快速成型典型工艺简介

合集下载

四种常见快速成型技术

四种常见快速成型技术

四种常见快速成型技术第一种常见快速成型技术:数控加工技术。

数控加工技术是一种机器控制加工技术,利用计算机及其相应的程序控制生产设备,进行机械加工,使得一次处理能完成的で一台以上的机器工具构成的加工中心,部件在台面上面固定,四个或以上的自动工具装在滑轨上, 根据电脑程序指定的加工参数,自动更换、安装选择夹具,分别做加工工作,从而完成制件定位、撬开、冲孔、攻丝、开槽、铰榫等复杂加工工作。

数控加工技术主要采用机械加工加工,适用于大批量生产或多种多样零件快速、高效率、低成本加工,且图纸精度高、表面光洁度高等。

第二种常见快速成型技术:熔融塑料成型技术。

熔融塑料成型技术首先将原料加工成模板,然后将模板放入机器中,当原料温度到达要求时,机器自动把原料按照设定的温度、时间及力度压入模具内,形成冷却后的成型物体。

这种技术利用塑料的特性,具有效率高,成型精度高,成型时根据原料的特性可以做出不同的加工处理,并且具有强度大,防水,耐高低温的特点,适用于各种塑料制品的快速成型。

第三种常见快速成型技术:射出成型技术。

射出成型技术指在机械压力下将原料熔融输送到射出模具成型模块中,随后由冷却系统冷却,完成制件的快速成型。

这种技术主要用于金属铸件、塑料件等的制造,具有造件精度高,尺寸稳定性好,表面光洁,强度高,厚度一致,成型快,节省材料等优点。

第四种常见快速成型技术:热压成型技术。

热压成型技术是把金属或塑料原料置于型模具内,用压力和热量同时共同作用,使金属和塑料原料发生塑性变形而成型的一种快速成型技术。

该技术采用型模具可以实现造型精度高、制件造型美观,制造完后制件可以免去热处理步骤;并且利用该技术进行多余的金属屑的再生,形成复合制件,极大的降低了制件的生产成本。

四大快速成型工艺和优缺点

四大快速成型工艺和优缺点
;..
.
的粘结在前一层上,如此重复不已,直到整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工 件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速成型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原 型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂 模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA 快速原型技术的优点是: 1、 系统工作稳定。系统一旦开始工作,构建零件的全过程完全自动运行,无需专人看管,直到整个工艺 过程结束。 2、 尺寸精度较高,可确保工件的尺寸精度在 0.1mm 以内。 3、 表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 4、 系统分辨率较高,因此能构建复杂结构的工件。 SLA 快速原型的技术缺点: 1、 随着时间推移,树脂会吸收空气中的水分,导致软薄部分的弯曲和卷翅。 2、 氦-镉激光管的寿命仅 3000 小时,价格较昂贵。同时需对整个截面进行扫描固化,成型时间较长,因 此制作成本相对较高。 3、 可选择的材料种类有限,必须是光敏树脂。由这类树脂制成的工件在大多数情况下都不能进行耐久性 和热性能试验,且光敏树脂对环境有污染,使皮肤过敏。 4、 需要设计工件的支撑结构,以便确保在成型过程中制作的每一个结构部位都能可靠定位。
粉末材料选择性烧结快速成型工艺适合于产品设计的可视化表现和制作功能测试零件。由于它可采用各种 不同成分的金属粉末进行烧结、进行渗铜等后处理,因而其制成的产品可具有与金属零件相近的机械性能, 故可用于制作 EDM 电极、直接制造金属模以及进行小批量零件生产。 SLS 快速成型技术的优点是:
;..
.
1、 与其他工艺相比,能生产最硬的模具。 2、 可以采用多种原料,例如绝大多数工程用塑料、蜡、金属、陶瓷等。 3、 零件的构建时间短,可达到 1in/h 高度。 4、 无需对零件进行后矫正。 5、 无需设计和构造支撑。 选择性烧结的最大优点是可选用多种材料,适合不同的用途、所制作的原型产品具有较高的硬度,可进行 功能试验。 SLS 快速原型技术缺点是: 1、 在加工前,要花近 2 小时的时间将粉末加热到熔点以下,当零件构建之后,还要花 5-10 小时冷却, 然 后才能将零件从粉末缸中取出。 2、 表面的粗糙度受到粉末颗粒大小及激光点的限制。 3、 零件的表面一般是多孔性的,为了使表面光滑必须进行后处理。 4、 需要对加工室不断充氮气以确保烧结过程的安全性,加工的成本高。 5、 该工艺产生有毒气体,污染环境。

快速成型技术

快速成型技术
目前快速成型机的数据输入主要有两种途径:一是设计人员利用计算机辅助设计软件 (如 Pro /Engineering , SolidWo rks, IDEAS, M DT, Auto CAD等 ) ,根据产品的要求设计三维模型 , 或将已有产品的二维三视图转换为三维模型; 另一种是对已有的实物进行数字化 , 这些实物可 以是手工模型、工艺品等。这些实物的形体信息可以通过三维数字化仪、 CT和 MRI等手段采集 处理 ,然后通过相应的软件将获得的形体信息等数据转化为快速成型机所能接受的输入数据 。
其在处理速度上都可以很好的满足需求,而且时间跨度不大,有利于实现产品开发的高速闭环反馈。 其二:集成化,快速成型技术使得设计环节和制造环节达到了很好的统一,我们知道在快速 成型的操作过程中,计算机中
的CAD模型数据会通过软件转化的方式,自动生成数控指令,依据数据的转化实现对于部件的合理加工。由此看来设计和 制造之间的鸿沟不再存在,达到了高度的集约化。 其三:适用性,快速成型技术,适翻分层技术制造工艺,将复杂的三维切成二维来处理,极大的简化了加工流程,在不存 在三维刀具的干涉的前提下,高效的处理好复杂的中空结构。无论是从理论上来讲,还是从实践上来讲,其技术的适用性 可以应对任何的复杂构件制造。 其四:可调整性,快速成型技术,即真正意义上的数字化系统,是制造业中的利器,我们操作员仅仅需要合理设置一下相 关的参数和属性, 就可以有针对性的处理好各种产品的样品制造和小批量生产;而且在此过程中,保证了成型过程的柔韧 性。 其五:自动化,快速成型技术,实现了完全的自动化成型,只要操作人员输入相关的参数,在不需要多少干涉的情况下,实 现整个过程的自动运行。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及,为新的制造技 术的产生奠定了技术物质基础。

四种常见快速成型技术

四种常见快速成型技术

四种常见快速成型技术FDM丝状材料选择性熔覆(Fus ed Dep osi tion Mod eling)快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。

丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。

热塑性丝状材料(如直径为1.78m m的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。

一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。

这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。

这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。

但仍需对整个截面进行扫描涂覆,成型时间长。

适合于产品设计的概念建模以及产品的形状及功能测试。

由于甲基丙烯酸ABS(M AB S)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。

但成型精度相对较低,不适合于制作结构过分复杂的零件。

FD M快速原型技术的优点是:1、操作环境干净、安全可在办公室环境下进行。

2、工艺干净、简单、易于材作且不产生垃圾。

3、尺寸精度较高,表面质量较好,易于装配。

可快速构建瓶状或中空零件。

4、原材料以卷轴丝的形式提供,易于搬运和快速更换。

5、材料利用率高。

6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。

FDM快速原型技术的缺点是:1、做小件或精细件时精度不如SLA,最高精度0.127mm。

2、速度较慢。

SL A敏树脂选择性固化是采用立体雕刻(Stereo litho gra phy)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。

在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。

快速成型技术概述

快速成型技术概述

和其他几种快速成型方法相比,该方一法也存在着许多缺点。主要有:
三、光固化成型工艺
四、叠层实体制造工艺
叠层实体制造工艺的基本原理
四、叠层实体制造工艺
2.叠层实体制造技术的特点 其主要特点如下: ( 1 )原型精度高。 ( 2 )制件能承受高达200℃ 的温度,有较高的硬度和较好的力学性能,可进行各种切削加工。 ( 3 )无须后固化处理。 ( 4 )无须设计和制作支撑结构。 ( 5 )废料易剥离。 ( 6 )可制作尺寸大的制件。 ( 7 )原材料价格便宜,原型制作成本低。
( 1 )能承受一定高温。 ( 2 )与成型材料不浸润,便于后处理。 ( 3 )具有水溶性或者酸溶性。 ( 4 )具有较低的熔融温度。 ( 5 )流动性要好。
五、熔融沉积快速成型工艺
选择性激光烧结工艺的基本原理
当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,直至完成整个模型。
01
1940年,Perera提出相似的方法,即沿轮廓线切割硬纸板,然后堆叠,使这些纸板形成三维地貌图。
02
1964年,Zang进一步细化了该方法,建议用透明的纸板,每一块均带有详细的地貌形态标记。
03
1972年,Matsubara使用光固化材料,光线有选择地投射或扫射到这个板层,将规定的部分硬化,没有扫描或没有一硬化的部分被某种溶剂溶化。
04
五、熔融沉积快速成型工艺
五、熔融沉积快速成型工艺
2.熔融沉积工艺的特点 熔融沉积快速成型工艺之所以被广泛应用,是因为它具有其他成型方法所不具有的许多优点。具体如下: ( 1 )由于采用了热融挤压头的专利技术,使整个系统构造原理和操作简单,维护成本低,系统运行安全。 ( 2)成型速度快。 ( 3 )用蜡成型的零件原型,可以直接用于熔模铸造。 ( 4 )可以成型任意复杂程度的零件。 ( 5 )原材料在成型过程中无化学变化,制件的翘曲变形小。 ( 6 )原材料利用率高,且材料寿命长。 ( 7 )支撑去除简单,无需化学清洗,分离容易。

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理一、激光烧结成型原理激光烧结成型(Selective Laser Sintering,简称SLS)是一种快速成型技术,其成型原理是利用激光束对粉末材料进行烧结,逐层堆积形成所需的三维实体。

激光烧结成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将烧结材料粉末均匀地铺在工作台上,使其表面平整。

接下来,利用激光束控制系统,将激光束按照预定的路径和参数扫描在粉末层表面,使其局部熔融烧结。

激光束的能量使粉末颗粒之间发生熔融和烧结,形成一层固体物质。

再次铺上一层新的粉末材料,重复上述步骤,逐层堆积,直至形成整个三维实体。

最后,将成品从未熔融的粉末中清理出来,并进行后续处理,如热处理或表面处理。

激光烧结成型技术具有成型速度快、制作精度高、制造复杂度高等优点。

由于其成型过程中无需使用支撑材料,可以制造出具有复杂内部结构的零件,因此被广泛应用于航空航天、汽车、医疗器械等领域。

二、光固化成型原理光固化成型(Stereolithography,简称SLA)是一种常见的快速成型技术,其成型原理是利用紫外线激光束对光固化树脂进行逐层固化,最终形成所需的三维实体。

光固化成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将液态光固化树脂均匀地铺在工作台上。

接下来,利用紫外线激光束扫描器,将激光束按照预定的路径和参数照射在树脂表面,使其局部固化。

激光束的能量使树脂中的光敏物质发生聚合反应,从而使树脂由液态变为固态。

再次涂覆一层新的液态光固化树脂,重复上述步骤,逐层固化,最终形成整个三维实体。

最后,将成品从未固化的树脂中清洗出来,并进行后续处理,如烘干或光刻。

光固化成型技术具有成型速度快、制造精度高、制造复杂度高等优点。

快速成型制造的几种典型工艺与后处理

快速成型制造的几种典型工艺与后处理

应用
汽车、建筑等领域。
选择性激光烧结(SLS)工艺
原理
01
选择性激光烧结技术采用粉末材料作为原料,通过计算机控制
激光束对材料进行选择性烧结,最终得到三维实体。
特点
02
选择性激光烧结技术适合制作金属零件,具有较高的强度和硬
度。
应用
03
航空航天、汽车等领域。
三维打印(3DP)工艺
原理
三维打印技术采用粉末或液体材料作为原料,通过计算机控制喷嘴 将材料逐层喷射到成型区,最终得到三维实体。
用于制造轻量化结构件和复杂 零部件。
新产品开发
用于制造产品原型,方便进行 设计验证和功能测试。
医疗器械制造
用于制造医疗设备和器械,如 手术器械、假肢等。
教育领域
用于教学和实验,让学生更好 地理解产品设计、制造和材料 科学等方面的知识。
02
几种典型的快速成型工艺
立体光刻(SL)工艺
原理
立体光刻技术采用光敏树脂作为 原料,通过计算机控制紫外激光 束照射到光敏树脂表面,逐层固
在汽车制造领域,快速成型制造技术可以用于生产汽车设计原型,这些原型可以用于测试、修改等。
应用案例四:文化创意领域
艺术品
快速成型制造技术可以用于生产艺术品,如雕塑、装置艺术等。
玩具
在文化创意领域,快速成型制造技术可以用于生产玩具,这些玩具可以用于娱乐、教育等。
THANKS。
应用案例二:医疗领域
医疗器械
快速成型制造技术可以用于生产医疗器械,如手术器械、牙 科器械等。
人体模型
在医疗领域,快速成型制造技术可以用于生产人体模型,这 些模型可以用于手术模拟、康复训练等。
应用案例三:汽车制造领域

快速成型制造的几种典型工艺与后处理

快速成型制造的几种典型工艺与后处理
第六章 快速成型制造的几种典型工 艺及后处理
一、光固化成型(SLA)
1.光固化成型的基本原理 利用激光扫描和光敏树脂固化的原理。具体见书
P121. 2.光固化成型特点 优点: 尺寸精度高 表面质量好 制作复杂的模型 可以直接制作熔模铸造的具有中空结构的消失型
缺点: 尺寸稳定性差 需要支撑结构 成本高 可适用的材料少 树脂具有气味和毒性。 需要二次固化 树脂性能不如常用的工业塑料
四、熔融沉积制造(FDM) 1.基本原理 2.特点 3.后处理
五、三维打印(3DP) 1.基本原理 2.特点 3.后处理
六、五种成型方法的比较。 见书P132 表格6-1.
Байду номын сангаас
3.光固化的后处理 晾干 工业酒精对树脂原型表面和型腔清洗 去除支撑 二次固化 光整处理、打磨、喷砂
二、分层实体制造(LOM) 1、分层实体制造原理 2、分层实体制造特点 3、后处理
适用于大中型原型,翘曲变形小,成型时间短的 产品、直接制作砂型铸造模。
三、选择性激光烧结(SLS) 1、基本原理 2、制造特点 3、后处理

快速成型制造的几种典型工艺与后处理课件

快速成型制造的几种典型工艺与后处理课件
快速成型制造的实际应用案 例
在医疗领域的应用
定制化医疗器械
通过快速成型技术,可以快速制造出符合患者特定需求的医疗器 械,提高治疗效果和舒适度。
体外医疗器械
制造体外医疗器械,如假肢、义肢等,可以根据患者的需求进行 个性化定制,提高使用舒适度和效果。
手术导板
利用快速成型技术制作手术导板,帮助医生在手术过程中精确引 导手术切口,提高手术精度和效果。
快速成型制造的几种 典型工艺与后处理课 件
contents
目录
• 快速成型制造概述 • 几种典型快速成型工艺 • 快速成型制造的后处理 • 快速成型制造的实际应用案例 • 快速成型制造的未来发展趋势及挑战 • 相关软件与技术介绍
CHAPTER
快速成型制造概述
快速成型制造的定 义
快速成型制造(Rapid Prototyping Manufacturing,简称RPM)是指基于三维 CAD模型数据,通过可编程、数字化的材料加工方法,快速制造出产品原型或零 件的集合。
粉末烧结成型工艺
原理
01
特点
02
应用领域
03
熔融沉积成型工艺
原理 特点 应用领域
立体印刷成型工 艺
01
原理
02
特点
03
应用领域
CHAPTER
快速成型Байду номын сангаас造的后处理
去除支撑结构
01
02
支撑结构
去除方法
03 注意事项
表面处理
表面粗糙
1
处理方法
2
注意事项
3
结构性能检测
检测方法
检测内容
注意事项
CHAPTER
RPM是一种集计算机辅助设计、材料加工、逆向工程技术、机械工程和电子工程 等多学科于一体的综合性技术。

几种典型的快速成型技术

几种典型的快速成型技术
Page 6
2.急冷系统的作用
由以上分析可知,急冷系统的作用如下: (1)裂解气经急冷处理,降低了裂解气的温度,确保压缩系统顺利运 行,同时降低了后续压缩机的功耗。 (2)裂解气经急冷处理,尽可能分离出裂解气中的轻、重组分,占裂 解气质量分率3.5%左右,降低进入压缩系统的进料负荷。 (3)在裂解气急冷过程中,将裂解气中的水蒸气以冷凝水的形式分离 回收,用以在发生稀释水蒸气,从而大大减少污水排放量。 (4)在裂解气急冷过程中通过间接急冷回收了相当一部分高位显能, 在间接急冷中回收低位热能。通常由间接急冷器产生高压蒸汽,由直 接急冷系统发生稀释蒸汽。
一个比较完整的快速成型技术的技术体系包含CAD 造型、反求工程、数据转换、原型制造以及物性转换等基 本环节。
1.三维CAD造型 三维造型包括实体造型和曲面造型。利用各种三维CAD
软件进行几何造型,得到零件的三维CAD数学模型,这是 快速成型制造技术的重要组成部分,是获得初始信息的最 常用方法,也是制造过程的第一步。
一般的裂解气高位热能回收均采用单级急冷锅炉(如SRT裂解技术)。 单级急冷固然有其优越性,但要在一台急冷锅炉中同时完成两个任务--快 速终止二次反应和尽可能多地回收高位热能,既有矛盾又有一定难度。因 而,为了回收更多的高能位热量,近年来有些裂解技术(如毫秒火炉裂解 技术)相继采用了二级急冷技术。二级急冷技术是把裂解气在第一急冷锅 炉内的温度降至600~650℃以下,然后在第二急冷锅炉内,回收裂解气 热量,裂解气急冷到300~400℃后进入汽油分馏塔。这样,即使至操作 后期,换热管处有较厚的焦也不会使急冷锅炉系统的阻力降上升过高、过 快,从而可以延长操作周期。当裂解减压柴油等重质原料时,由于结焦物 浓度较大、结焦速度较快,所以一般不使用第二急冷锅炉。

四大快速成型工艺和优缺点

四大快速成型工艺和优缺点

四大快速成型工艺和优缺点目前世界上的快速成型工艺主要有以下几种:一、FDM –熔融堆积工艺丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。

丝状材料选择性熔覆的原理是,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。

热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层薄片轮廓。

一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。

这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。

这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。

但仍需对整个截面进行扫描涂覆,成型时间长。

适合于产品设计的概念建模以及产品的形状及功能测试。

由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用伽马射线消毒,特别适用于医用。

但成型精度相对较低,不适合于制作结构过分复杂的零件。

FDM快速成型技术的优点是:1、制造系统可用于办公环境,没有毒气或化学物质的危险。

2、工艺干净、简单、易于材作且不产生垃圾。

3、可快速构建瓶状或中空零件。

4、原材料以卷轴丝的形式提供,易于搬运和快速更换。

5、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。

FDM快速原型技术的缺点是:1、精度较低,难以构建结构复杂的零件。

2、垂直方向强度小。

3、速度较慢,不适合构建大型零件。

二、SLA –树脂光固化工艺光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速成型技术。

快速成型技术-第一章

快速成型技术-第一章

1Hale Waihona Puke 1.2发展历史快速成型技术并非是一项完全崭新的技术,其核心思想可以追溯到19
世纪照相雕塑和地貌成形专利。但,受限于当时材料技术与计算技术等众
多因素,这些早期的快速成型技术实践并没有得到广泛的商业化应用。现 代意义上的快速成型技术研究始于20世纪70年代,直到80年代,该技术才
得以变为现实。
1.萌芽期
2.奠基期 1986年,分层实体制造成型技术(LOM)由Michael Feygin 发明并申请专利,该技术使用薄片材料、激光与热熔胶来 进行制件的层压成型。1990年前后,Feygin组建的Helisys 公司在美国国家科学基金会的赞助下,研发出第一台投入 商用的快速成型机LOM-1015,成为快速成型技术商业化应 用的先驱。
2012年,4月,在快速成型产业 迅猛发展的大背景下,英国著 名经济学杂志《经济学人》推 出了《3D打印推动第三次工业 革命》的封面文章,认为3D打 印技术将“与其他数字化生产 模式一起推动实现第三次工业 革命”,2012年也因此被称为 “3D打印技术的科普元年”。
纵观全球,欧美日等发达国家已将快速成型技术视为实现 “再工业化”的重要契机。 2012年,美国建立国家增材制造创新研究院(NAMII),将发展 快速成型技术提升至国家战略高度; 欧盟及成员国致力于发展金属快速成型技术,相关产业发 展和技术均走在世界前列; 俄罗斯凭借在激光领域的技术优势,积极发展激光快速成 型技术研究及应用; 日本则全力推进快速成型与制造业的深度融合,意图借助 快速成型技术重塑制造业的国际竞争力。 2013年以来,快速成型技术已进入爆发式增长阶段,新技术、 新材料或者新型应用成果陆续发布。2013年5月,3D打印产业 联盟正式成立。

四大快速成型工艺和优缺点

四大快速成型工艺和优缺点

四大快速成型工艺和优缺点目前世界上的快速成型工艺主要有以下几种:一、FDM –熔融堆积工艺丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。

丝状材料选择性熔覆的原理是,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。

热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层薄片轮廓。

一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。

这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。

这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。

但仍需对整个截面进行扫描涂覆,成型时间长。

适合于产品设计的概念建模以及产品的形状及功能测试。

由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用伽马射线消毒,特别适用于医用。

但成型精度相对较低,不适合于制作结构过分复杂的零件。

FDM快速成型技术的优点是:1、制造系统可用于办公环境,没有毒气或化学物质的危险。

2、工艺干净、简单、易于材作且不产生垃圾。

3、可快速构建瓶状或中空零件。

4、原材料以卷轴丝的形式提供,易于搬运和快速更换。

5、可选用多种材料,如可染色的ABS和医用ABS、浇铸用蜡和人造橡胶。

FDM快速原型技术的缺点是:1、精度较低,难以构建结构复杂的零件。

2、垂直方向强度小。

3、速度较慢,不适合构建大型零件。

二、SLA –树脂光固化工艺光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速成型技术。

几种常见的快速成型技术

几种常见的快速成型技术

几种常见的‎快速成型技‎术一、FDM丝状材料选‎择性熔覆(Fused‎Depos‎i tion‎Model‎i ng)快速原型工‎艺是一种不‎依靠激光作‎为成型能源‎、而将各种丝‎材加热溶化‎的成型方法‎,简称FDM‎。

丝状材料选‎择性熔覆的‎原理室,加热喷头在‎计算机的控‎制下,根据产品零‎件的截面轮‎廓信息,作X-Y平面运动‎。

热塑性丝状‎材料(如直径为1‎.78mm的‎塑料丝)由供丝机构‎送至喷头,并在喷头中‎加热和溶化‎成半液态,然后被挤压‎出来,有选择性的‎涂覆在工作‎台上,快速冷却后‎形成一层大‎约0.127mm‎厚的薄片轮‎廓。

一层截面成‎型完成后工‎作台下降一‎定高度,再进行下一‎层的熔覆,好像一层层‎"画出"截面轮廓,如此循环,最终形成三‎维产品零件‎。

这种工艺方‎法同样有多‎种材料选用‎,如ABS塑‎料、浇铸用蜡、人造橡胶等‎。

这种工艺干‎净,易于操作,不产生垃圾‎,小型系统可‎用于办公环‎境,没有产生毒‎气和化学污‎染的危险。

但仍需对整‎个截面进行‎扫描涂覆,成型时间长‎。

适合于产品‎设计的概念‎建模以及产‎品的形状及‎功能测试。

由于甲基丙‎烯酸ABS‎(MABS)材料具有较‎好的化学稳‎定性,可采用加码‎射线消毒,特别适用于‎医用。

但成型精度‎相对较低,不适合于制‎作结构过分‎复杂的零件‎。

FDM快速‎原型技术的‎优点是:1、制造系统可‎用于办公环‎境,没有毒气或‎化学物质的‎危险。

2、工艺干净、简单、易于材作且‎不产生垃圾‎。

3、可快速构建‎瓶状或中空‎零件。

4、原材料以卷‎轴丝的形式‎提供,易于搬运和‎快速更换。

5、原材料费用‎低,一般零件均‎低于20美‎元。

6、可选用多种‎材料,如可染色的‎A BS和医‎用ABS、PC、PPSF等‎。

FDM快速‎原型技术的‎缺点是:1、精度相对国‎外SLA工‎艺较低,最高精度0‎.127mm‎。

2、速度较慢。

二、SLA光敏树脂选‎择性固化是‎采用立体雕‎刻(Stere‎o lith‎o grap‎h y)原理的一种‎工艺,简称SLA‎,也是最早出‎现的、技术最成熟‎和应用最广‎泛的快速原‎型技术。

四大快速成型工艺和优缺点

四大快速成型工艺和优缺点

四大快速成型工艺和优缺点立体光刻是一种基于光敏物质对紫外线(UV)的敏感性实现的快速成型工艺。

它的工作原理是在涂盖物的表面照射紫外线来固化物质。

立体光刻的优点包括制造过程完全由计算机控制,高精度和高分辨率,可以制造复杂形状和结构,不受材料特性限制。

然而,立体光刻也有一些缺点,例如制造过程较为缓慢,制造尺寸有限,不能直接制造金属等材料。

选择性激光烧结是一种基于激光束的局部烧结过程实现的快速成型工艺。

它的工作原理是使用激光束照射粉末材料,瞬间加热并烧结粉末颗粒。

选择性激光烧结的优点包括高精度和高分辨率,制造速度较快,可以制造复杂形状和结构,可以使用多种材料。

然而,选择性激光烧结也有一些缺点,如制造尺寸有限,制造过程对材料要求较高,设备和材料成本较高。

喷墨打印是一种类似于常见的办公打印机的工作原理,通过控制喷头喷射液体材料的位置来逐层制造物体。

喷墨打印的优点包括制造速度快,可以制造较大尺寸的物体,可以使用多种材料。

然而,喷墨打印也有一些缺点,如分辨率和精度较低,难以制造具有复杂内部结构的物体,材料选择有限。

快速切割是一种使用高速运动的加工工具来从固态原材料中切割和剥离物质,以逐层制造物体的快速成型工艺。

快速切割的优点包括制造速度快,可以制造较大尺寸的物体,可以使用多种材料。

然而,快速切割也有一些缺点,如分辨率和精度较低,不能制造具有复杂内部结构和曲面的物体,材料的剥离容易引起损伤。

总的来说,每种快速成型工艺都有其独特的优点和缺点,适用于不同的制造需求和材料要求。

根据具体的应用场景和要求,可以选择合适的快速成型工艺来实现快速、高效和精确的制造。

殷华公司快速成形各工艺设备简介

殷华公司快速成形各工艺设备简介
不同种类的快速成形系统因所用成形材料不同,系统特点 也各有不同。但其基本原理都是一样的,那就是“分层制造, 逐层叠加”。形象地讲,快速成形系统就像是一台 “立体打 印机”。
三、快速成形技术的工艺过程
1.CAD模型 的构建
4.后处理
2.离散过程
3.堆积过程
四、快速成形技术的分类
பைடு நூலகம்
名称
简称
成形材料
成形技术
片材表面事先涂覆上一层 热熔胶。加工时,热压辊 热压片材,使之与下面已
成形的工件粘接;用CO2 激光器在刚粘接的新层
上切割出零件截面轮廓和 工件外框,并在截面轮廓 与外框之间多余的区域内 切割出上下对齐的网格; 激光切割完成后,工作台 带动已成形的工件下降, 与带状片材(料带)分离。
五、快速成形技术的特点
颌面骨修复手术 特殊零件
工艺品
酒樽
3.快速模具的制造
快速成形的另一项重要应用就是制造快速模具,用于批量生产复 杂的零件。近年来随着许多新技术、新工艺的出现,快速成形技术的 所有工艺方法几乎都可以直接或间接用于模具的制造。
铸造领域应用
手机外壳橡胶模
电子产品注射模
快速成形制造技术
讲课老师:毛毛
一、现代成形科学
1 去除成形——去除余量材料而成形
2 受迫成形——在型腔约束和限制下成形
3 离散-堆积成形——材料离散成点、
线、面、然后堆积起来而成形
二、快速成形技术简介
快速成形技术简称RP(Rapid prototyping),是指由 三维模型直接驱动的快速制造任意复杂形状三维物理实体的技 术总称。
利实现。
填充
轮廓 支撑
2、光固化SLA工艺
SLA技术是基于液态光 敏树脂的光聚合原理工作
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速成形典型工艺简介
关键词及简称
光固化成形(简称:SLA或AURO)光敏树脂为原料
熔融挤压成形(简称:FDM或MEM)ABS丝为原料
光固化成形
光固化成形是最早出现的快速成形工艺。

其原理是基于液态光敏树脂的光聚合原理工作的。

这种液态材料在一定波长(x=325nm)和强度(w=30mw)的紫外光的照射下能迅速发生光聚合反应, 分子量急剧增大, 材料也就从液态转变成固态。

图1光固化工艺原理图
工艺过程为:液槽中盛满液态光固化树脂,激光束在偏转镜作用下, 能在液体表面上扫描, 扫描的轨迹及激光的有无均由计算机控制, 光点扫描到的地方, 液体就固化。

成型开始时,工作平台在液面下一个确定的深度,液面始终处于激光的焦平面,聚焦后的光斑在液面上按计算机
的指令逐点扫描即逐点固化。

当一层扫描完成后,未被照射的地方仍是液态树脂。

然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕, 得到一个三维实体原型。

光固化工艺的设备做出的零件其优点是精度较高、表面效果好,零件制作完成打磨后,将层层的堆积痕迹去除。

光固化工艺是运行费用最高,且强度低无弹性,无法进行装配。

光固化工艺设备的原材料很贵,种类不多。

光固化设备的零件制作完成后,还需要在紫外光的固化箱中二次固化,用以保证零件的强度。

液漕内的光敏树脂经过半年到一年的时间就要过期,所以要有大量的原型服务以保证液漕内的树脂被及时用完,否则新旧树脂混在一起会导致零件的强度下降、外形变形。

如需要更换不同牌号的材料就需要将一个液漕的光敏树脂全部更换,工作量大、树脂浪费很多。

一年内液漕光敏树脂必须用完否则将会变质,用户需要重新投入近十万元采购光敏树脂。

三十万的端面泵浦固体紫外激光器只能用1万小时,使用两年后激光器更换需要二次投入三十万的费用。

振镜系统也是有易损件,再次更换需要十几万元的投入。

由于设备的运行费用高,这种设备一般被大型集团或有足够资金的企业采购。

熔融挤压成形
熔融挤压成形工艺是利用热塑性材料的热熔性、粘结性,在计算机控制下层层堆积成型。

熔融挤压成形工艺原理是材料先抽成丝状,通过送丝机构送进喷头,在喷头内被加热熔化,喷头沿零件截面轮廓和填充
轨迹运动,同时将熔化的材料挤出,材料迅速固化,并与周围的材料粘结,层层堆积成型。

图2熔融挤压工艺原理图
熔融挤压成形设备的优点是国内外现有设备中运行成本最低的。

此种工艺的设备无需激光器,省掉二次投入的大量费用;此种工艺的特点是既可以将零件的壁内做成网状结构,也可以将零件的壁做成实体结构。

这样当零件壁内是网格结构时可以节省大量材料。

由于原材料为ABS塑料(密度小),所以一公斤材料可以制作大量原型。

而且原材料的品种多,原材料的更换只需要将丝盘更换既可,操作方便,利于用户根据不同的零件选择不同的材料。

熔融挤压成形的零件成形样件强度好、易于装配、且在产品设计、测试与评估等方面得到广泛应用。

由于熔融材料堆积成形工艺具有一些显著优点,该工艺发展极为迅速。

由于运行成本低,在江浙和广东地区被众多民营企业采购,也是众多学校采购的首选。

相关文档
最新文档