 1011D. 1.533 x 1012【解答】解:科学记数法表示:11 153 300 000 000 = 1.533 x 1011故选:C.3 . // EF, AE与BD交于点C,Z B=30°,/A= 75°,则/ E的度数为C. 115°D. 105°(4分)如图,BD【解答】解:A、2a2+3a2= 5a2,故选项A不合题意;第7页(共24页)B、a2?a = a3,故选项B符合题意;C、(a2)3= a6,故选项C不合题意;D、—|a|,故选项D不合题意.故选:B.5. (4分)不等式1-x>x- 1的解集是()A . x> 1B . x>- 1 C. x< 1 D. x<- 1【解答】解: 1- x> x- 1,-2x>- 2/• x< 1.故选:C.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 17, 8.5B . 17, 9C . 8, 9D . 8, 8.5【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20 , 21两个数的平均数就是中位数,•••这组数据的中位数为8.5;故选:D .7. (4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A . 1B . 2C . 3D . 4【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A .& ( 4分)如图,正比例函数 y = kx 与反比例函数y -的图象相交于 A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则厶ABC 的面积等于( ) A . 8B . 6C . 4D . 2【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所 围成的直角三角形面积 S 是个定值, 即 S _|k|.所以△ ABC 的面积等于2 -|k|=|k|= 4.故选:C .A . -----B . --------------------------C .— 【解答】解:过点A 作AD 丄BC ,垂足为D ,如图所示. 在 Rt △ ACD 中,CD = CA?cosC = 1, ••• AD;在 Rt △ ABD 中,BD = CB — CD = 3, AD • AB • si nB 故选:D .cosC -,则sinB 的值为(CA = CB= 4,10. (4分)如图,在△ ABC中,D在AC边上,AD: DC = 1 : 2, O是BD的中点,连接AO并延长交BC于E,则BE : EC=()A . 1:2B . 1:3 C. 1: 4 D. 2: 3【解答】解:如图,过O作OG // BC,交AC于G ,•/ O是BD的中点,••• G是DC的中点.又AD : DC = 1: 2,AD = DG= GC ,• AG: GC = 2: 1 , AO: OE = 2 : 1,•S A AOB:S^BOE= 2设S^BOE= S, S^AOB = 2S,又BO= OD ,•S^AOD= 2S, S A ABD= 4S,•/ AD: DC = 1 : 2,•S A BD C = 2S\ABD = 8S, S 四边形CDOE = 7S,•S^AEC= 9S, S A ABE= 3S,11. (4分)如图,在△ AOC 中,OA = 3cm , OC = 2口,将厶AOC 绕点 0顺时针旋转 902后得到△ BOD ,则AC 边在旋转过程中所扫过的图形的面积为()cm 2.B . 2n【解答】解:•••△ AOC ◎△ BOD ,2 n, 故选:B .2 212. (4分)二次函数 y = ax+bx+c 的部分图象如图所示,有以下结论: ①3a - b = 0;②b-4ac >0;③5a - 2b+c > 0;④4b+3c > 0,其中错误结论的个数是()1空A . 1B . 2C . 3【解答】解:由图象可知 a v 0, c >0,对称轴为x•- b = 3a , ①正确;•••函数图象与x 轴有两个不同的交点,2• △= b - 4ac >0,•••在旋转过程中所扫过的图形的面积=扇形OAB 的面积-扇形OCD 的面积---------②正确;当x =— 1 时,a—b+c>0,当x = — 3 时,9a—3b+c>0,•••10a- 4b+2c>0,5a —2b+c> 0,③正确;由对称性可知x= 1时对应的y值与x=—4时对应的y值相等, •••当x= 1 时a+b+c v 0,T b = 3a,•- 4b+3c = 3b+ b+3c= 3b+3a+3c= 3 (a+b+c)v 0,• 4b+3c v 0,④错误;故选:A.二、填空题(共5个小题,每小题4分,共20分)13. (4分)方程组的解是—_.【解答】解:①,②②-①得:x= 6,把x = 6代入①得:6+y= 10,解得:y= 4,方程组的解为:,故答案为:14. (4分)方程1的解是x=- 2【解答】解:----- -------------去分母,得(2x—1)(x+1)—2 =(x+1)(x—1) 2 2去括号,得2x +x—3= x —1移项并整理,得x2+x—2 = 0所以(x+2) (x - 1)= 0 解得x =- 2或x = 1经检验,x =- 2是原方程的解. 故答案为:x =- 2.15. (4分)如图所示,AB 是O O 的直径,弦 CD 丄AB 于H ,/ A = 30 ° , CD = 2 一,则O OT AB 是O O 的直径,弦 CD 丄AB 于H ,•••/ ACB = 90 ° , CH = DH —CD •••/ A = 30°, • AC = 2CH = 2 _,在 Rt △ ABC 中,/ A = 30°, • AC_BC = 2 : AB = 2BC ,• BC = 2, AB = 4, • OA = 2,即O O 的半径是2;AC 相交于 F ,则 S A AEF : S A CBF 是4: 25 或 9 : 25 【解答】解:①当AE : ED = 2: 3时,E 将AD 分为2: 3的两部分,连接BE 、故答案为:2.•••四边形ABCD是平行四边形,••• AD // BC, AE: BC= 2: 5,•••△ AEF s\CBF ,•- S^AEF :2S^CBF =( 一) = 4: 25;②当AE:ED = 3:2 时,同理可得,2S A AEF:S^CBF=(-)= 9 :25,故答案为:4:25 或9: 25.217. (4分)将抛物线y=( x-3) - 2向左平移3个单位后经过点A (2, 2). 【解答】解:•••将抛物线y=( x- 3) 2- 2向左平移后经过点 A ( 2, 2),2•设平移后解析式为:y=(x- 3+a) - 2,贝H 2 =( 2 - 3+a) 2- 2,解得:a = 3或a=- 1 (不合题意舍去),故将抛物线y=( x- 3) 2- 2向左平移3个单位后经过点 A (2, 2).故答案为:3.三、解答题(共5小题,共32分)- 0 - 218(5分) 计算tan45°+( )-(-)+|2|.【解答】解: 原式=1+1-4+ (2■)-.19.(5分) 先化简,再求值:(a+3)2-(a+1) (a - 1) -2 ( 2a+4),其中a 【解答】解:2 2原式=a +6a+9 -( a - 1)- 4a - 8=2a+2将a -代入原式=2 x( -) +2 = 120. (6分)如图,正方形ABCD的对角线AC、BD相交于点O, E是0C上一点,连接EB.过点A作AM丄BE,垂足为M , AM与BD相交于点F .求证:0E = 0F .【解答】证明:•••四边形 ABCD 是正方形.•••/ BOE =Z AOF = 90°, OB = OA .又••• AM 丄 BE ,•••/ MEA+ / MAE = 90°=/ AFO + Z MAE ,•••/ MEA = / AFO .•••△ BOE ^A AOF (AAS ).• OE = OF .21. ( 8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题: ° 二够士施龜聽据晶|(1 )参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90° ;(3) 将条形统计图补充完整;(4) 若获得一等奖的同学中有 -来自七年级,-来自九年级,其余的来自八年级,学校决 定从获得获奖倩;兄扇形豹计圍6 4 2 0一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【解答】解:(1)参加此次诗词大会预选赛的同学共有18-45% = 40 (人),故答案为:40;(2) 扇形统计图中获三等奖的圆心角为360° — 90°,故答案为:90°.(3) 获二等奖的人数= 40X 20% = 8, —等奖的人数为40-8- 10- 18= 4 (人),条形统计图为:茨乂曆;元扇形紡计圍(4) 由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)A B C C/l\ /l\ /I\ /1\B C c A c C A B c ABC共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率22. ( 8分)如图,点D是以AB为直径的O O上一点,过点B作O O的切线,交AD的延长线于点C, E是BC的中点,连接DE并延长与AB的延长线交于点F.(1) 求证:DF是O O的切线;(2) 若OB = BF, EF = 4,求AD 的长.【解答】解:(1)如图,连接OD , BD, •/ AB为O O的直径,•••/ ADB = / BDC = 90°,在Rt△ BDC 中,T BE = EC,• DE = EC= BE ,.•./ 1 = Z 3,••• BC是O O的切线,:丄 3+Z 4 = 90°,•••/ 1 + Z 4 = 90°, 又•••/ 2 =Z 4,•••/ 1 + Z 2 = 90°,• DF为O O的切线; (2)T OB= BF ,• OF = 2OD ,•Z F = 30°,vZ FBE = 90°,•- BE -EF = 2,• DE = BE= 2,• DF = 6,vZ F = 30°,Z ODF = 90 • Z FOD = 60°,v OD = OA,• Z A=Z ADO - BOD = 30°,法一:y = a 与抛物线y =( x - 1) 2- 3有交点2 2则有 a =( x - 1)- 3,整理得 x - 2x - 2 - a = 02b - 4ac = 4+4 (2+a )》0解得a >- 3,T 0 w x w 3,对称轴 x = 12y =( 3 - 1) - 3= 1a w 1法二:由题意可知,•••抛物线的 顶点为(1,- 3),而O w x w 3 •抛物线y 的取值为-3 w y w 1T y = a ,则直线y 与x 轴平行,•••要使直线y = a 与抛物线y =( x - 1) 2- 3有交点, •抛物线y 的取值为-3w y w 1,即为a 的取值范围,••- 3w a w 1故答案为:-3w a w 124. (5分)如图,正方形 ABCD 中,AB = 12, AE -AB ,点P 在BC 上运动(不与 B 、C 重合),过点P 作PQ 丄EP ,交CD 于点Q ,贝U CQ 的最大值为2a 与抛物线y =( x - 1)- 3有交点,a 的取值范围【解答】解:• Z A =Z F ,5分,共10分)23. (5分)当0W x w 3时,直线y =【解答】解:T/ BEP+ / BPE = 90°,/ QPC+ / BPE = 90°,• / BEP =/ CPQ .又/ B=/ C= 90°,•••△BPECQP .设CQ = y, BP= x,贝U CP = 12- x.•---- —,化简得y — (x2- 12x),2整理得 y — (x -6) +4,所以当x = 6时,y 有最大值为4. 故答案为4.五、解答题(共4小题,共40分)225. ( 8分)已知二次函数y = x +x+a 的图象与x 轴交于A ( x i,0)、B ( X 2, 0)两点,且 1, 求a的值.2【解答】解:y = x +x+a 的图象与x 轴交于A (x i , 0)、B (X 2, 0)两点, ••• X 1+x 2=- 1 , X 1?X 2= a ,... -------------- ----------------- ---------------------------- ------------- 1, •- a =- 1 或 a =- 1 ;.'△= 1 - 4a > 0, • a <-,26. (10分)根据有理数乘法(除法)法则可知:由( 1)得,x > 2,由(2)得,x <- 3,•原不等式的解集为:x <- 3或x >2.请你运用所学知识,结合上述材料解答下列问题: (1) 不等式x 2- 2x - 3< 0的解集为 -1 <x < 3 (2) 求不等式 一< 0的解集(要求写出解答过程)① 若ab > 0 (或->0),则② 若ab < 0 (或一 < 0),则根据上述知识,求不等式(解:原不等式可化为:(1)> 或 < ;>< >或< <>x - 2) ( x+3)> 0 的解集 > 或(2) < > <【解答】解:(1)原不等式可化为:①>或②VV>由①得,空集,由②得,-1V x v 3,•••原不等式的解集为:-1 V X V 3,故答案为:-1V X V 3.(2)由- ——V0知①>或②VV >解不等式组①,得:x> 1 ;解不等式组②,得:X V- 4;所以不等式——V 0的解集为x> 1或X V- 4.27. (10 分)如图,/ ABD = Z BCD = 90°, DB 平分/ ADC,过点B 作BM // CD 交AD 于M •连接CM交DB于N.(1)求证:BD3=AD?CD ;(2)若CD = 6, AD = 8,求MN 的长.【解答】证明:(1 )••• DB平分/ ADC,•••/ ADB = Z CDB,且/ ABD = Z BCD = 90°,•••△ABD BCD3• BD =AD?CD(2 )T BM // CD•••/ MBD =Z BDC•••/ ADB = Z MBD,且/ ABD = 90°••• BM = MD,/ MAB = Z MBABM = MD = AM = 4•/ BD4= AD?CD,且CD = 6, AD = 8,• BD2= 48,2 2 2• BC2= BD2-CD2= 122 2 2• MC = MB +BC = 28• MC = 2 —•/ BM // CD• △ MNB s\CND_,且MC = 2MN -•4一厂428. (12 分)如图,抛物线y= ax+bx+c 的图象过点A (- 1, 0)、B (3, 0 )、C (0, 3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△ PAC的周长最小,若存在,请求出点P的坐标及厶PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M (不与C点重合),使得S △PAM= S A PAC?若存在,请求出点M的坐标;若不存在,请说明理由.Jj 2 :7?1-2\【解答】解:(1)v抛物线与x轴交于点A (- 1, 0 )、B ( 3, 0)可设交点式y = a (x+1) (x- 3)把点C (0, 3)代入得:-3a = 3•- a =- 12• y=-( x+1) (x- 3) =- x+2X+3•••抛物线解析式为y=- X2+2X+3(2)在抛物线的对称轴上存在一点P,使得△ PAC的周长最小.如图1,连接PB、BC•••点P在抛物线对称轴直线x= 1上,点A、B关于对称轴对称• PA = PB• C △PAC = AC+ PC+PA = AC+PC+PB•••当C、P、B在同一直线上时,PC+PB = CB最小•/ A (- 1, 0)、B (3, 0)、C (0, 3):.AC,BC•- C ^PAC =AC+CB最小设直线BC解析式为y= kx+3把点B代入得:3k+3 = 0,解得:k=- 1•直线BC : y =- x+3• y p=- 1+3 = 2•••点P (1 , 2)使厶PAC的周长最小,最小值为(3) 存在满足条件的点M,使得S A FAM = S A PAC•-■ S ^PAM = S ^FAC•••当以PA 为底时,两三角形等高 •••点C 和点M 到直线PA 距离相等 ① 若点M 在点P 上方,如图2, • CM // PA•/ A (- 1, 0), P (1, 2),设直线 AP 解析式为 y = px+d •-解得:•直线 AP : y = x+1•直线CM 解析式为:y = x+3解得:(即点C ),•••点M 坐标为(1 , 4) ② 若点M 在点P 下方,如图3,则点M 所在的直线I // PA ,且直线I 到PA 的距离等于直线 y = x+3到PA 的距离 •直线AP : y = x+1向下平移2个单位得y = x - 1即为直线I 的解析式解得: 一 一•••点M 在x 轴上方 • y > 0•••点M 坐标为( --- , -------- ) 综上所述,点M 坐标为(1, 4 )或(图1图2) 时,S ^PAM = S ^PAC .第31页(共24页)v= r +\ffi3224A.2a+3a=5a22「4A.2a+3a=5a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)2的相反数是()A .2B .2C .12D .122.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A .91.53310B .101.53310C .111.53310D .121.533103.(4分)如图,//BD EF ,AE 与BD 交于点C ,30B,75A,则E 的度数为()A .135B .125C .115D .1054.(4分)下列各式正确的是()A .224235aaaB .23a a aC .235()a aD .2aa5.(4分)不等式11x x …的解集是()A .1x …B .1x …C .1x,D .1x,6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A .17,8.5B .17,9C .8,9D .8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A .1B .2C .3D .48.(4分)如图,正比例函数y kx与反比例函数4yx的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则ABC的面积等于() A.8B.6C.4D.29.(4分)如图,在ABC中,4CA CB,1cos4C,则sin B的值为()A.102B.153C.64D.10410.(4分)如图,在ABC中,D在AC边上,:1:2AD DC,O是BD的中点,连接AO 并延长交BC于E,则:(BE EC)A.1:2B.1:3C.1:4D.2:311.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A .2B .2C .178D .19812.(4分)二次函数2y ax bxc 的部分图象如图所示,有以下结论:①30ab;②240bac ;③520a bc;④430b c,其中错误结论的个数是()A .1B .2C .3D .4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是.14.(4分)方程2212111x x x的解是.15.(4分)如图所示,AB 是O 的直径,弦CDAB 于H ,30A ,23CD,则O的半径是.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是.17.(4分)将抛物线2(3)2y x 向左平移个单位后经过点(2,2)A .三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.19.(5分)先化简,再求值:2(3)(1)(1)2(24)aa aa,其中12a.20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D 是以AB 为直径的O 上一点,过点B 作O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F .(1)求证:DF 是O 的切线;(2)若OB BF ,4EF ,求AD 的长.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是.24.(5分)如图,正方形ABCD 中,12AB ,14AE AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为.(2)求不等式401x x的解集(要求写出解答过程)27.(10分)如图,90ABD BCD,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.28.(12分)如图,抛物线2y axbxc 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷答案与解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 11000 1.53310故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式,,n为整数),这种记数法叫做科学记数法.a(1103.(4分)【分析】直接利用三角形的外角性质得出ACD度数,再利用平行线的性质分析得出答案.A,B,75【解答】解:30ACD,3075105BD EF,//E ACD.105故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、222a a a,故选项A不合题意;235B、23a a a,故选项B符合题意;C 、236()a a ,故选项C 不合题意;D 、2||aa ,故选项D 不合题意.故选:B .【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)【分析】移项、合并同类项,系数化为1即可求解.【解答】解:11x x …,22x …1x,.故选:C .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,这组数据的中位数为898.52;故选:D .【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A .【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则OBAOBCSS,再根据反比例函数系数k 的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即1||2S k .所以ABC 的面积等于12||||42k k .故选:C .【点评】主要考查了反比例函数k yx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即1||2Sk .9.(4分)【分析】过点A 作AD BC ,垂足为D ,在Rt ACD 中可求出AD ,CD 的长,在Rt ABD中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sin B 的值.【解答】解:过点A 作AD BC ,垂足为D ,如图所示.在Rt ACD 中,cos 1CD CA C ,2215ADADCD;在Rt ABD 中,3BD CBCD,15AD,2226AB BD AD ,10sin 4AD BAB.故选:D .【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.10.(4分)【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出:1:2AD DC,根据已知和平行线分线段成比例得出ADDGGC ,:2:1AG GC,:2:1AO OF ,再由同高不同底的三角形中底与三角形面积的关系可求出:BF FC 的比.【解答】解:如图,过O 作//OG BC ,交AC 于G ,O 是BD 的中点,G 是DC 的中点.又:1:2AD DC ,ADDGGC ,:2:1AG GC ,:2:1AO OE,:2AOBBOES S 设BOES S ,2AOB S S ,又BO OD ,2AOD SS ,4ABDSS ,:1:2AD DC ,28BDCABDS SS ,7CDOES S 四边形,9AECSS ,3ABES S ,3193ABE AECS BE S ECSS故选:B .【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A.2B.2C.178D.198【分析】根据旋转的性质可以得到阴影部分的面积扇形OAB的面积扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:AOC BOD,阴影部分的面积扇形OAB的面积扇形OCD的面积22 9039012 360360,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积扇形OAB的面积扇形OCD的面积是解题关键.12.(4分)二次函数2y ax bx c的部分图象如图所示,有以下结论:①30a b;②240b ac;③520a b c;④430b c,其中错误结论的个数是()A .1B .2C .3D .4【分析】①对称轴为32x,得3ba ;②函数图象与x 轴有两个不同的交点,得△240bac ;③当1x时,0abc,当3x时,930abc,得520ab c;④由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,43333333()0bcbbcba c abc ;【解答】解:由图象可知0a,0c,对称轴为32x,322b x a,3ba ,①正确;函数图象与x 轴有两个不同的交点,△240bac ,②正确;当1x 时,0a b c ,当3x 时,930a b c ,10420a b c ,520abc,③正确;由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,3b a ,43333333()0b c b b c b a c a b c ,430bc,④错误;故选:C .【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是64x y.【分析】利用加减消元法解之即可.【解答】解:10216x y xy①②,②①得:6x,把6x 代入①得:610y,解得:4y,方程组的解为:64x y ,故答案为:64x y.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程2212111x x x的解是2x .【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:21211(1)(1)x x x x 去分母,得(21)(1)2(1)(1)x x x x 去括号,得22231x x x 移项并整理,得22x x所以(2)(1)0x x解得2x或1x经检验,2x 是原方程的解.故答案为:2x .【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB 是O 的直径,弦CD AB 于H ,30A ,23CD ,则O的半径是2.【分析】连接BC ,由圆周角定理和垂径定理得出90ACB ,132CH DHCD ,由直角三角形的性质得出223ACCH,323ACBC,2ABBC ,得出2BC,4AB ,求出2OA 即可.【解答】解:连接BC ,如图所示:AB 是O 的直径,弦CD AB 于H ,90ACB ,132CHDHCD,30A ,223ACCH,在Rt ABC 中,30A,323AC BC ,2ABBC ,2BC ,4AB ,2OA ,即O 的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是4:25或9:25.【分析】分:2:3AE ED 、:3:2AE ED两种情况,根据相似三角形的性质计算即可.【解答】解:①当:2:3AE ED时,四边形ABCD 是平行四边形,//AD BC ,:2:5AE BC ,AEF CBF ∽,22:()4:255AEFCBFSS;②当:3:2AE ED 时,同理可得,23:()9:255AEFCBFSS,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线2(3)2yx向左平移3个单位后经过点(2,2)A .【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:将抛物线2(3)2yx向左平移后经过点(2,2)A ,设平移后解析式为:2(3)2yx a ,则22(23)2a ,解得:3a 或1a(不合题意舍去),故将抛物线2(3)2y x向左平移3个单位后经过点(2,2)A .故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式112(23)23.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:2(3)(1)(1)2(24)a a a a ,其中12a.【分析】注意到2(3)a 可以利用完全平方公式进行展开,(1)(1)a a 利润平方差公式可化为2(1)a,则将各项合并即可化简,最后代入12a进行计算.【解答】解:原式2269(1)48aa aa 22a 将12a代入原式12()212【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .【分析】根据正方形的性质对角线垂直且平分,得到OBOA ,根据AM BE ,即可得出90MEAMAEAFOMAE ,从而证出Rt BOE Rt AOF ,得到OEOF .【解答】证明:四边形ABCD 是正方形.90BOEAOF,OBOA .又AM BE,90MEA MAE AFO MAE,MEA AFO.()BOE AOF AAS.OE OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有1845%40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040,故答案为:90.(3)获二等奖的人数4020%8,一等奖的人数为40810184(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率41 123.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的O上一点,过点B作O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是O的切线;(2)若OB BF,4EF,求AD的长.【分析】(1)连接OD,由AB为O的直径得90BDC,根据BE EC知13、由OD OB知24,根据BC是O的切线得3490,即1290,得证;(2)根据直角三角形的性质得到30F,12 2BE EF,求得2DE BE,得到6DF,根据三角形的内角和得到OD OA,求得1302A ADO BOD,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,AB为O的直径,90ADB BDC,在Rt BDC中,BE EC,DE EC BE,13,BC是O的切线,3490,1490,又24,1290,DF为O的切线;(2)OB BF,2OF OD,30F,90FBE,122BE EF,2DE BE,6DF,30F,90ODF,60FOD,OD OA,1302A ADO BOD,A F,6AD DF.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是31a 剟.【分析】直线y a 与抛物线2(1)3yx 有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y a 与抛物线2(1)3yx 有交点则有2(1)3a x,整理得222x xa△2444(2)0baca …解得3a …,03x 剟,对称轴1x 2(31)31y1a,法二:由题意可知,抛物线的顶点为(1,3),而03x 剟抛物线y 的取值为31y 剟y a ,则直线y 与x 轴平行,要使直线ya 与抛物线2(1)3yx 有交点,抛物线y 的取值为31y 剟,即为a 的取值范围,31a 剟故答案为:31a 剟【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD 中,12AB ,14AEAB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为4.【分析】先证明BPE CQP ∽,得到与CQ 有关的比例式,设CQy ,BP x ,则12CP x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【解答】解:90BEPBPE,90QPCBPE,BEP CPQ .又90BC,BPE CQP ∽.BE BP PC CQ.设CQy ,BP x ,则12CPx .912x x y,化简得21(12)9y xx ,整理得21(6)49y x,所以当6x时,y 有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.【分析】有韦达定理得121x x ,12x x a ,将式子2212111x x化简代入即可;【解答】解:2y xxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,121x x ,12x x a ,222121212222222121212()211121()x xx x x x a x x x x x x a,12a或12a;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为13x .(2)求不等式401x x的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①3010xx 或②301x x .由①得,空集,由②得,13x,原不等式的解集为:13x,故答案为:13x.(2)由401xx知①4010x x 或②401x x,解不等式组①,得:1x ;解不等式组②,得:4x ;所以不等式401x x的解集为1x 或4x .【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,90ABD BCD ,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.【分析】(1)通过证明ABD BCD ∽,可得AD BD BDCD,可得结论;(2)由平行线的性质可证MBDBDC ,即可证4AM MDMB,由2BDAD CD和勾股定理可求MC 的长,通过证明MNB CND ∽,可得23BM MN CDCN,即可求MN 的长.【解答】证明:(1)DB 平分ADC ,ADBCDB ,且90ABDBCD,ABD BCD ∽AD BD BDCD2BD AD CD (2)//BM CDMBDBDCADB MBD ,且90ABD BM MD ,MAB MBA4BMMDAM2BD AD CD ,且6CD ,8AD ,248BD ,22212BC BDCD22228MC MB BC 27MC//BM CD MNB CND ∽23BM MN CD CN ,且27MC475MN【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(12分)如图,抛物线2yaxbx c 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.【分析】(1)由于条件给出抛物线与x 轴的交点(1,0)A 、(3,0)B ,故可设交点式(1)(3)ya xx,把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x 对称,故有P AP B ,则PACCAC PC PA AC PCPB ,所以当C 、P 、B 在同一直线上时,PACCACCB最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x 代入即求得点P 纵坐标.(3)由PA MP AC SS 可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【解答】解:(1)抛物线与x 轴交于点(1,0)A 、(3,0)B 可设交点式(1)(3)ya x x 把点(0,3)C 代入得:33a1a 2(1)(3)23yxxxx抛物线解析式为223yx x(2)在抛物线的对称轴上存在一点P ,使得PAC 的周长最小.如图1,连接PB 、BC 点P 在抛物线对称轴直线1x上,点A 、B 关于对称轴对称PA PBPACCAC PC PA AC PC PB 当C 、P 、B 在同一直线上时,PCPBCB 最小(1,0)A 、(3,0)B 、(0,3)C 221310AC ,223332BC 1032PACCACCB最小设直线BC 解析式为3y kx把点B 代入得:330k ,解得:1k直线:3BC y x132Py 点(1,2)P 使PAC 的周长最小,最小值为1032.(3)存在满足条件的点M ,使得PAMPACS S.PAM PACSS当以PA 为底时,两三角形等高点C 和点M 到直线PA 距离相等M 在x 轴上方//CM PA(1,0)A ,(1,2)P ,设直线AP 解析式为y pxd2p d pd 解得:11p d直线:1AP y x 直线CM 解析式为:3y x2323y x yxx解得:1103x y (即点)C ,2214x y 点M 坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x轴上方,无需分类讨论,解法较常规而简单。

相关文档
最新文档