移动机器人结构设计
轮式移动机器人结构设计论文

轮式移动机器人的结构设计摘要:随着机器人技术在外星探索、野外考察、军事、安全等全新的领域得到日益广泛的采用,机器人技术由室内走向室外,由固定、人工的环境走向移动、非人工的环境。
本课题是机器人设计的基本环节,能够为后续关于机器人的研究提供有价值的平台参考和有用的思路。
本文介绍了已有的机器人移动平台的发展现状和趋势,分析操作手臂常用的结构和工作原理,根据选定的方案对带有机械臂的全方位移动机器人进行本体设计,包括全方位车轮旋转机构的设计、车轮转向机构的设计和机器人操作臂的设计。
要求全方位移动机构转向、移动灵活,可以快速、有效的到达指定地点;机械臂操作范围广、运动灵活、结构简单紧凑且尺寸小,可以快速、准确的完成指定工作。
设计完成后要分析全方位移动机构的性能,为后续的研究提供可靠的参考和依据。
关键字:机器人移动平台操作臂简单快速准确Structure design of wheeled mobile robots Abstract:with the robot technology in an alien exploration, field survey, military and security new areas to be increasingly widely adopted, robot technology by indoor, outdoor by fixed, to move towards artificial environment, the artificial environment. This topic is the basic link, robot design for the follow-up about robots can provide valuable reference and useful ideas platform.This article summarizes the existing robot mobile platform development status and trends of operating the arm structure and principle of common, According to the selected scheme of mechanical arm with ontology omni-directional mobile robots designed, including the design of all-round wheel rotating mechanism, wheel steering mechanism of design and the design of robot manipulator. Request to change direction, move the omni-directional mobile institution, can quickly and effectively flexible the reaches the specified location; Mechanical arm operation scope, sports flexible, simple and compact structure and size is small, can quickly and accurately completed tasks. The design is completed to analyze the performance of the omni-directional mobile institutions for subsequent research, provide reliable reference and basis.Keywords: Robot mobile platform manipulator simple accurate and quick目录1.绪论1.1引言(1)1.2国内外相关领域的研究现状(1)1.3主要研究内容(5)2.全向移动机器人移动结构设计2.1引言(5)2.2机械设计的基本要求(6)2.3全方位轮式移动机构的设计(6)2.3.1移动机器人车轮旋转机构设计(7)2.3.2移动机器人转向机构设计(10)2.3.3电机的选型与计算(12)2.4移动机器人车体机构设计(15)2.5本章小结(16)3.机械手臂的设计3.1末端执行器的设计(16)3.1.1末端执行器的设计要求(17)3.1.2末端执行器的设计(17)3.1.3电机的选型与计算(20)3.2机械手臂杆件的设计(21)3.2.1腕部结构设计(21)3.2.2臂部结构设计(21)3.2.3机械臂电机的选型与计算(23)3.3本章小结(23)4.机械材料的选择和零件的校核4.1机械材料的选用原则(24)4.2零件材料选择和强度校核(25)4.3本章小结(29)参考文献(30)致谢(31)附录1 绪论1.1 引言移动机器人已经成为机器人研究领域的一个重要分支。
一种轮履复合式全地形移动机器人设计

一种轮履复合式全地形移动机器人设计摘要:随着全球科技的发展和人类对于探索未知领域的需求增加,全地形移动机器人在多种应用场景中显示出巨大的潜力。
本文提出了一种轮履复合式全地形移动机器人设计,通过将轮式和履带式两种机器人设计理念相结合,来实现对复杂地形的适应能力。
该机器人具有灵活的操控性和稳定性,可以在不同的地形条件下高效地移动和执行任务。
1.引言全地形移动机器人在军事、探险、救援等领域具有广泛的应用前景。
然而,由于现有的机器人设计往往只能适应特定类型的地形,限制了其实际应用能力。
因此,研发一种能够适应多种复杂地形的移动机器人是一个有价值的研究课题。
2.设计理念本文提出的轮履复合式全地形移动机器人设计主要通过将轮式和履带式两种机器人设计理念相结合来实现对复杂地形的适应能力。
具体来说,机器人主要使用四个轮子和两条履带来实现移动。
轮子的设计使机器人具有良好的平稳性和灵活性,可以在平坦地面上高效地行进。
而履带的设计则可以提供更好的越障能力和降低对地面造成的损害,可以在不平坦的地面上保持稳定。
3.机械结构设计机器人的机械结构主要包括底盘、轮子和履带系统。
底盘采用轻量化设计,由强度高的合金材料制造,以减轻机器人的重量。
轮子采用气动轮胎设计,可以调节胎压以适应不同地面的要求。
履带系统由两条橡胶履带构成,可以通过液压系统调整履带的松紧程度,以提供更好的抓地力和越障能力。
4.控制系统设计机器人的控制系统采用多传感器融合技术,包括惯性测量单元、激光雷达和摄像头。
通过融合这些传感器的数据,机器人可以实时感知周围环境,并做出相应的控制策略。
同时,还可以通过遥控器进行远程操控,以适应不同的应用场景。
5.动力系统设计机器人的动力系统由多台电动机和液压系统组成。
电动机驱动轮子的转动,控制机器人的前进、转向和制动等动作。
液压系统则用于调节履带的松紧程度和提供额外的动力输出,以适应不同地形的要求。
6.实验与结果为了验证该机器人的设计效果,进行了一系列实验。
SCARA机器人装配及结构设计

SCARA机器人装配及结构设计一、SCARA机器人的结构设计1.底座:SCARA机器人的底座是机器人的支撑结构,通常由坚固的金属材料制成,以确保机器人的稳定性和刚性。
2.铰链臂:SCARA机器人的铰链臂由几个关节连接而成,可以实现自由度的运动。
通常,它由两个旋转关节和一个平移关节组成。
旋转关节负责机器人的水平旋转运动,而平移关节负责机器人的垂直运动。
3.终端执行器:SCARA机器人的终端执行器通常是机器人手臂的工作部分,用于进行装配和包装等操作。
根据不同的应用需求,终端执行器可以是夹子、吸盘或工具握持器等。
4.控制系统:SCARA机器人的控制系统通常由电脑和控制器组成,用于控制机器人的运动。
控制系统可以根据预设的程序和传感器反馈的信息来进行调整和控制。
二、SCARA机器人的装配过程1.连接底座:首先,将机器人的底座与工作平台或其他支撑结构连接,确保机器人的稳定性和安全性。
2.安装铰链臂:将机器人的铰链臂插入底座上的旋转关节,并用螺丝固定。
确保旋转关节可以自由旋转,但又不会摇晃或松动。
3.安装平移关节:将机器人的平移关节连接到铰链臂的末端,并用螺丝固定。
确保平移关节可以平稳地移动,但又不会滑动或卡住。
4.安装终端执行器:根据不同的应用需求,选择适当的终端执行器,并将其连接到机器人的平移关节上。
确保终端执行器可以牢固地固定在平移关节上,并具有良好的操作性能。
5.连接控制系统:将机器人的控制系统与电脑和控制器连接,确保机器人可以接收和执行指令。
同时,连接必要的传感器和开关,以确保机器人的安全性和操作性能。
6.校准和测试:完成机器人的装配后,进行校准和测试。
校准包括机器人的零点位置校准、关节运动范围校准等。
测试包括机器人的运动测试、负载测试、精度测试等。
通过校准和测试,确保机器人能够正常工作并达到预期的性能。
总结:SCARA机器人是一种常见的装配机器人,其结构设计和装配过程需要注意机器人的稳定性、可靠性和操作性能。
可跳跃移动机器人机构设计与跳跃过程控制研究综述

可跳跃移动机器人机构设计与跳跃过程控制研究综述目录一、内容概括 (2)1.1 跳跃移动机器人的研究背景与意义 (3)1.2 国内外研究现状及发展动态 (4)二、可跳跃移动机器人机构设计 (5)2.1 机器人总体结构设计 (7)2.2 跳跃机构设计 (7)2.2.1 基本跳跃机构 (9)2.2.2 复杂跳跃机构 (10)2.3 仿生跳跃机构设计 (10)2.3.1 蜻蜓式跳跃机构 (12)2.3.2 鸟类跳跃机构 (13)三、跳跃过程控制研究 (14)3.1 跳跃运动规划与控制策略 (15)3.1.1 基于预设轨迹的跳跃控制 (16)3.1.2 基于最优控制的跳跃控制 (18)3.1.3 基于模型预测控制的跳跃控制 (20)3.2 跳跃过程中的动力学分析与建模 (21)3.2.1 跳跃机器人的动力学建模 (22)3.2.2 跳跃过程中的力学分析 (24)3.3 跳跃机器人的感知与交互技术 (25)3.3.1 激光雷达感知技术 (26)3.3.2 触觉传感器感知技术 (28)3.3.3 人机交互技术 (30)四、实验与仿真分析 (31)4.1 实验环境搭建与实验方法 (33)4.2 实验结果与分析 (34)4.3 仿真结果与分析 (35)五、结论与展望 (36)5.1 研究成果总结 (37)5.2 存在问题与不足 (39)5.3 未来发展方向与展望 (40)一、内容概括随着科技的不断进步,可跳跃移动机器人作为一种具有高度自主性和灵活性的机器人形式,受到了广泛关注。
本文旨在对近年来可跳跃移动机器人机构设计与跳跃过程控制的研究进行综述,以期为该领域的发展提供参考和启示。
在可跳跃移动机器人机构设计方面,研究者们主要关注机器人的结构、驱动和跳跃性能等方面。
结构设计方面,为提高机器人的稳定性和机动性,往往采用多关节、柔性杆等复杂结构。
驱动方式上,除了传统的电机驱动外,还有采用生物启发式驱动(如仿生肌肉、形状记忆合金等)的机器人。
自主机器人移动机构设计与研究

种 趋势 。本 文 针对 室 内环 境 固定 路 线 工作 的 自主机 器 人 移 动机 构进 行设 计研 究 。
1 移 动 机 构 的 分 析 选 择
机 器人 在地 面 上 的移动 方 式通 常有 三 种 :车轮 式 、 履
带式 和 步行 式 。 ‘
图 2 四轮移 动机 构 的 常用 配置 形式
作 用 ; 1 O 所 示 的 组 合 是 前 轮 1为 操 舵 轮 , 轮 2 3中 图 () 后 、
一
机 器 人 由 两 个 后 轮 驱 动 ,故 每 个 轮 承 担 的最 大 重 量 为
m 35 g 根 据摩 擦 力 计 算 公 式 F f g 力 矩 公 式 T F 代 = .k , =m , = R,
图 3 机 器 人 驱 动 轮 受 力 示 意 图
设 计 与 研 究
3 驱 动 系 统 设 计
9
结 构 设 计 如 图 4所 示 , 机 与 车 体 之 间 的 连 接 是 通 过 电
螺栓 、 L型铝 材 和开 槽 圆柱 头 螺 钉来 实现 的 。联 接 驱 动 轮 的套简 材 料选 用 强 度 和刚 度较 好 的 4 5钢 。 该 驱动 系 统 的动 力 传 递 过程 是 : 电机 轴转 动 , 动 与 带 之 连 接 的套 筒 转动 , 而使 驱 动 后 轮 转 动 , 是 实 现 了 机 从 于
1 轮 移 动 配 置 和 操 舵 方 式 。 典 型 3轮 移 动 机 器 人 通 )
通过 比较 以 上各 种移 动方 式 , 选择 比较简 单稳 定 的 图
2 b) ( 后轮 分 散驱 动 的 4轮机 构 。 2 行 走 机构 电机 选择 计 算 ( ) 走机 构 电机 转矩 的计 算 。 图 3 本 文机 器人 最 1行 如 ,
AGV交互移动机器人设计与制造

AGV交互移动机器人设计与制造AGV 是“Automated Guided Vehicle”的缩写,中文翻译为“自动引导车”,是一种能够实现自主移动和运输物品的机器人。
AGV通常配备传感器和导航系统,可以通过编程方式执行特定的任务,例如在工厂生产线上自动运送物料或在仓库中自动搬运货物。
下面将介绍AGV交互移动机器人的设计与制造。
1. 基本结构设计:AGV交互移动机器人通常由底盘、操控系统、导航系统、传感器和电源系统等组成。
底盘是机器人的基础,可以通过轮子或履带实现移动。
操控系统是机器人的大脑,主要负责接收任务信息和控制机器人的移动。
导航系统可以使用激光导航、视觉导航或者传感器导航等技术,以确定机器人的位置和路径。
传感器可以使用激光传感器、摄像头、超声波传感器等,用于感知周围环境。
电源系统可以使用电池或者充电系统,以供机器人长时间的使用。
2. 机器人交互设计:AGV交互移动机器人不仅要能够自主移动,还需要能够与人类进行交互。
机器人可以配备触摸屏或者语音识别系统,让人们可以通过触摸或者语音与机器人进行交互。
人们可以通过触摸屏或者语音命令指示机器人前往某一位置或者执行某个任务。
3. 安全设计:机器人在与人类进行交互时,需要确保安全。
AGV交互移动机器人可以配备防撞传感器和急停开关,以便在遇到障碍物或者紧急情况时能够停止移动。
机器人还可以通过导航系统规划安全路径,避免与人员或者设备发生碰撞。
4. 兼容性设计:AGV交互移动机器人可以与现有的生产线或者仓库系统进行兼容。
机器人可以通过无线通信技术与其他设备进行连接,以实现任务的协同执行。
机器人可以与生产线上的机器人或者仓库系统进行通信,实现物料的自动运输和搬运。
在制造AGV交互移动机器人时,需要进行以下几个步骤:1. 确定需求:首先需要确定机器人的使用场景和具体需求。
确定机器人需要在生产线上还是在仓库中使用,需要运输的物品是什么等。
确定需求后,可以根据需求来选择机器人的结构和功能。
四足步行机器人结构设计分析

四足步行机器人结构设计分析四足步行机器人是一种具有良好稳定性和适应性的移动机器人,常见于野外探索、救援和军事应用等领域。
其结构设计是机器人设计中的关键一环,下面将对四足步行机器人的结构设计进行分析。
四足步行机器人的结构可以分为机身、四肢、关节和控制系统四个部分。
机身是机器人的主体,支撑着所有机器人的元件和装置,同时起到保护和支撑机器人关节的作用。
四肢是机器人的主要运动器官,负责机器人的行走、攀爬和跳跃等动作。
关节是肢体与机身连接的部分,起到链接和转动的作用。
控制系统则是机器人的大脑,负责机器人的行动和决策。
机身部分的设计需要兼顾机器人的稳定性和机动性。
机身的设计应当使机器人具有足够的重量和稳定性,同时保证机器人的机动性。
一般而言,机身部分通常采用金属或碳纤维等材料制成,具有良好的韧性和硬度,同时也可以考虑使用模块化结构设计,使得机器人可以更快速地根据任务需求完成拼装和拆解。
四肢部分的设计需要考虑地形适应性、运动灵活性和负载能力等因素。
我们可以根据机器人的应用场景选择合适的足形,例如在野外环境中可以选择采用爪状的足形来根据地形侵入不同的土质。
此外,在四肢的设计上还应当考虑机器人的运动灵活性和负载能力,这将直接影响机器人的行动能力。
因此,在四肢部分的设计上,可以考虑采用弹性材料(如橡胶)制成的脚垫来提高机器人的防滑性和抗震性。
关节部分的设计是四足步行机器人中最复杂的一环。
关节的设计需要考虑到关节的自由度和稳定性,同时也要保证关节的扭矩和正逆向电流与控制系统相协调。
在关节的设计上,可以采用电机驱动和摩擦盘控制等方法,使得机器人的步态更具有连贯性和流畅性,同时还可以提高机器人的运动精度。
控制系统是四足步行机器人的核心,负责决策、感知、规划和执行机器人的行动。
控制系统可以分为硬件和软件两个部分。
硬件部分包括感知器、执行器、空间定位和通信模块等,其作用是为软件提供各种传感器数据和实现机器人的运动。
而软件部分则包括机器人的行为规划、路径规划、姿态控制、运动控制、仿真分析等,其作用是为机器人提供决策和运动方案。
四足步行机器人结构设计分析

四足步行机器人结构设计分析四足步行机器人(Quadruped robot)是一种仿生机器人,模仿了动物四肢行走的方式,通过四腿的徐徐移动来达到行走目的。
四足步行机器人结构设计分析是研究四足步行机器人工作原理及构造特点,解析其机械结构、电子元器件和控制系统等实现机器人行走的关键技术。
四足步行机器人主要由机身、机器人四肢和电机等组成。
机身是机器人的本体,由结构支撑体系和强度支撑体系两大重要部分组成。
结构支撑体系包括上底板和下底板,下底板是由高强度材料制成的厚板,用来承受机器人重量,上底板是安装控制器的支撑板。
强度支撑体系包括机器人底板、上盖板和侧壁,这些板件也是由高强度材料制成,用于支撑机器人的四肢。
四足步行机器人的四肢由机械臂、扭矩电机、连杆、支撑杆等组成。
机械臂是连接机身和地面的重要部分,通过机械臂的摆动来操纵机器人行走。
扭矩电机是机器人四肢的驱动器,是机器人运动的核心部件。
通过扭矩电机带动连杆转动,从而推动机器人四肢运动。
连杆和支撑杆则是连接扭矩电机和机械臂的重要部件,用于维持机械臂和地面之间的距离和角度。
四足步行机器人的电子元器件四足步行机器人的电子元器件主要包括控制器、传感器、电机驱动器等。
控制器是机器人运动的“大脑”,负责机器人的行走轨迹规划和控制。
传感器是检测机器人运动状态的重要组成部分,可以通过传感器获取机器人的位置、角度和速度等信息。
电机驱动器则负责将电力转化为动力,从而驱动机器人四肢运动。
四足步行机器人控制系统主要由硬件和软件两部分组成。
硬件包括电源和控制器等;软件主要包括运动控制算法和运动规划算法等。
运动控制算法主要是通过控制器来控制机器人的姿态和运动,使机器人能够按照设定的行走路线行走。
运动规划算法主要是根据环境和处理器能力,规划出机器人的行走路径,并为机器人提供合适的控制策略,使其能够平稳、高效地行走。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学科分类号0807 本科毕业设计
题目(中文):移动机器人结构设计
(英文):Mobile robot structure design
姓名陈霄锋
学号2008180235
院(系)工学院机械工程系
专业、年级 2008级机械设计制造及其自动化
指导教师彭可副教授
二○一二年五月
湖南师范大学本科毕业设计诚信声明
本人郑重声明:所呈交的本科毕业设计,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除设计中已经注明引用的内容外,本设计不含任何其他个人或集体已经发表或撰写过的作品成果。
对本设计的研究做出重要贡献的个人和集体均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
本科毕业设计作者签名:
二○一二年五月十四日
湖南师范大学本科毕业设计任务书
湖南师范大学
工学院指导教师指导毕业设计情况登记表
二、湖南师范大学本科毕业设计评审表。