2012年湖北高考试题(文数,word解析版)
2012湖北省高考试卷含解析考资料
1、下列各句中,没有语病的一句是(3分)A.为纪念抗日战争暨世界反法西斯战争胜利70周年,从现在起到年底,国家大剧院宣布将承办31场精心策划的演出。
B.这部小说中的“边缘人”是一个玩世不恭、富有破坏性却真实坦白的群体,人们面对这类形象时会引起深深的思索。
C.根据国家统计局发布的数据,4月份我国居民消费价格指数出现自去年12月以来的最大涨幅,但仍低于相关机构的预测。
D.为进一步保障百姓餐桌的安全,国家对施行已超过5年的《食品安全法》作了修订,因加大了惩处力度而被冠以“史上最严”的称号。
2、下列各句中,加点的词语使用恰当的一句是(3分)A.于敏院士在我国首颗氢弹的成功研制上功勋卓著,然而他淡泊名利,婉拒“氢弹之父”的称号,其人品胸襟,令人高山仰止。
B.在东海舰队组织的此次实战演练中,我军的反水雷舰艇倾巢而出,成功扫除了“敌军”在航道上隐蔽布设的多枚新型水雷。
C.某些管理机构缺乏“大数据思维”,以邻为壑,不与相关机构共享信息资源,公共数据中心的建设将有助于改变这种状况。
D.现代舞剧《十面埋伏》,以其色彩浓重的舞台背景,风格鲜明的京剧音乐以及刚柔相济的舞者形体,一举征服了现场观众。
3、下列各句中,加点的成语使用正确的一项是A.新闻发布会上,他讲话仅用了八分钟,简洁明了,新闻性、针对性强,没有一句穿靴戴帽的空话套话。
B.联合国大会曾经两次召开会议,讨论是否应该废除死刑的问题,但因各方立场南辕北辙,讨论无果而终。
C.本届展销会邀请到了安徽、浙江、上海等地知名企业,湖笔、宜笔、徽墨、宜纸、歙砚等文房四宝济济一堂。
D.写一篇小说并不太难,但要想让自己的作品在擢发难数的小说中引起读者广泛关注,就不那么容易了。
4、说着,进入石洞来,只见佳木茏葱,奇花熌灼,一带清流,从花木深处曲折泻于石隙之下。
,皆隐于山坳树影之间。
俯而视之,则清溪泻雪,石磴穿云,白石为栏,环抱为沿,石桥三港,兽面衔吐。
桥上有亭。
3.语段中加点的字,读音全都正确的一组是A.熌灼shuò曲折q? 山坳ào 石磴chéngB.熌灼shuò曲折qū山坳yòu 石磴dèngC.熌灼zhuó曲折q? 山坳yòu 石磴chéngD.熌灼zhuó曲折qū山坳ào 石磴dèng4.下列语句填入语段中画横线处,衔接最恰当的一项是A.再进数步,渐向北边,两边飞楼插空,平坦宽豁,雕甍绣槛B.渐向北边,再进数步,雕甍绣槛,两边飞楼插空,平坦宽豁C.再进数步,渐向北边,平坦宽豁,两边飞楼插空,雕甍绣槛D.渐向北边,雕甍绣槛,再进数步,平坦宽豁,两边飞楼插空5、下面的文字有一处语病,请写出序号并加以修改。
2012年普通高等学校招生全国统一考试(湖北卷)
绝密★启用前试卷类型:B 2012年普通高等学校招生全国统一考试(湖北卷)语文本试卷共六大题,8页。
总分150分,考试用时150分钟。
注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹的签字笔将自己的姓名和考号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中加点的字,读音全都相同的一组是A.灵.秀磷.光玲.珑剔透聆.听教诲B.诞.生旦.角淡.泊明志担.当重任C.宿.营诉.说夙.兴夜寐素.昧平生D.咨.询滋.生芝.兰之室孜.孜不倦【答案】C2.下列各组词语中,没有错别字的一组是A.羞涩袅娜歌声缈茫荷塘薄雾B.霜天廖廓峥嵘岁月浪遏飞舟C.细腻箫索落蕊残叶秋蝉嘶叫D.嫩黄葱茏婆娑起舞繁茂苍翠【答案】D3.依次填入下列横线处的词语,最恰当的是说到底,世上风景闲流水,端的还是要人慢下来。
中国这如许的城市中,最是江城得了个中,且将它地挥洒出来。
这江城街头巷尾、湖畔公园里数不胜数的茶馆、茶铺,一个人在清晨里不慌不忙的起来,到茶馆里,一坐就是一天,那叫一个悠闲!A.趣味痛痛快快当是遛B.滋味淋漓尽致便是踱C.意味兴致勃勃自是逛D.韵味尽情尽兴恰是晃【答案】B4.下列各项中,没有语病的是A.坐上画舫游清江,如行画卷之中,江水清澈,绿树蓊郁,自然与人,和谐相依,随风生长,好一派如诗如画的风光!B.游览三峡大瀑布时,我们从倾泻而下的水帘中狂奔而过,尖叫声、嬉笑声响成一片,那真是充满刺激的难忘体验!C.当今已经很少有人会像以前那样的闲情逸致,拿出一本小说,从头到尾地阅读一遍,欣赏其委婉动人的故事。
2012年高考湖北语文试卷解析(精析word版)(学生版)
绝密★启用前试卷类型:B 2012年普通高等学校招生全国统一考试(湖北卷)语文(B卷)本试卷共六大题,8页。
总分150分,考试用时150分钟。
注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹的签字笔将自己的姓名和考号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、语文基础知识(共15分,共5小题,每小题3分)2.下列各组词语中,没有错别字的一组是A.羞涩袅娜歌声缈茫荷塘薄雾B.霜天廖廓峥嵘岁月浪遏飞舟C.细腻箫索落蕊残叶秋蝉嘶叫D.嫩黄葱茏婆娑起舞繁茂苍翠4.下列各项中,没有语病的一项是A.坐上画舫游清江,如行画卷之中,江水清澈,绿树蓊郁,自然与人,和谐相依,随风生长,好一派如诗如画的风光!B.游览三峡大瀑布时,我们从倾泻而下的水帘中狂奔而过,尖叫声、嬉笑声响成一片,那真是充满刺激的难忘体验!C.当今已经很少有人会像以前那样的闲情逸致,拿出一本小说,从头到尾地阅读一遍,欣赏其委婉动人的故事。
D.现代文明不仅带来了理性化、工业化、市场化、都市化、民主化和法制化这些美好的社会制度,而且创造了前所未有的物质财富。
二、现代文(论述类文本)阅读(共9分,共3小题,每小题3分)阅读下面的文章,完成6-8题。
中国哲学家表达自己思想的方式冯友兰人们开始读中国哲学著作时,第一个印象也许是,这些言论和文章都很简短,没有联系。
打开《论语》,你会看到每章只有寥寥数语,而且上下章几乎没有任何联系。
打开《老子》,你会看到全书只约有五千宇,不长于杂志上的一篇文章。
2012年湖北高考数学文科试卷带详解
2012年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,,A B C {}2320A x x x =-+=,{}05,B x x x =<<∈N ,则满足条件A B C ⊆⊆的集合C 的个数为 ( ) A .1 B .2 C .3D .4 【测量目标】集合的基本运算.【考查方式】子集的应用.【参考答案】D【试题解析】求{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.2.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为 ( )A .0.35B .0.45C .0.55D .0.65【测量目标】频数分布表的应用,频率的计算,对于頻数、频率等统计问题【考查方式】通过弄清楚样本总数与各区间上样本的个数,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.【参考答案】B【试题解析】由频数分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B.3.函数()cos 2f x x x =在区间上[]0,2π的零点的个数为 ( ) 分组[10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数 2 3 4 5 4 2A .2B .3C .4 D.5【测量目标】函数零点求解与判断.【考查方式】通过函数的零点,要求学会分类讨论的数学思想.【参考答案】D【试题解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos20=x ,得()π22x k k π=+∈Z ,故()ππ24k x k =+∈Z .又因为[]0,2πx ∈,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D. 4.命题“存在一个无理数,它的平方是有理数”的否定是 ( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数【测量目标】命题的否定.【考查方式】求解特称命题或全称命题的否定,千万别忽视了改变量词;【参考答案】B【试题解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.5.过点(1,1)P 的直线,将圆形区域分为两部分,使22{(,)4)}x y x y +…得这两部分的面积之差最大,则该直线的方程为 ( )A .0x y += B. 10y -= C. 0x y -= D.340x y +-=【测量目标】考查直线、线性规划与圆的综合运,并学会用数形结合思想.【考查方式】通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.【参考答案】A【试题解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为1-.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.6.已知定义在区间(0,2)上的21π-函数的图象()y f x =如图所示,则(2)y f x =--的图象为 ( )【测量目标】函数的图象的识别.【考查方式】利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解【参考答案】B【试题解析】排除法:当1x =时,()()()21211y f x f f =--=--=-=-,故可排除A,C 项;当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;所以由排除法知选B.7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则{()}n f a 称为“保等比数列函数”. 现有定义在上的如下(,0)(0,)-∞+∞函数: ( ) ①2()f x x =; ②()2x f x =; ③()f x x =; ④()ln f x x =.则其中是“保等比数列函数”的的()f x 序号为A .① ②B .③ ④C .① ③D .② ④ 【测量目标】等比数列的新应用,函数的概念. 【考查方式】读懂题意,然后再去利用定义求解,注意数列的通项.【参考答案】C【试题解析】设数列{}n a 的公比为q .对于①,22112()()n n n n f a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,11||()()||n n n n a f a f a a ++= 1n na q a +==,是常数,故③符合条件;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C8.设ABC △的内,,A B C 所对的边分别为,,a b c . 若三边的长为连续的三个正整数,且A B C >> ,320cos b a A =,则sin :sin :sin A B C 为 ( )A.4:3:2B.5:6:7 C .5:4:3 D.6:5:4【测量目标】正、余弦定理以及三角形中大角对大边的应用.【考查方式】本题需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长,注意正余弦定理与和差角公式的结合应用.【参考答案】D【试题解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20b A a=②.由余弦定理可得222cos 2+-=b c a A bc③,则由②③可得2223202b b c a a bc +-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.9.设,,R a b c ∈,“1abc =”是“111a b c a b c++++… ”的 ( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 【测量目标】充要条件的判断,不等式的证明.【考查方式】首先需判断条件能否推得结论,然后需判断结论能否推得条件.【参考答案】A【试题解析】1abc =时,111abc abc abc ab bc ca a b c a b c++=++=++, 而()()()()2222a b c a b b c c a ab bc ca ++=+++++++…(当且仅当a b c ==,且1abc =,即a b c ==时等号成立),故111ab bc ca a b c a b c++=++++…;但当取2a b c ===,显然有111a b c a b c++++…,但1abc ≠,即由111a b c a b c++++…不可以推得1abc =;综上,1abc =是111a b c a b c++++…的充分不必要条件,应选A. 10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是 ( )A .112π- B .1πC . 21π-D . 2π 【测量目标】古典概型的应用以及观察推理的能力.【考查方式】求解阴影部分的面积,将不规则图形的面积化为规则图形的面积来求解.【参考答案】C【试题解析】如下图所示,设OA 的中点为1O ,OB 的中点为2O ,半圆1O 与半圆2O 的交点分别为,O F ,则四边形12OO FO 是正方形.不妨设扇形的半径为2,记两块白色区域的面积分别为12,S S ,两块阴影部分的面积分别为34,S S .则212341π2π4OAB S S S S S +++==⨯=扇形, ① 而22132311111π,π1π2222S S S S π+=⨯=+=⨯=,即1232πS S S ++=, ② 由①-②,得34S S =.又由图象观察可知,12214OO FO OAB O FB O AF S S S S S =---正方形扇形扇形扇形 2222221111π1π1π11π11π14422=⨯-⨯-⨯-=⨯-=-. 故由几何概型概率公式可得,此点取自阴影部分的概率:3442π221ππOAB OAB S S S P S S +-====-扇形扇形.故选C.二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人. 现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人.【测量目标】分层抽样的应用.【考查方式】分层抽样在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比.【参考答案】6【试题解析】 设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人.12.若21k b -3i i 1ib a b +=+-(a ,b 为实数,i 为虚数单位),则a b += . 【测量目标】复数代数形式的四则运算.【考察方式】通过考查复数相等来判断学生对复数的掌握.【参考答案】3 【试题解析】因为3i i 1ib a b +=+-,所以()()()3i i 1i i b a b a b b a +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,a b b a b +=⎧⎨-=⎩解得0,3a b =⎧⎨=⎩所以3a b +=. 13已知向量(1,0)=a ,(1,1)=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ;(Ⅱ)向量与3-b a 向量a 夹角的余弦值为 .【测量目标】单位向量的概念,平面向量的坐标运算,向量的数量积运算等.【考查方式】给出两个向量,利用向量的坐标和向量的数量积来运算求值. 【参考答案】(Ⅰ)31010,1010⎛⎫ ⎪ ⎪⎝⎭;(Ⅱ)255- 【试题解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得310,1010.10x y ⎧=⎪⎪⎨⎪=⎪⎩故31010,1010⎛⎫ ⎪ ⎪⎝⎭c =.即与2+a b 同向的单位向量的坐标为31010,1010⎛⎫ ⎪ ⎪⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()()()32,11,025cos 3551θ--===--⨯b a a b a a .14.若变量,x y 满足约束条件1133x y x y x y --⎧⎪+⎨⎪-⎩………,则目标函数23z x y =+的最小值是 .【测量目标】二元线性规划求目标函数最小值.【考查方式】给出约束条件,判断可行域,利用可行域求解.【参考答案】2【试题解析】作出不等式组1133x y x y x y --⎧⎪+⎨⎪-⎩………所表示的可行域(如下图的ABM △及其内部),目标函数23z x y =+在ABM △的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.15.已知某几何体的三视图如图所示,则该几何体的体积为 .【测量目标】考查圆柱的三视图的识别,圆柱的体积.【考查方式】在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法.【参考答案】12π【试题解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是22π212π1412πV =⨯⨯⨯+⨯⨯=. 16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .【测量目标】顺序结构框图和判断结构框图的执行求解.【考查方式】对于循环结构的输出问题,一步一步按规律写程序结果.【参考答案】9【试题解析】由程序框图可知:第一次:1,0,1,1,23a s n s s a a a ====+==+=,满足判断条件3?n <;第二次2,4,5n a a ===,满足判断条件3?n <第三次:3,9,7n s a ===,此时不满足判断条件3?n <,故终止运行,输出s 的值.综上,输出的s 值为9.17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b . 可以推测:(Ⅰ)2012b 是数列{}n a 中的第________项;(Ⅱ)21k b -________.(用k 表示)【测量目标】数学归纳法.【考查方式】本题考查归纳推理,猜想的能力.【参考答案】(Ⅰ)5030;(Ⅱ)()5512k k - 【试题解析】易知(1)2n n n a +=,写出数列{}n a 的若干项依次为:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,…,发现其中能被5整除的为10,15,45,55,105,120,190,210,故142510,15b a b a ====.同理,39410514615719820,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:()255512k k k k b a +==,()()()21515151155122k k k k k k b a ----+-===(k 为正整数).故201221006510065030b b a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)设函数22()sin 23sin cos cos ()f x x x x x x ωωωλ=+-+∈R ,的图象关于直线πx =对称,其中,πω为常数,且1(,1)2ω∈ (Ⅰ)求函数()f x 的最小正周期;第17题图10 6 3 1 ···(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 的值域.【测量目标】三角函数的图象的周期性,值域,诱导公式的应用.【考查方式】给出函数,利用三角函数的性质求最小值和周期. 【试题解析】解:(Ⅰ)因为22()sin cos 23sin cos f x x x x x ωωωωλ=-++ π=2sin(2)+6x ωλ-. 由直线πx =是()y f x =图象的一条对称轴,可得πsin(2)16x ω-=±, 所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=. 所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =, 即5πππ2sin()2sin 26264λ=-⨯-=-=-,即2λ=-. 故5π()2sin()236f x x =--,函数()f x 的值域为[22,22]---.19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -11B D ⊥,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.2222ABCD A B C D -(Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理. 已知10AB =,2220,A B = 230AA =,113AA =(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?【测量目标】线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.【考查方式】通过线线垂直证明面面垂直,并用公式求体积【试题解析】解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为AB AD A =,所以2AA 平面ABCD .连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥. A 2 B 2C 2D 2 C B A D A 1 B 1 C 1 D 1 第19题图因为底面ABCD 是正方形,所以AC BD ⊥ 根据棱台的定义可知,BD 与B 1 D 1共面.又已知平面ABCD ∥平面1111A B C D ,且平面11BB D D 平面ABCD BD =,平面11BB D D平面111111A B C D B D =,所以B 1 D 1∥BD . 于是由2AA BD ⊥,AC BD ⊥,B 1 D 1∥BD ,可得211AA B D ⊥,.11AC B D ⊥ 又因为2AA AC A =,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面.又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()222211204(1020)13[(2010)]1120(cm )22=+⨯+--=.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=, 故所需加工处理费为0.20.22420484S =⨯=(元).20.(本小题满分13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8. (Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{}n a 的前n 项和. 【测量目标】本题考查等差数列的通项,求和等.【考查方式】考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.【试题解析】解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩ 解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-. (Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件. 故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时, 234||||||n n S S a a a =++++5(337)(347)(37)n =+⨯-+⨯-++-2(2)[2(37)]311510222n n n n -+-=+=-+. 当2n =时,满足此式.综上,24,1,31110, 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩.21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (M>0,M 1)=≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的,K>0都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.【测量目标】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系.【考查方式】考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论. 【试题解析】解:(Ⅰ)如图1,设(,)Mxy ,00(,)A x y ,则由DM m DA (m>0,1)=≠且m ,可得0x x =,0y m y =,所以0x x =,. 01y y m=① 因为A 点在单位圆上运动,所以2221(0,1)y x m m m+=>≠且 ②将①式代入②式即得所求曲线C 的方程为.2221(0,1)y x m m m+=>≠且因为(0,1)(1,)m ∈+∞,所以当01m <<时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为2(1,0)m --,2(1,0)m -; 当1m >时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为2(0,1)m --,2(0,1)m -.(Ⅱ)1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠. 于是由③式可得212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得2m =,故存在2m =,使得在其对应的椭圆2212y x +=上,对任意的0k >,都有PQ PH ⊥.22.(本小题满分14分)设函数()(1)nf x ax x b =-+,1+1()ex y f x n =<,,n 为正整数,a ,b 为常数. 曲线()y f x =在(1,(1))f 处的切线方程为.+1x y =(Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <. 【测量目标】函数导数的几何意义以及单调性的应用,还考查不等式的证明.【考查方式】通过转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等.【试题解析】解:(Ⅰ)因为(1)f b =,由点(1,)b 在=1x y +上,可得11b +=,即0b =.因为1'()(1)n n f x anxa n x -=-+,所以'(1)f a =-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =. (Ⅱ)由(Ⅰ)知,1()(1)nnn f x x x x x+=-=-,1()(1)()1n nf x n xx n -'=+-+. 令()0f x '=,解得1n x n =+,即'()f x 在(0,)+1n n +(0,)+∞上有唯一零点.在(0,)+1nn +上,()0f x '>,故()f x 单调递增; 而在(+)+1n n ∞,上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()1(1)nn n n f n n +=++. (Ⅲ)令1()ln 1(0)t t t t ϕ'=-+>,则22111()(0)t t t t t tϕ-'=-=>. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=. 所以()0(1)t t ϕ>>,即1ln 1(1)t t t>->.令11+t n =,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()1n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,1nx n =+,故所证不等式成立.。
2012年湖北省高考试卷语文试卷及答案湖北高考
2012年湖北省高考试卷语文试卷及答案湖北高考2012年湖北省高考试卷 B(尽管2月9日美日韩达成了美国向朝鲜提供0页,七大题23小题。
全卷满分150分。
万吨粮食,朝鲜停止核试验,但由于朝鲜本试题卷共124考试用时150分钟。
与美日韩的矛盾由来已久,很难在短期内消注意事项: 除双方敌对的情结。
1(答卷前,考生务必将自己的姓名、准考证号填 C(少林寺寺务处工作人员告诉记者,这个讲解写在试题卷和答题卡上,并将准考证号条形码粘贴在团由近20名延字辈僧人组成,上岗之前还进答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型行了专门的培训,主要是介绍寺院里边的一A后的方框涂黑。
些人文景观、典故等,为游客服务。
2(选择题的作答:每小题选出答案后,用2B铅D(此次震中位于南部瓦哈卡州附近地区,震源深笔把答题卡上对应题目的答案标号涂黑。
如需改动,度17(5公里,震中距首都墨西哥城300多公用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、。
震区格雷罗州的官员称,有约800余栋房里草稿纸上无效。
屋受损约60余栋房屋倒塌。
3(非选择题的作答:用0.5毫米黑色墨水签字笔5(下面有关文学常识的表述,有错误的一项是直接答在答题卡上对应的答题区域内。
答在试题卷、 A(莎士比亚是十六世纪英国杰出的戏剧家,雨果草稿纸上无效。
是十九世纪法国浪漫主义文学代表作家,川端康4(考生必须保持答题卡的整洁。
考试结束后,请成是日本著名作家,曾获诺贝尔文学奖。
他们的将本试题卷和答题卡一并上交。
代表作分别是喜剧《威尼斯商人》、小说《悲惨世界》和《雪国》。
一、语文基础知识(共15分,共5小题,每小题3分) B(《红楼梦》的情节主线是贾宝玉与林黛玉、薛1(下列各组词语中加点字的读音全都不相同的一项宝钗的爱情悲剧。
贾宝玉鄙弃功名富贵,追求率是性自然,公然声称“女儿是水做的骨肉,男人是A(酒馔,撰写孤僻,癖好讥诮,峻峭泥做的骨肉”;林黛玉与贾宝玉情趣相投,从不忌妒,殚精竭虑对宝玉说读书求功名的“混账话”,不像薛宝钗那样做封建社会标准的“名媛淑女”B(搅拌,绊倒祈祷,乞求枝柯,舸舰。
2012年高考真题试卷语文(湖北卷)word版含答案解析
绝密★启用前试卷类型:B 2012年普通高等学校招生全国统一考试(湖北卷)语文(解析版)手打录入:青峰弦月本试卷共六大题,8页。
总分150分,考试用时150分钟。
注意事项:1.答卷前,考生务必用2B铅笔在‚考生号‛处填涂考生号。
用黑色字迹的签字笔将自己的姓名和考号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位臵上。
将条形码横贴在答题卡右上角‚条形码粘贴处‛。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内的相应位臵上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中加点的字,读音全都相同的一组是A.灵.秀磷.光玲.珑剔透聆.听教诲B.诞.生旦.角淡.泊明志担.当重任C.宿.营诉.说夙.兴夜寐素.昧平生D.咨.询滋.生芝.兰之室孜.孜不倦【答案】C【解析】A项读líng lín ling líng;B项读dàn dàn dàn dān;C项都读sù;D项读z īzī zhī zī。
2.下列各组词语中,没有错别字的一组是A.羞涩袅娜歌声缈茫荷塘薄雾B.霜天廖廓峥嵘岁月浪遏飞舟C.细腻箫索落蕊残叶秋蝉嘶叫D.嫩黄葱茏婆娑起舞繁茂苍翠【答案】D【解析】A项“歌声渺茫”;B项“寥廓”;C项“萧索”;D项全都正确。
3.依次填入下列横线处的词语,最恰当的是说到底,世上风景闲流水,端的还是要人慢下来。
2012湖北省高考试卷含解析(必备资料)
1、依次填入下列各句横线处的成语,最恰当的一组是(3分)①他是一个心地善良的人,但性格懦弱、谨小慎微,做起事来总是,从来不敢越雷池一步。
②当今世界科技突飞猛进,我们更要勇于开拓,不断进取,如果,就会落后甚至被时代潮流所淘汰。
③要想让中国传统戏曲焕发出新的生命力,决不能满足于现状,,唯有创新才是弘扬戏曲文化的康庄大道.A.故步自封墨守成规抱残守缺B.墨守成规故步自封抱残守缺C.抱残守缺故步自封墨守成规D.墨守成规抱残守缺故步自封2、下列各句中,没有语病的一句是(3分)A.“地坛书市”曾经是北京市民非常喜爱的一个文化品牌,去年更名为“北京书市”并落户朝阳公园后,依旧热情不减。
B.“丝绸之路经济带”横跨亚、非、欧三大洲,其形成与繁荣必将深刻影响世界政治、经济格局,促进全球的和平与发展。
C.在那个民族独立和民族解放斗争风起云涌的时代,能激发人们的爱国热情是评判一部文学作品好坏的非常重要的标准。
D.父亲住院期间,梅兰每天晚上都陪伴在他身旁,听他讲述一生中经历的种种苦难和幸福,她就算再忙再累,也不例外。
3、在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)自宋元至明清,清明节除了要祭扫家墓,还要在门楣、窗户上插上柳条。
,。
,,,。
①达到人丁兴旺、身体健康的目的②于是在郊游踏青时③它便成了人类文化中生命力的象征④人们企盼将这种生命力转移到自家门庭和家庭成员身上⑤不会忘记顺便折一些柳条回来⑥由于柳树最先送来春的消息并且具有旺盛的生殖力A.⑥③④①②⑤ B.②⑤①④⑥③ C.②④⑥③①⑤ D.⑥④②⑤③①4、依次填入下面语段横线处的词语,最恰当的一组是散文能够真正地见出一位作家的个性和__________。
阅读散文,我们能体味到鲁迅的________,冰心的________,梁实秋的幽默机智,丰子恺的清雅淡泊。
“情”是散文的命脉和灵魂,对于散文的“情”来说,真挚_________。
A.情趣冷峻深沉温和娴雅至关重要B.情趣冷峭深沉冲淡平和至关重要C.情调冷峭阴沉温和娴雅举足轻重D.情调冷峻深沉冲淡平和举足轻重5、下列诗句中,没有使用比拟手法的一项是(3分)A.东风便试新刀尺,万叶千花一手裁。
2012年湖北省高考试卷语文试卷及答案湖北高考
2012年湖北省高考试卷本试题卷共10页,七大题23小题。
全卷满分150分。
考试用时150分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷、草稿纸上无效。
3.非选择题的作答:用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中加点字的读音全都不相同的一项是 A.酒馔/撰写孤僻/癖好讥诮/峻峭忌妒/殚精竭虑B.搅拌/绊倒祈祷/乞求枝柯/舸舰赢弱/果实累累C.搠倒/溯流掂量/惦记洗漱/咳嗽玷辱/拈轻怕重D.端倪/睥睨挑衅/体恤棕榈/闾阎提防/金榜题名2.下列各组词语中,没有错别字.....的一组是A.跳槽邻界点醍醐灌顶树倒猢狲散B.心扉协奏曲骨鲠在喉时世造英雄C.像素副食品不记前嫌家书抵万金D.饯行热烘烘先发制人蚍蜉撼大树3.在下列各句中,加点的成语使用不恰当...的一项是()A.柯达有过这样自豪的口号:“你只要按下快门,其他的交给我们。
”但对于今日的柯达而言,那些曾经的辉煌都已是明日黄花....。
B.酒家又切了二斤熟牛肉,再筛了三碗酒。
武松吃得荡气回肠....,只顾要吃;去身边取些碎银子,叫道:“主人家,你且来看我银子!还你酒肉钱够么?”C.全球经济波谲云诡....,资本市场动荡不安。
在货币政策紧缩、国内资金面紧张的大背景下,今年以来国内A股不断下跌,很多普通投资者或深度套牢,或忍痛割肉出场,令人扼腕叹息。
D.虽然美联储三位高层都表示反对美联储未来两年维持利率不变的举动,但他们的言论也显示,美联储内部对此问题莫衷一是....。
2012高考湖北文科数学试题及答案(高清版)
2012年普通高等学校夏季招生全国统一考试数学文史类(湖北卷)本试卷共22题,其中第15、16题为选考题.满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C ⊆B的集合C的个数为()A.1 B.2 C.3 D.42A.0.35 B.0.45 C.0.55 D.0.653.函数f(x)=x cos2x在区间[0,2π]上的零点的个数为()A.2 B.3 C.4 D.54.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数5.过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为()A.x+y-2=0 B.y-1=0C.x-y=0 D.x+3y-4=06.已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()7.定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为()A .①②B .③④C .①③D .②④ 8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶49.设a ,b ,c ∈R ,则“abc =1111≤a +b +c ”的( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充分必要条件D .既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .21π- B .112π-C .2πD .1π二、填空题:本大题共6小题,考生共需作答5小题,每小题5分,共25分.11.一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有______人.12.若3i 1ib +-=a +b i(a ,b 为实数,i 为虚数单位),则a +b =______.13.已知向量a =(1,0),b =(1,1),则(1)与2a +b 同向的单位向量的坐标表示为______; (2)向量b -3a 与向量a 夹角的余弦值为______.14.若变量x ,y 满足约束条件1133x y x y x y ≥⎧⎪≥⎨⎪≤⎩--,+,-,则目标函数z =2x +3y 的最小值是______.15.已知某几何体的三视图如图所示,则该几何体的体积为______.16.阅读如图所示的程序框图,运行相应的程序,输出的结果s =________.17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n}.可以推测:(1)b2 012是数列{a n}中的第______项;(2)b2k-1=______.(用k表示)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.18.设函数f(x)=sin2ωx+ωx·cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f(x)的最小正周期;(2)若y=f(x)的图象经过点(π4,0),求函数f(x)的值域.19.某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理.已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?20.已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.21.设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.22.设函数f (x )=ax n(1-x )+b (x >0),n 为正整数,a ,b 为常数.曲线y =f (x )在(1,f (1))处的切线方程为x +y =1.(1)求a ,b 的值;(2)求函数f (x )的最大值;(3)证明:1()ef x n <.1. D 由题意可得,A ={1,2},B ={1,2,3,4}.又∵A ⊆C ⊆B ,∴C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D 项.2. B 样本数据落在区间[10,40)的频数为2+3+4=9,故所求的频率为90.4520=.3. D 令f (x )=x cos2x =0,得x =0或cos2x =0,故x =0或2x =k π+π2,k ∈Z ,即x=0或ππ24k x =+,k ∈Z .又x ∈[0,2π],故k 可取0,1,2,3,故零点的个数有5个.4. B 该特称命题的否定为“任意一个无理数,它的平方不是有理数”.5. A 当OP 与该直线垂直时,符合题意;此时k OP =1,故所求直线斜率k =-1.又已知直线过点P (1,1),因此,直线方程为y -1=-(x -1),即x +y -2=0.6. B y =f (x)y =f (-x )y =f [-(x -2)]=f (2-x)y =-f (2-x ),故选B 项.7.C 设等比数列{a n }的公比为q ,则对于f (x )=x 2,f (a n )=2n a ,由等比数列得,222211()nn n n a a q a a --==,符合题意;而对于f (x )=2x和f (x )=ln|x |,则f (a n )=2a n 和f (a n )=ln|a n |.由等比数列定义得,122n n a a -=2a n -a n -1.1ln ||ln ||n n a a -都不是定值,故不符合题意;而对于f (x )=则f (a n ),==,为定值,符合题意.故选C 项.8.D 由题意可设a =b +1,c =b -1.又∵3b =20a ·cos A ,∴3b =20(b +1)·222(1)(1)2(1)b b b b b +--+-,整理得,7b 2-27b -40=0,解得b =5,故a =6,b =5,c =4,即sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.9. A111222b c a c a b a b c+++++==≤++=++(当且仅当“a =b =c ”时,“=”成立),反之,则不成立(譬如a =1,b =2,c =3时,满足a b c≤++,但abc ≠1). 10. A 设OA =OB =2R ,连接AB ,如图所示.由对称性可得,阴影的面积等于直角扇形拱形的面积,S 阴=14π(2R )2-12×(2R )2=(π-2)R 2,S 扇=14π(2R )2=πR 2,故所求的概率是22(π2)21ππRR-=-.11.答案:6解析:设抽取的女运动员有x 人,由题意可得,85642x =,解得x =6.12.答案:3解析:由题意可得,3+b i =(a +b i)(1-i)=(a +b )+(b -a )i ,故a +b =3.13.答案:(1)(1010 (2)5-解析:(1)由题意可得,2a +b =(3,1),故|2a +b |2a +b 同向的单位向量为,即(1010;(2)由题意可得b -3a =(-2,1),故(b -3a )·a =-2.又∵|b-3a |=|a |=1,∴cos 〈b -3a ,a 〉=(3)|3|||5-⋅=--b a a b a a .14.答案:2解析:作出可行域如图所示,由l 0:23y x =-平移知过点A (1,0)时,目标函数取到最小值,代入可得z =2.15.答案:12π解析:该几何体是由3个圆柱构成的几何体,故体积V =2×π×22×1+π×12×4=12π. 16.答案:9解析:由程序框图依次可得, s =1,a =3;n =2,s =4,a =5; n =3,s =9,a =7; 结束,输出s =9. 17.答案:(1)5 030 (2)5(51)2k k -解析:(1)由题意可得,a1=1,a2=3,a3=6,a4=10,…,a2-a1=2,a3-a2=3,a4-a3=4,…,a n-a n-1=n.以上各式相加得,a n-a1=2+3+…+n=(1)(2)2n n-+,故(1)2nn na+=.因此,b1=a4=10,b2=a5=15,b3=a9=45,b4=a10=55,…,由此归纳出b2 012=a5 030.(2)b1=a4=452⨯,b3=a9=9102⨯,b5=a14=14152⨯,…,归纳出b2k-1=5(51)2k k-.18.解:(1)因为f(x)=sin2ωx-cos2ωx+ωx·cosωx+λ=-cos2ωx sin2ωx+λ=2sin(2ωx-π6)+λ,由直线x=π是y=f(x)图象的一条对称轴,可得sin(2ωπ-π6)=±1.所以2ωπ-π6=kπ+π2(k∈Z),即123kω=+(k∈Z).又ω∈(12,1),k∈Z,所以56ω=.所以f(x)的最小正周期是6π5.(2)由y=f(x)的图象过点(π4,0),得f(π4)=0,即5πππ2sin()2sin6264λ=-⨯-=-=λ=.故5π()2sin()36f x x=--f(x)的值域为[22---.19.解:(1)因为四棱柱ABCD-A2B2C2D2的侧面是全等的矩形,所以AA2⊥AB,AA2⊥AD.又因为AB∩AD=A,所以AA2⊥平面ABCD.连接BD,因为BD⊂平面ABCD,所以AA2⊥BD.因为底面ABCD是正方形,所以AC⊥BD.根据棱台的定义可知,BD与B1D1共面又已知平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,所以B1D1∥BD.于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1.又因为AA2∩AC=A,所以B1D1⊥平面ACC2A2.(2)因为四棱柱ABCD-A2B2C2D2的底面是正方形,侧面是全等的矩形,所以S1=S四棱柱上底面+S四棱柱侧面=(A2B2)2+4AB·AA2=102+4×10×30=1 300(cm2).又因为四棱台A1B1C1D1-ABCD的上、下底面均是正方形,侧面是全等的等腰梯形,所以S2=S四棱台下底面+S四棱台侧面=(A1B1)2+4×12(AB+A1B1)h等腰梯形的高=202+4×12(10+=1 120(cm2).于是该实心零部件的表面积为S=S1+S2=1 300+1 120=2 420(cm2),故所需加工处理费为0.2S=0.2×2 420=484(元).20.解:(1)设等差数列{|a n |}的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得1111333()(2)8.a d a a d a d ⎧⎨⎩+=-,++=解得123a d ⎧⎨⎩==-或14,3.a d -⎧⎨⎩==所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列,不满足条件; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=371,237 3.n n n n ⎧⎨≥⎩-+,=,-,记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =2(2)[2(37)]311510222n n n n -+-+=-+.当n =2时,满足此式.综上,241,31110 1.22n n S n n n =⎧⎪=⎨-+>⎪⎩,,21.解:(1)如图1,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为A 点在单位圆上运动,所以x 02+y 02=1.② 将①式代入②式即得所求曲线C 的方程为x 2+22y m=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(0),,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,,(0.(2)方法一:如图2,3,k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1), 直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得 (m 2+4k 2)x 2+4k 2x 1x +k 2x 12-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得 -x 1+x 2=212244k x m k-+,即212224m x x m k=+.因为点H 在直线QN 上,所以y 2-kx 1=2kx 2=212224km x m k+. 于是P Q =(-2x 1,-2kx 1),PH=(x 2-x 1,y 2-kx 1)=(212244k x m k-+,212224km x m k+).而PQ ⊥PH 等价于2221224(2)04m k x PQ PH m k-⋅==+ , 即2-m 2=0.又m >0,所以m =,故存在m=,使得在其对应的椭圆x2+22y=1上,对任意的k>0,都有PQ⊥PH.图1 图2(0<m<1) 图3(m>1)方法二:如图2,3,x1∈(0,1),设P(x1,y1),H(x2,y2),则Q(-x1,-y1),N(0,y1).因为P,H两点在椭圆C上,所以222211222222,m x y mm x y m⎧+=⎪⎨+=⎪⎩,两式相减可得m2(x12-x22)+(y12-y22)=0.③依题意,由点P在第一象限可知,点H也在第一象限,且P,H不重合.故(x1-x2)(x1+x2)≠0,于是由③式可得212121212()()()()y y y ymx x x x-+=--+.④又Q,N,H三点共线,所以k QN=k QH,即1121122y y yx x x+=+.于是由④式可得211212121121212()()12()()2P Q P Hy y y y y y y mk kx x x x x x x--+⋅=⋅=⋅=---+.而PQ⊥PH等价于k PQ·k PH=-1,即212m-=-.又m>0,得m=.故存在m=,使得在其对应的椭圆x2+22y=1上,对任意的k>0,都有PQ⊥PH. 22.解:(1)因为f(1)=b,由点(1,b)在x+y=1上,可得1+b=1,即b=0.因为f′(x)=anx n-1-a(n+1)x n,所以f′(1)=-a.又因为切线x+y=1的斜率为-1,所以-a=-1,即a=1.故a=1,b=0.(2)由(1)知,f(x)=x n(1-x)=x n-x n+1,f′(x)=(n+1)·x n-1()1nxn-+.令f′(x)=0,解得1nxn=+,即f′(x)在(0,+∞)上有唯一零点01nxn=+.在(0,1nn+)上,f′(x)>0,故f(x)单调递增;而在(1nn+,+∞)上,f′(x)<0,f(x)单调递减.故f(x)在(0,+∞)上的最大值为1()()(1)111(1)nnnn n n nfn n n n+=-=++++.(3)令φ(t)=ln t-1+1t(t>0),则22111()t'tt t tϕ-=-=(t>0).在(0,1)上,φ′(t )<0, 故φ(t )单调递减;而在(1,+∞)上,φ′(t )>0, 故φ(t )单调递增,故φ(t )在(0,+∞)上的最小值为φ(1)=0, 所以φ(t )>0(t >1), 即ln t >1-1t (t >1).令t =1+1n,得11ln1n nn +>+,即11ln()ln e n n n ++>, 所以11()e n n n++>,即11(1)en n nn n +<+.由(2)知,()11(1)enn nf x n n +≤<+,故所证不等式成立.。
2012年高考真题试卷数学文(湖北卷)详细答案解析
2012年普通高等学校招生全国统一考试(湖北卷)数学(供文科考生使用)解析1.D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D.【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.B 【解析】由频率分布表可知:样本数据落在区间[10,40)内的頻数为2+3+4=9,样本总数为23454220+++++=,故样本数据落在区间[10,40)内频率为90.4520=.故选B. 【点评】本题考查频率分布表的应用,频率的计算.对于頻数、频率等统计问题只需要弄清楚样本总数与各区间上样本的个数即可,用区间上样本的个数除以样本总数就可得到相应区间上的样本频率.来年需注意频率分布直方图与频率分布表的结合考查.3.D 【解析】由()cos 20==f x x x ,得0=x 或cos20=x ;其中,由cos 20=x ,得()22x k k ππ=+∈Z ,故()24k x k ππ=+∈Z .又因为[]0,2x ∈π,所以π3π5π7π,,,4444x =.所以零点的个数为145+=个.故选D.【点评】本题考查函数的零点,分类讨论的数学思想.判断函数的零点一般有直接法与图象法两种方法.对于三角函数的零点问题,一般需要规定自变量的取值范围;否则,如果定义域是R ,则零点将会有无数个;来年需注意数形结合法求解函数的零点个数,所在的区间等问题.4.B 【解析】根据特称命题的否定,需先将存在量词改为全称量词,然后否定结论,故该命题的否定为“任意一个无理数,它的平方不是有理数”.故选B.【点评】本题考查特称命题的否定.求解特称命题或全称命题的否定,千万别忽视了改变量词;另外,要注意一些量词的否定的书写方法,如:“都是”的否定为“不都是”,别弄成“都不是.5.A 【解析】要使直线将圆形区域分成两部分的面积之差最大,必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.又已知点(1,1)P ,则1OP k =,故所求直线的斜率为-1.又所求直线过点(1,1)P ,故由点斜式得,所求直线的方程为()11y x -=--,即20+-=x y .故选A.【点评】本题考查直线、线性规划与圆的综合运用,数形结合思想.本题的解题关键是通过观察图形发现当面积之差最大时,所求直线应与直线OP 垂直,利用这一条件求出斜率,进而求得该直线的方程.来年需注意直线与圆相切的相关问题.6.B 【解析】特殊值法:当2x =时,()()()22200y f x f f =--=--=-=,故可排除D 项;当1x =时,()()()22111y f x f f =--=--=-=-,故可排除A,C 项;所以由排除法知选B.【点评】本题考查函数的图象的识别.有些函数图象题,从完整的性质并不好去判断,作为徐总你则提,可以利用特殊值法(特殊点),特性法(奇偶性,单调性,最值)结合排除法求解,既可以节约考试时间,又事半功倍.来年需注意含有xe 的指数型函数或含有ln x 的对数型函数的图象的识别. 7.C 同理7【解析】设数列{}n a 的公比为q .对于①,22112()()n n n nf a a q f a a ++==,是常数,故①符合条件;对于②,111()22()2n n n n a a a n a n f a f a ++-+==,不是常数,故②不符合条件;对于③,1()()n n f a f a +===;对于④, 11()ln ||()ln ||n n n n f a a f a a ++=,不是常数,故④不符合条件.由“保等比数列函数”的定义知应选C.【点评】本题考查等比数列的新应用,函数的概念.对于创新性问题,首先要读懂题意,然后再去利用定义求解,抓住实质是关键.来年需要注意数列的通项,等比中项的性质等. 8.D 【解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20bA a=②.由余弦定理可得222cos 2+-=b c a A bc ③,则由②③可得2223202b b c a a bc +-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用.9.A 【解析】当1abc ==+=,而()()()()2a b c a b b c c a ++=+++++≥a b c ==,且1abc =,即a b c ==时等号成立),a b c+=≤++;但当取2a b c ===,显然有a b c≤++,但1abc ≠,即由a b c≤++不可以推得1abc =;综上,1abc =是a b c≤++的充分不必要条件.应选A. 【点评】本题考查充要条件的判断,不等式的证明.判断充要条件,其常规方法是首先需判断条件能否推得结论,然后需判断结论能否推得条件;来年需注意充要条件与其他知识(如向量,函数)等的结合考查. 10.C 同理8【解析】如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S 1,S 2,两块阴影部分的面积分别为S 3,S 4,则S 1+S 2+S 3+S 4=S 扇形OAB =221(2)4a a ππ=①, 而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 32a π=②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. 222S a a π=-阴影.由几何概型概率公式可得,此点取自阴影部分的概率 P=222221OABS a a S a πππ-==-阴影扇形.【点评】本题考查古典概型的应用以及观察推理的能力.本题难在如何求解阴影部分的面积,即如何巧妙地将不规则图形的面积化为规则图形的面积来求解.来年需注意几何概型在实际生活中的应用.11. 6【解析】设抽取的女运动员的人数为a ,则根据分层抽样的特性,有84256a =,解得6a =.故抽取的女运动员为6人. 【点评】本题考查分层抽样的应用.本题实际是承接2012奥运会为题材,充分展示数学知识在生活中的应用.分层抽样时,各样本抽取的比例应该是一样的,即为抽样比. 来年需注意系统抽样的考查或分层抽样在解答题中作为渗透考查. 12. 3【解析】因为31bia bi i+=+-,所以()()()31bi a bi i a b b a i +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,,a b b a b +=⎧⎨-=⎩解得0,3,a b =⎧⎨=⎩所以3a b +=.【点评】本题考查复数的相等即相关运算.本题若首先对左边的分母进行复数有理化,也可以求解,但较繁琐一些.来年需注意复数的几何意义,基本概念(共轭复数),基本运算等的考查.13.(Ⅰ)1010⎛ ⎝⎭;(Ⅱ)5- 【解析】(Ⅰ)由()()1,0,1,1a =b =,得()23,1+a b =.设与2+a b 同向的单位向量为(),x y c =,则221,30,x y y x ⎧+=⎨-=⎩且,0x y >,解得,1010x y ⎧=⎪⎪⎨⎪=⎪⎩故⎝⎭c =.即与2+a b同向的单位向量的坐标为⎝⎭.(Ⅱ)由()()1,0,1,1a =b =,得()32,1--b a =.设向量3-b a 与向量a 的夹角为θ,则()32,11,0cos 35θ--===-- b a a b a a.【点评】本题考查单位向量的概念,平面向量的坐标运算,向量的数量积等.与某向量同向的单位向量一般只有1个,但与某向量共线的单位向量一般有2个,它包含同向与反向两种.不要把两个概念弄混淆了. 来年需注意平面向量基本定理,基本概念以及创新性问题的考查.14.2 【解析】(解法一)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).可知当直线23z x y =+经过1,33x y x y +=⎧⎨-=⎩的交点()1,0M 时,23z x y =+取得最小值,且min 2z =.(解法二)作出不等式组1,1,33x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩所表示的可行域(如下图的ABM ∆及其内部).目标函数23z x y =+在ABM ∆的三个端点()()()2,3,0,1,1,0A B M 处取的值分别为13,3,2,比较可得目标函数23z x y =+的最小值为2.【点评】本题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值.来年需注意线性规划在生活中的实际应用.15.12π【解析】由三视图可知,该几何体是由左右两个相同的圆柱(底面圆半径为2,高为1)与中间一个圆柱(底面圆半径为1,高为4)组合而成,故该几何体的体积是222121412Vπππ=⨯⨯⨯+⨯⨯=.【点评】本题考查圆柱的三视图的识别,圆柱的体积.学生们平常在生活中要多多观察身边的实物都是由什么几何形体构成的,以及它们的三视图的画法. 来年需注意以三视图为背景,考查常见组合体的表面积.16. 同理12【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,n=1<3满足判断条件,继续循环;第二次:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3满足判断条件,继续循环;第三次:n=n+1=3,s=s+a=4+5=9,a=a+2=11,n=3<3不满足判断条件,跳出循环,输出s的值.综上,输出的s值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.17.(Ⅰ)5030;(Ⅱ)()5512k k-【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为(1)2nn na+=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故142539*********,,,,,b a b a b a b a b a b a ======.从而由上述规律可猜想:255(51)2k k k k b a +==(k 为正整数), 2151(51)(511)5(51)22k k k k k k b a ----+-===, 故201221006510065030b a a a ⨯⨯===,即2012b 是数列{}n a 中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.18.【解析】【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.19.【解析】【点评】本题考查线面垂直,空间几何体的表面积;考查空间想象,运算求解以及转化与划归的能力.线线垂直⇔线面垂直⇔面面垂直是有关垂直的几何问题的常用转化方法;四棱柱与四棱台的表面积都是由简单的四边形的面积而构成,只需求解四边形的各边长即可.来年需注意线线平行,面面平行特别是线面平行,以及体积等的考查.20.同理18【解析】【点评】本题考查等差数列的通项,求和,分段函数的应用等;考查分类讨论的数学思想以及运算求解的能力.求等差数列的通项一般利用通项公式()11n a a n d =+-求解;有时需要利用等差数列的定义:1n n a a c --=(c 为常数)或等比数列的定义:1'nn a c a -=('c 为常数,'0c ≠)来判断该数列是等差数列或等比数列,然后再求解通项;有些数列本身不是等差数列或等比数列,但它含有无数项却是等差数列或等比数列,这时求通项或求和都需要分段讨论.来年需注意等差数列或等比数列的简单递推或等差中项、等比中项的性质.21. 同理21 【解析】【点评】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系;考查分类讨论的数学思想以及运算求解的能力.本题是一个椭圆模型,求解标准方程时注意对焦点的位置分类讨论,不要漏解;对于探讨性问题一直是高考考查的热点,一般先假设结论成立,再逆推所需要求解的条件,对运算求解能力和逻辑推理能力有较高的要求.22.【解析】七彩教育网 免费提供W ord 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载【点评】本题考查多项式函数的求导,导数的几何意义,导数判断函数的单调性,求解函数的最值以及证明不等式等的综合应用.考查转化与划归,分类讨论的数学思想以及运算求解的能力. 导数的几何意义一般用来求曲线的切线方程,导数的应用一般用来求解函数的极值,最值,证明不等式等. 来年需注意应用导数判断函数的极值以及求解极值,最值等;另外,要注意含有,ln xe x 等的函数求导的运算及其应用考查.。
2012年高考语文试卷解析湖北卷
2012年普通高考学校招生全国统一考试(湖北卷)语文一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中加点的字,读音全都相同的一组是A.灵.秀磷.光玲.珑剔透聆.听教诲B.诞.生旦.角淡.泊明志担.当重任C.宿.营诉.说夙.兴夜寐素.昧平生D.咨.询滋.生芝.兰之室孜孜..不倦【答案】C【解析】A项读líng lín ling líng;B项读dàn dàn dàn dān;C项都读sù;D项读zīzī zhī zī。
2.下列各组词语中,没有错别字的一组是A.羞涩袅娜歌声渺茫荷塘薄雾B.霜天廖廓峥嵘岁月浪遏飞舟C.细腻萧索落蕊残叶秋蝉嘶叫D.嫩黄葱茏婆娑起舞繁茂苍翠【答案】D【解析】A项“歌声渺茫”;B项“寥廓”;C项“萧索”;D项全都正确。
3.依次填入下列横线处的词语,最恰当的是说到底,世上风景闲流水,端的还是咬人慢下来。
中国这如诗的城市中,最是江城得了个中,且将它地挥洒出来。
这江城街头巷尾,湖畔公园里数不胜数的茶馆,茶铺,一个人在清晨的不慌不忙的起来,到茶馆里,一坐就是一天,那叫一个悠闲!A.趣味痛痛快快当是溜B.滋味淋漓尽致便是走C.意味兴致勃勃自是逛D.韵味尽情尽兴恰是晃【答案】B【解析】第一空“个中滋味”是固定搭配,可以排除A、C、D三项。
第四个空要与“悠闲”照应,“逛”“遛”“晃”都不及“踱”效果好。
4.下列各项中,没有语病的是A.坐上画舫游清江,如行画卷之中,江水清澈,绿树蓊郁,自然与人,相遇相依,随风生长,好一派如诗如画的风光。
B.游览三峡大瀑布时,我们从倾泻而下的水帘中狂奔而过,尖叫声,嬉笑中响声一片,真是充满刺激的难忘体验。
C.当今已经很少有人回想以前那样闲情逸致,拿出一本小说,从头到尾阅读一遍,欣赏其委婉动人的故事。
D.现代文明不仅带来了理性化、工业化、市场化、都市化、民主化和法制化这些美好的社会制度,而却创造了前所未有的物质财富。
2012年湖北省高考数学试卷(文科)答案与解析
A.1B.2C.3D.4考点:集合的包含关系判断及应用.合.专题:集合.分析:先求出集合A,B由A⊆C⊆B 可得满足条件的集合C有{1,2,},{1,2,3},{1,2,4},{1,2,3,4},可求,可求解答:解:由题意可得,A={1,2},B={1,2,3,4},∵A⊆C⊆B,个, ∴满足条件的集合C有{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个,故选D.点评:本题主要考查了集合的包含关系的应用,解题的关键是由A⊆C⊆B 找出符合条件的集合.集合.分组 [10,20)[20,30)[30,40)[40,50)[50,60)[60,70)分组频数 2 3 4 5 4 2 频数的频率为( )则样本数据落在区间[10,40]的频率为(A.0.35 B.0.45 C.0.55 D.0.65 考点:频率分布表.算题.专题:计算题.分析:先求出样本数据落在区间[10,40]频数,然后利用频率等于频数除以样本容量求出频率即可.率即可.:由频率分布表知:解答:解:由频率分布表知:样本在[10,40]上的频数为2+3+4=9,故样本在[10,40]上的频率为9÷20=0.45.故选:B.点评:本题主要考查了频率分布表,解题的关键是频率的计算公式是频率=,属于基础题.基础题.A.2B.3C.4D.5考点:根的存在性及根的个数判断.专题:计算题.算题.分析:考虑到函数y=cos2x的零点一定也是函数f(x)的零点,故在区间[0,2π]上y=cos2x的零点有4个.函数y=x 的零点有0,故在区间[0,2π]上y=xcos2x 的零点有5个.个. 解答:解:∵y=cos2x 在[0,2π]上有4个零点分别为,,,函数y=x 的零点有0 ∴函数f (x )=xcos2x 在区间[0,2π]上有5个零点.分别为0,,,,故选D 点评: 本题主要考查了函数零点的意义和判断方法,题主要考查了函数零点的意义和判断方法,三角函数的图象和性质,三角函数的图象和性质,三角函数的图象和性质,排除法解选择排除法解选择题,属基础题题,属基础题 4.(5分)(2012•湖北)命题“存在一个无理数,它的平方是有理数”的否定是(的否定是( ) A . 任意一个有理数,它的平方是有理数意一个有理数,它的平方是有理数 B . 任意一个无理数,它的平方不是有理数意一个无理数,它的平方不是有理数 C . 存在一个有理数,它的平方是有理数在一个有理数,它的平方是有理数 D . 存在一个无理数,它的平方不是有理数在一个无理数,它的平方不是有理数考点: 命题的否定. 专题: 应用题.用题. 分析: 根据特称命题“∃x ∈A ,p (A )”的否定是“∀x ∈A ,非p (A )”,结合已知中命题,即可得到答案.得到答案. 解答: 解:∵命题“存在一个无理数,它的平方是有理数”是特称命题是特称命题而特称命题的否定是全称命题,而特称命题的否定是全称命题,则命题“存在一个无理数,它的平方是有理数”的否定是任意一个无理数,它的平方不是有理数是有理数 故选B 点评: 本题考查的知识点是命题的否定,其中熟练掌握特称命题的否定方法“∃x ∈A ,p (A )”的否定是“∀x ∈A ,非p (A )”,是解答本题的关键.,是解答本题的关键.5.(5分)(2012•湖北)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为(使得这两部分的面积之差最大,则该直线的方程为( ) A . x +y ﹣2=0 B . y ﹣1=0 C . x ﹣y=0 D . x +3y ﹣4=0 考点: 直线与圆相交的性质. 专题: 计算题.算题. 分析:法一:由扇形的面积公式可知,劣弧所的扇形的面积=2α,要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP ⊥AB 时,α最小,可求.最小,可求.法二:要使直线将圆形区域分成两部分的面积之差最大,要使直线将圆形区域分成两部分的面积之差最大,必须使过点必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.由此能求出直线的方程.垂直即可.由此能求出直线的方程. 解答: 解法一:设过点P (1,1)的直线与圆分别交于点A ,B ,且圆被AB 所分的两部分的面积分别为S 1,S 2且S 1≤S 2劣弧所对的圆心角∠AOB=α,则﹣S △AOB =2α﹣S △AOB ,S 2=4π﹣2α+S △AOB (0<α≤π)∴要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP ⊥AB 时,α最小最小此时K AB =﹣1,直线AB 的方程为y ﹣1=﹣(x ﹣1)即x+y ﹣2=0 故选A 解法二:要使直线将圆形区域分成两部分的面积之差最大,要使直线将圆形区域分成两部分的面积之差最大,必须使过点必须使过点P 的圆的弦长达到最小,所以需该直线与直线OP 垂直即可.垂直即可. 又已知点P (1,1),则K OP =1,故所求直线的斜率为﹣1.又所求直线过点P (1,1), 由点斜式得,所求直线的方程为y ﹣1=﹣(x ﹣1),即.x+y ﹣2=0 故选A 点评: 本题主要考查了直线与圆相交性质的应用,解题的关键是根据扇形的面积公式把所要求解的两面积表示出来求解的两面积表示出来 6.(5分)(2012•湖北)已知定义在区间(0,2)上的函数y=f (x )的图象如图所示,则y=﹣f (2﹣x )的图象为()的图象为( )A .B .C .D .考点: 函数的图象与图象变化. 专题: 作图题.图题.分析: 由(0,2)上的函数y=f (x )的图象可求f (x ),进而可求y=﹣f (2﹣x ),根据一次函数的性质,结合选项可可判断函数的性质,结合选项可可判断解答:解:由(0,2)上的函数y=f (x )的图象可知f (x )=当0<2﹣x <1即1<x <2时,f (2﹣x )=2﹣x 当1≤2﹣x <2即0<x ≤1时,f (2﹣x )=1 ∴y=﹣f (2﹣x )=,根据一次函数的性质,结合选项可知,选项B正确正确 故选:B 点评: 本题主要考查了一次函数的性质在函数图象中的应用,属于基础试题题主要考查了一次函数的性质在函数图象中的应用,属于基础试题 7.(5分)(2012•湖北)定义在(﹣∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(﹣∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=;④f (x )=ln|x|.则其中是“保等比数列函数”的f (x )的序号为()的序号为( )A . ①②B . ③④C . ①③D . ②④考点: 等比关系的确定. 专题: 综合题;压轴题.合题;压轴题. 分析: 根据新定义,结合等比数列性质,一一加以判断,即可得到结论.,一一加以判断,即可得到结论.解答: 解:由等比数列性质知,①=f 22(a n+1),故正确;,故正确; ②≠=f 2(a n+1),故不正确;,故不正确; ③==f 2(a n+1),故正确;,故正确; ④f (a n )f (a n+2)=ln|a n |ln|a n+2|≠=f 2(a n+1),故不正确;,故不正确; 故选C 点评: 本题考查等比数列性质及函数计算,正确运算,理解新定义是解题的关键.题考查等比数列性质及函数计算,正确运算,理解新定义是解题的关键. 8.(5分)(2012•湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA :sinB :sinC 为(为( ) A . 4:3:2 B . 5:6:7 C . 5:4:3 D . 6:5:4 考点: 正弦定理的应用. 专题: 解三角形.三角形.分析:由题意可得三边即由题意可得三边即 a 、a ﹣1、a ﹣2,由余弦定理可得,由余弦定理可得 cosA=,再由3b=20acosA ,可得,可得 cosA=,从而可得,从而可得=,由此解得a=6,可得三边长,根据sinA :sinB :sinC=a :b :c ,求得结果.,求得结果.解答: 解:由于a ,b ,c 三边的长为连续的三个正整数,且A >B >C ,可设三边长分别为可设三边长分别为 a 、a ﹣1、a ﹣2. 由余弦定理可得由余弦定理可得cosA===,又3b=20acosA ,可得,可得 cosA==.故有故有=,解得a=6,故三边分别为6,5,4.由正弦定理可得由正弦定理可得 sinA :sinB :sinC=a :b :c=a :(a ﹣1):( a ﹣2)=6:5:4, 故选D . 点评: 本题主要考查正弦定理、余弦定理的应用,求出a=6是解题的关键,属于中档题.是解题的关键,属于中档题.9.(5分)(2012•湖北)设a ,b ,c ,∈R +,则“abc=1”是“”的(的( )A . 充分条件但不是必要条件分条件但不是必要条件B . 必要条件但不是充分条件要条件但不是充分条件C . 充分必要条件分必要条件D . 既不充分也不必要的条件不充分也不必要的条件考点: 必要条件、充分条件与充要条件的判断. 专题: 计算题;压轴题.算题;压轴题. 分析: 由abc=1,推出,代入不等式的左边,证明不等式成立.利用特殊值判断不等式成立,推不出abc=1,得到结果.,得到结果. 解答: 解:因为abc=1,所以,则==≤a+b+c .当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a ,b ,c ,∈R +,则“abc=1”是“”的充分条件但不是必要条件.条件. 故选A . 点评: 本题考查充要条件的应用,不等式的证明,特殊值法的应用,考查逻辑推理能力,计算能力.算能力. 10.(5分)(2012•湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是(内随机取一点,则此点取自阴影部分的概率是( )A .B .C .D .考点: 几何概型. 专题: 概率与统计.率与统计. 分析: 求出阴影部分的面积即可,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB 的面积.的面积. 解答:解:设扇形的半径为r ,则扇形OAB 的面积为,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选C .点评: 本题考查几何概型,题考查几何概型,解题的关键是利用位移割补的方法求组合图形面积,此类不规则解题的关键是利用位移割补的方法求组合图形面积,此类不规则图形的面积可以转化为几个规则的图形的面积的和或差的计算.图形的面积可以转化为几个规则的图形的面积的和或差的计算.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上答错位置,书写不清,模棱两可均不得分. 11.(5分)(2012•湖北)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人,则抽取的女运动员有 6 人.人.考点: 分层抽样方法. 专题: 计算题.算题. 分析: 设出抽到女运动员的人数,根据分层抽样的特征列出方程可求出抽到女运动员的人数.数. 解答: 解:设抽到女运动员的人数为n 则=解得n=6 故答案为:6 一般利用各层抽到的个体数与该层题主要考查了分层抽样,解决分层抽样的问题,一般利用各层抽到的个体数与该层点评:本题主要考查了分层抽样,解决分层抽样的问题,的个体数的比等于样本容量与总体容量的比,属于基础题.的个体数的比等于样本容量与总体容量的比,属于基础题.12.(5分)(2012•湖北)若=a+bi(a,b为实数,i为虚数单位),则a+b=3.考点:复数代数形式的乘除运算;复数相等的充要条件.算题.专题:计算题.分析:由==,知=a+bi,故,所以,由此能求出a+b.解答:解:===,∵=a+bi,∴,∴,解得a=0,b=3,∴a+b=3.故答案为:3.题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答. 点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.13.(5分)(2012•湖北)已知向量=(1,0),=(1,1),则,则同向的单位向量的坐标表示为 ();(Ⅰ)与2+同向的单位向量的坐标表示为夹角的余弦值为 .(Ⅱ)向量﹣3与向量夹角的余弦值为考点:数量积表示两个向量的夹角;向量的模;单位向量;平面向量的坐标运算.算题.专题:计算题.分析:(I)由已知可求2+,进而可求|2+|,而与2+同向的单位向量,再利用坐标表示即可用坐标表示即可(II)设﹣3与向量夹角θ,由已知可求,|,,||,代入可求向量的夹角公式cosθ=可求解答:解:(I)∵=(1,0),=(1,1)∴2+=(2,0)+(1,1)=(3,1),|2+|=∴与2+同向的单位向量的坐标表示=(II)设﹣3与向量夹角θ∵=(1,0),=(1,1),∴,∴=﹣2,||=,||=1 则cosθ===故答案为:;点评:本题主要考查了向量运算的坐标表示,向量的数量积的坐标表示、夹角公式的应用,的应用注意结论:与向量共线且同向的单位向量的应用14.(5分)(2012•湖北)若变量x,y满足约束条件则目标函数z=2x+3y 的最小值是 2.的最小值是考点:简单线性规划.专题:计算题.算题.分析:先作出不等式组表示的平面区域,由于z=2x+3y,则可得y=,则表示直线2x+3y﹣z=0在y轴上的截距,当z最小时,截距最小,结合图形可求z的最小值的最小值 :作出不等式组表示的平面区域,如图所示解答:解:作出不等式组表示的平面区域,如图所示作直线L:2x+3y=0,由于z=2x+3y,则可得y=,则表示直线2x+3y﹣z=0在y轴上的截距,当z最小时,截距最小最小时,截距最小最小结合图形可知,当直线2x+3y﹣z=0平移到点B时,z最小由可得B(1,0),此时Z=2 故答案为:2 点评:借助于平面区域,利用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.性规划中的最优解,通常是利用平移直线法确定.15.(5分)(2012•湖北)已知某几何体的三视图如图所示,则该几何体的体积为湖北)已知某几何体的三视图如图所示,则该几何体的体积为 12π.考点:由三视图求面积、体积.算题.专题:计算题.分析:由题意三视图可知,几何体是有3个圆柱体组成的几何体,利用三视图的数据,求出几何体的体积即可.几何体的体积即可.解答:解:由题意可知几何体是有两个底面半径为2,高为1的圆柱与一个底面半径为1,高为4的圆柱组成的几何体,的圆柱组成的几何体,所以几何体的条件为V=2×22π×1+12π×4=12π.故答案为:12π.点评:本题考查三视图与几何体的关系,考查空间想象能力与计算能力.题考查三视图与几何体的关系,考查空间想象能力与计算能力.16.(5分)(2012•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果s=9.考点:循环结构.法和程序框图.专题:算法和程序框图.时退出循环,即可.分析:用列举法,通过循环过程直接得出S与n的值,得到n=3时退出循环,即可.解答:解:循环前,S=1,a=3,第1次判断后循环,n=2,s=4,a=5,次判断退出循环,第2次判断并循环n=3,s=9,a=7,第3次判断退出循环,输出S=9.故答案为:9.退出循环是解题的关键,考查计算能力.点评:本题考查循环结构,判断框中n=3退出循环是解题的关键,考查计算能力.17.(5分)(2012•湖北)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:,可以推测:(Ⅰ)b2012是数列{a n}中的第项;中的第 5030项;(Ⅱ)b2k﹣1=.(用k表示)表示)考点:数列递推式;数列的概念及简单表示法;归纳推理.轴题;探究型.专题:压轴题;探究型.分析:(Ⅰ)由题设条件及图可得出a n+1=a n+(n+1),由此递推式可以得出数列{a n}的通项为,a n=n(n+1),由此可列举出三角形数1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…,从而可归纳出可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除,由此规律即可求出b2012在数列{a n}中的位置;中的位置;(II)由(I)中的结论即可得出b2k﹣1═(5k﹣1)(5k﹣1+1)=.解答:解:(I)由题设条件可以归纳出a n+1=a n+(n+1),故a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+…+2+1=n(n+1)由此知,三角数依次为1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…则该组的由此知可被5整除的三角形数每五个数中出现两个,即每五个数分为一组,整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的整除,后两个数可被5整除,由于b2012是第2012个可被5整除的数,故它出现在数列{a n}按五个一段分组的第1006组的最后一个数,由此知,b2012是数列{a n}中的第1006×5=5030个数个数 故答案为5030 (II)由于2k﹣1是奇数,由(I)知,第2k﹣1个被5整除的数出现在第k组倒数第二个,故它是数列{a n}中的第k×5﹣1=5k﹣1项,所以b2k﹣1═(5k﹣1)(5k﹣1+1)=故答案为点评:本题考查数列的递推关系,数列的表示及归纳推理,解题的关键是由题设得出相邻两个三角形数的递推关系,由此列举出三角形数,得出结论“被5整除的三角形数每五个数中出现两个,即每五个数分为一组,则该组的后两个数可被5整除”,本题综合性强,有一定的探究性,是高考的重点题型,解答时要注意总结其中的规律.性强,有一定的探究性,是高考的重点题型,解答时要注意总结其中的规律.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(12分)(2012•湖北)设函数f(x)=sin2ωx+2sinωx•cosωx﹣cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).(1)求函数f(x)的最小正周期;)的最小正周期;)的值域.(2)若y=f(x)的图象经过点,求函数f(x)的值域.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数中的恒等变换应用;正弦函数的定义域和值域.算题.专题:计算题.分析:(1)先利用二倍角公式和两角差的余弦公式将函数f(x)化为y=Asin(ωx+φ)+k 型函数,再利用函数的对称性和ω的范围,计算ω的值,最后利用周期计算公式得函数的最小正周期;函数的最小正周期;(2)先将已知点的坐标代入函数解析式,求得λ的值,再利用正弦函数的图象和性质即可求得函数f(x)的值域.)的值域.解答:解:f(x)=sin2ωx+2sinωx•cosωx﹣cos2ωx+λ=sin2ωx﹣cos2ωx+λ=2sin(2ωx﹣)+λ∵图象关于直线x=π对称,∴2πω﹣=+kπ,k∈z ∴ω=+,又ω∈(,1)符合要求令k=1时,ω=符合要求∴函数f(x)的最小正周期为=(2)∵f()=0 ∴2sin(2××﹣)+λ=0 ∴λ=﹣∴f(x)=2sin(x﹣)﹣故函数f(x)的取值范围为[﹣2﹣,2﹣]点评:本题主要考查了y=Asin(ωx+φ)+k型函数的图象和性质,复合函数值域的求法,正弦函数的图象和性质,属基础题弦函数的图象和性质,属基础题19.(12分)(2012•湖北)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1﹣ABCD,其上是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD﹣A2B2C2D2.(1)证明:直线B1D1⊥平面ACC2A2;(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单元,需加工处理费多少元?位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?考点:直线与平面垂直的判定;棱柱、棱锥、棱台的侧面积和表面积.算题;证明题.专题:计算题;证明题.分析:(1)依题意易证AC⊥B1D1,AA2⊥B1D1,由线面垂直的判定定理可证直线B1D1⊥平面ACC2A2;(2)需计算上面四棱柱ABCD﹣A2B2C2D2的表面积(除去下底面的面积)S1,四棱即可.台A1B1C1D1﹣ABCD的表面积(除去下底面的面积)S2即可.解答:解:(1)∵四棱柱ABCD﹣A2B2C2D2的侧面是全等的矩形,的侧面是全等的矩形,∴AA2⊥AB,AA2⊥AD,又AB∩AD=A,∴AA2⊥平面ABCD.连接BD,∵BD⊂平面ABCD,是正方形,∴AA2⊥BD,又底面ABCD是正方形,∴AC⊥BD,根据棱台的定义可知,BD与B1D1共面,共面,又平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,∴B1D1∥BD,于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1,又AA2∩AC=A,∴B1D1⊥平面ACC2A2;的底面是正方形,侧面是全等的矩形, (2)∵四棱柱ABCD﹣A2B2C2D2的底面是正方形,侧面是全等的矩形,=S四棱柱下底面+S四棱柱侧面∴S1=+4AB•AA2=102+4×10×30 =1300(cm2)上下底面均是正方形,侧面是全等的等腰梯形, 又∵四棱台A1B1C1D1﹣ABCD上下底面均是正方形,侧面是全等的等腰梯形,∴S2=S四棱柱下底面+S四棱台侧面=+4×(AB+A1B1)•h等腰梯形的高=202+4×(10+20)•=1120(cm2),于是该实心零部件的表面积S=S1+S2=1300+1120=2420(cm2),故所需加工处理费0.2S=0.2×2420=484元.元.点评:本题考查直线与平面垂直的判定,考查棱柱、棱台的侧面积和表面积,着重考查分析转化与运算能力,属于中档题.转化与运算能力,属于中档题.20.(13分)(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.项和.考点:数列的求和;等差数列的通项公式;等比数列的性质.算题.专题:计算题.分析:(I)设等差数列的公差为d,由题意可得,,解方程,进而可求通项可求a1,d,进而可求通项(II)由(I)的通项可求满足条件a2,a3,a1成等比的通项为a n=3n﹣7,则|a n|=|3n,根据等差数列的求和公式可求﹣7|=,根据等差数列的求和公式可求解答:解:(I)设等差数列的公差为d,则a2=a1+d,a3=a1+2d 由题意可得,解得或由等差数列的通项公式可得,a n=2﹣3(n﹣1)=﹣3n+5或a n=﹣4+3(n﹣1)=3n﹣7 不成等比(II)当a n=﹣3n+5时,a2,a3,a1分别为﹣1,﹣4,2不成等比当a n=3n﹣7时,a2,a3,a1分别为﹣1,2,﹣4成等比数列,满足条件成等比数列,满足条件 故|a n|=|3n﹣7|=设数列{|a n|}的前n项和为S n当n=1时,S1=4,当n=2时,S2=5 当n≥3时,S n=|a1|+|a2|+…+|a n|=5+(3×3﹣7)+(3×4﹣7)+…+(3n﹣7)=5+=,当n=2时,满足此式时,满足此式综上可得点评:本题主要考查了利用等差数列的基本量表示等差数列的通项,等差数列与等比数列的通项公式的综合应用及等差数列的求和公式的应用,要注意分类讨论思想的应用通项公式的综合应用及等差数列的求和公式的应用,要注意分类讨论思想的应用21.(14分)(2012•湖北)设A 是单位圆x 2+y 2=1上的任意一点,i 是过点A 与x 轴垂直的直线,D 是直线i 与x 轴的交点,点M 在直线l 上,且满足丨DM 丨=m 丨DA 丨(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C . (I )求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标;为何种圆锥曲线,并求焦点坐标;(Ⅱ)(Ⅱ)过原点且斜率为过原点且斜率为k 的直线交曲线C 于P 、Q 两点,两点,其中其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H ,是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.的值;若不存在,请说明理由.考点: 直线与圆锥曲线的综合问题;轨迹方程;圆锥曲线的轨迹问题.专题: 综合题;压轴题.合题;压轴题. 分析: (I )设M (x ,y ),A (x 0,y 0),根据丨DM 丨=m 丨DA 丨,确定坐标之间的关系x 0=x ,|y 0|=|y|,利用点A 在圆上运动即得所求曲线C 的方程;根据m ∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;,分类讨论,可确定焦点坐标;(Ⅱ)∀x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (﹣x 1,﹣y 1),N (0,y 1),利用P ,H 两点在椭圆C 上,可得,从而可得可得.利用Q ,N ,H 三点共线,及PQ ⊥PH ,即可求得结论.得结论.解答: 解:(I )如图1,设M (x ,y ),A (x 0,y 0)∵丨DM 丨=m 丨DA 丨,∴x=x 0,|y|=m|y 0| ∴x 0=x ,|y 0|=|y|①∵点A 在圆上运动,∴②①代入②即得所求曲线C 的方程为∵m ∈(0,1)∪(1,+∞), ∴0<m <1时,曲线C 是焦点在x 轴上的椭圆,两焦点坐标分别为(),m >1时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(),(Ⅱ)如图2、3,∀x 1∈(0,1),设P (x 1,y 1),H (x 2,y 2),则Q (﹣x 1,﹣y 1),N (0,y 1),∵P,H两点在椭圆C上,∴①﹣②可得③∵Q,N,H三点共线,∴k QN=k QH,∴∴k PQ•k PH=∵PQ⊥PH,∴k PQ•k PH=﹣1 ∴∵m>0,∴故存在,使得在其对应的椭圆上,对任意k>0,都有PQ⊥PH 点评:本题考查轨迹方程,考查直线与椭圆的位置关系,考查代入法求轨迹方程,计算要小心.心.22.(14分)(2012•湖北)设函数f(x)=ax n(1﹣x)+b(x>0),n为正整数,a,b为常数,曲线y=f(x)在(1,f(1))处的切线方程为x+y=1 的值;(Ⅰ)求a,b的值;)的最大值;(Ⅱ)求函数f(x)的最大值;(Ⅲ)证明:f(x)<.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.合题;压轴题;函数思想;转化思想.专题:综合题;压轴题;函数思想;转化思想.分析:(Ⅰ)由题意曲线y=f(x)在(1,f(1))处的切线方程为x+y=1,故可根据导数的几何意义与切点处的函数值建立关于参数的方程求出两参数的值;几何意义与切点处的函数值建立关于参数的方程求出两参数的值;(Ⅱ)由于f(x)=x n n(1﹣x),可求fʹ(x)=(n+1)x n n﹣11(﹣x),利用导数研究函数的单调性,即可求出函数的最大值;函数的单调性,即可求出函数的最大值;(Ⅲ)结合(Ⅱ),欲证f (x )<.由于函数f (x )的最大值f ()=()n (1﹣)=,故此不等式证明问题可转化为证明<,对此不等式两边求以e 为底的对数发现,可构造函数φ(t )=lnt ﹣1+,借助函数的最值辅助证明不等式.最值辅助证明不等式.解答: 解:(Ⅰ)因为f (1)=b ,由点(1,b )在x+y=1上,可得1+b=1,即b=0. 因为f ʹ(x )=anx n ﹣1﹣a (n+1)x n ,所以f ʹ(1)=﹣a .又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.(Ⅱ)由(Ⅰ)知,f (x )=x n (1﹣x ),则有f ʹ(x )=(n+1)xn ﹣1(﹣x ),令f ʹ(x )=0,解得x=在(0,)上,导数为正,故函数f (x )是增函数;在(,+∞)上导数为负,故函数f (x )是减函数;)是减函数;故函数f (x )在(0,+∞)上的最大值为f ()=()n(1﹣)=,(Ⅲ)令φ(t )=lnt ﹣1+,则φʹ(t )=﹣=(t >0)在(0,1)上,φʹ(t )<0,故φ(t )单调减;在(1,+∞),φʹ(t )>0,故φ(t )单调增;单调增;故φ(t )在(0,+∞)上的最小值为φ(1)=0,所以φ(t )>0(t >1)则lnt >1﹣,(t >1),令t=1+,得ln (1+)>,即ln (1+)n+1>lne 所以(1+)n+1>e ,即<由(Ⅱ)知,f (x )≤<,故所证不等式成立.故所证不等式成立.点评: 本题考查利用导数求函数最值及利用最值证明不等式,本题技巧性强,解题的关键是能根据题设及证明中的结论构造函数辅助证明,本题是能力型题,难度较大,是高考选拔优秀数学人才的首选题,做题后要注意总结本题的解题规律,选拔优秀数学人才的首选题,做题后要注意总结本题的解题规律,领会构造法证明不领会构造法证明不等式的要旨,本题考查了转化的思想及函数思想,等式的要旨,本题考查了转化的思想及函数思想,难度较大极易找不到思路或计算出难度较大极易找不到思路或计算出错,作为压轴题出现. 错,作为压轴题出现.。
2012年高考真题—(湖北卷)word详细答案解析版
2012·湖北卷(课标语文)一、语文基础知识(共15分,共5小题,每小题3分)1.[2012·湖北卷] 下列各组词语中加点的字,读音全都相同的一组是() A.灵.秀磷.光玲.珑剔透聆.听教诲B.诞.生旦.角淡.泊明志担.当重任C.宿.营诉.说夙.兴夜寐素.昧平生D.咨.询滋.生芝.兰之室孜.孜不倦1.C[解析] 本题考查字音。
关于字音的考查,本题继续2011年高考的命题方式,考查方言中经常误读的字音,其中涉及前鼻音与后鼻音的区分,卷舌音与平舌音的区分,多音字的正确读音,对纠正方言起到良好的导向作用。
A项,líng,lín,líng,líng;B项,dàn,dàn,dàn,dān;C项,都读sù;D项,zī,zī,zhī,zī。
2.[2012·湖北卷] 下列各组词语中,没有错别字的一组是()A.羞涩袅娜歌声缈茫荷塘薄雾B.霜天廖廓峥嵘岁月浪遏飞舟C.细腻箫索落蕊残叶秋蝉嘶叫D.嫩黄葱茏婆娑起舞繁茂苍翠2.D[解析] 本题考查字形。
本题对字形的考查全部出自教材必修1、必修2中现代诗歌和散文部分,三个错别字都是形近音同字。
这给今后备考的老师和学生以很好的启示,即要抓课本,抓教材。
A项,渺茫;B项,寥廓;C项,萧索。
3.[2012·湖北卷] 依次填入下列横线处的词语,最恰当的一组是()说到底,世上风景闲流水,端的还是要人慢下来。
中国这如许的城市中,最是江城得了个中______,且将它____________地挥洒出来。
这______江城街头巷尾、湖畔公园里数不胜数的茶馆、茶铺,一个人在清晨里不慌不忙地起来,________到茶馆里,一坐就是一天,那叫一个悠闲!A.趣味痛痛快快当是遛B.滋味淋漓尽致便是踱C.意味兴致勃勃自是逛D.韵味尽情尽兴恰是晃3.B[解析] 本题考查词语。
本题以湖北省会武汉清晨的生活饮茶文化作语境,描写了现代都市生活中的难得的闲适,词语的辨析涉及词、成语,名词、形容词、副词、动词。
2012年语文高考试题答案及解析-湖北
2012年普通高等学校招生全国统一考试(湖北卷)语文(解析版)手打录入:青峰弦月本试卷共六大题,8页。
总分150分,考试用时150分钟。
注意事项:1.答卷前,考生务必用2B铅笔在‚考生号‛处填涂考生号。
用黑色字迹的签字笔将自己的姓名和考号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位臵上。
将条形码横贴在答题卡右上角‚条形码粘贴处‛。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内的相应位臵上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中加点的字,读音全都相同的一组是A.灵.秀磷.光玲.珑剔透聆.听教诲B.诞.生旦.角淡.泊明志担.当重任C.宿.营诉.说夙.兴夜寐素.昧平生D.咨.询滋.生芝.兰之室孜.孜不倦【答案】C【解析】A项读líng lín ling líng;B项读dàn dàn dàn dān;C项都读sù;D项读zīzī zhīzī。
2.下列各组词语中,没有错别字的一组是A.羞涩袅娜歌声缈茫荷塘薄雾B.霜天廖廓峥嵘岁月浪遏飞舟C.细腻箫索落蕊残叶秋蝉嘶叫D.嫩黄葱茏婆娑起舞繁茂苍翠【答案】D【解析】A项“歌声渺茫”;B项“寥廓”;C项“萧索”;D项全都正确。
3.依次填入下列横线处的词语,最恰当的是说到底,世上风景闲流水,端的还是要人慢下来。
中国这如许的城市中,最是江城得了个中,且将它地挥洒出来。
2012年高考语文湖北卷详析
2012年普通高等学校招生全国统一考试(湖北卷)语文卷解析一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中加点的字,读音全都相同的一组是A.灵秀磷光玲珑剔透聆听教诲B.诞生旦角淡泊明志担当重任C.宿营诉说夙兴夜寐素昧平生D.咨询滋生芝兰之室孜孜不倦【答案】C【解析】A项读líng lín ling líng;B项读dàn dàn dàn dān;C项都读sù;D项读zīzī zhī zī。
2.下列各组词语中,没有错别字的一组是A.羞涩袅娜歌声缈茫荷塘薄雾B.霜天廖廓峥嵘岁月浪遏飞舟C.细腻箫索落蕊残叶秋蝉嘶叫D.嫩黄葱茏婆娑起舞繁茂苍翠【答案】D【解析】A项“歌声渺茫”;B项“寥廓”;C项“萧索”;D项全都正确。
3.依次填入下列横线处的词语,最恰当的是说到底,世上风景闲流水,端的还是要人慢下来。
中国这如许的城市中,最是江城得了个中,且将它地挥洒出来。
这江城街头巷尾、湖畔公园里数不胜数的茶馆、茶铺,一个人在清晨里不慌不忙的起来,到茶馆里,一坐就是一天,那叫一个悠闲!A.趣味痛痛快快当是遛B.滋味淋漓尽致便是踱C.意味兴致勃勃自是逛D.韵味尽情尽兴恰是晃【答案】B【解析】第一空“个中滋味”是固定搭配,可以排除A、C、D三项。
第四个空要与“悠闲”照应,“逛”“遛”“晃”都不及“踱”效果好。
4.下列各项中,没有语病的是A.坐上画舫游清江,如行画卷之中,江水清澈,绿树蓊郁,自然与人,和谐相依,随风生长,好一派如诗如画的风光!B.游览三峡大瀑布时,我们从倾泻而下的水帘中狂奔而过,尖叫声、嬉笑声响成一片,那真是充满刺激的难忘体验!C.当今已经很少有人会像以前那样的闲情逸致,拿出一本小说,从头到尾地阅读一遍,欣赏其委婉动人的故事。
D.现代文明不仅带来了理性化、工业化、市场化、都市化、民主化和法制化这些美好的社会制度,而却创造了前所未有的物质财富。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A C B ⊆⊆的集合C 的个数为A .1B .2C .3D .42.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为A .0.35B .0.45C .0.55D .0.65 3.函数()cos2f x x x =在区间[0,2π]上的零点的个数为A .2B .3C .4D .54.命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y +-=B .10y -=C .0x y -=D .340x y +-=数学(文史类)试卷A型 第2页(共9页) 6.已知定义在区间[0,2]上的函数()y f x =的图象如图所示,则(2)y f x =--的图象为7.定义在(,0)(0,)-∞+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,{()}n f a 仍是等比数列,则称()f x 为“保等比数列函数”. 现有定义在(,0)(0,)-∞+∞上的如下函数:①2()f x x =; ②()2x f x =;③()f x = ④()ln ||f x x =. 则其中是“保等比数列函数”的()f x 的序号为 A .① ②B .③ ④C .① ③D .② ④8.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为 A .4:3:2B .5:6:7C .5:4:3D .6:5:49.设,,a b c +∈R ,则“1abc =a b c ≤++”的A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件10.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是A .112π- B .1π C .21π- D .2π第6题图ABC D第10题图数学(文史类)试卷A型 第3页(共9页) 侧视图正视图俯视图第15题图二、填空题:本大题共7小题,每小题5分,共35分. 请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.一支田径运动队有男运动员56人,女运动员42人. 现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有 人. 12.若3ii 1ib a b +=+-(a ,b 为实数,i 为虚数单位),则a b += . 13.已知向量(1,0)=a ,(1,1)=b ,则(Ⅰ)与2+a b 同向的单位向量的坐标表示为 ; (Ⅱ)向量3-b a 与向量a 夹角的余弦值为 .14.若变量,x y 满足约束条件1,1,33,x y x y x y -≥-⎧⎪+≥⎨⎪-≤⎩ 则目标函数23z x y =+的最小值是 .15.已知某几何体的三视图如图所示,则该几何体的体积为 .16.阅读如图所示的程序框图,运行相应的程序,输出的结果s = .17.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数. 他们研究过如图所示的三角形数:将三角形数1,3,6,10,记为数列{}n a ,将可被5整除的三角形数按从小到大的顺序组成一个新数列{}n b . 可以推测: (Ⅰ)2012b 是数列{}na 中的第________项; (Ⅱ)21kb -=________.(用k 表示)第16题图第17题图 10 6 3 1 ···数学(文史类)试卷A型 第4页(共9页) 三、解答题:本大题共5小题,共65分. 解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)设函数22()sin cos cos f x x x x x ωωωωλ=+⋅-+()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x 的值域.19.(本小题满分12分)某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台1111A B C D ABCD -,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱2222ABCD A B C D -. (Ⅰ)证明:直线11B D ⊥平面22ACC A ;(Ⅱ)现需要对该零部件表面进行防腐处理. 已知10AB =,1120A B =,230AA =,113AA =(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?20.(本小题满分13分)已知等差数列{}n a 前三项的和为3-,前三项的积为8.(Ⅰ)求等差数列{}n a 的通项公式;(Ⅱ)若2a ,3a ,1a 成等比数列,求数列{||}n a 的前n 项和. 21.(本小题满分14分)设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,且它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由.22.(本小题满分14分)设函数()(1) (0)n f x ax x b x =-+>,n 为正整数,a ,b 为常数. 曲线()y f x =在(1,(1))f 处的切线方程为1x y +=. (Ⅰ)求a ,b 的值;(Ⅱ)求函数()f x 的最大值; (Ⅲ)证明:1()ef x n <. A 2B 2C 2D 2 CBADA 1B 1C 1D 1第19题图数学(文史类)试卷A型 第5页(共9页) 2012年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:A 卷:1.D 2.B 3.D 4.B 5.A 6.B 7.C 8.D 9.A 10.C 二、填空题:11. 6 12. 3 13.(Ⅰ);(Ⅱ) 14. 2 15.12π 16. 9 17.(Ⅰ)5030;(Ⅱ)()5512k k -三、解答题:18.解:(Ⅰ)因为22()sin cos cos f x x x x x ωωωωλ=-+⋅+cos 22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z . 又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5. (Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=λ=故5π()2sin()36f x x =-()f x的值域为[22-.19.解:(Ⅰ)因为四棱柱2222ABCD A B C D -的侧面是全等的矩形,所以2AA AB ⊥,2AA AD ⊥. 又因为ABAD A =,所以2AA ⊥平面ABCD .连接BD ,因为BD ⊂平面ABCD ,所以2AA BD ⊥.数学(文史类)试卷A型 第6页(共9页) 因为底面ABCD 是正方形,所以AC BD ⊥. 根据棱台的定义可知,BD 与B 1 D 1共面. 又已知平面ABCD ∥平面1111A B C D ,且平面11BB DD 平面ABCD BD =,平面11BB D D平面111111A B C D B D =,所以B 1 D 1∥BD . 于是由2AA BD ⊥,AC BD ⊥,B 1 D 1∥BD ,可得211AA B D ⊥,11AC B D ⊥. 又因为2AA AC A =,所以11B D ⊥平面22ACC A .(Ⅱ)因为四棱柱2222ABCD A B C D -的底面是正方形,侧面是全等的矩形,所以2221222()410410301300(cm )S S S A B AB AA =+=+⋅=+⨯⨯=四棱柱上底面四棱柱侧面.又因为四棱台1111A B C D ABCD -的上、下底面均是正方形,侧面是全等的等腰梯形,所以2211111()42S S S A B AB A B h =+=+⨯+四棱台下底面四棱台侧面等腰梯形的高()221204(101120(cm )2=+⨯+=.于是该实心零部件的表面积为212130*********(cm )S S S =+=+=, 故所需加工处理费为0.20.22420484S =⨯=(元).20.解:(Ⅰ)设等差数列{}n a 的公差为d ,则21a a d =+,312a a d =+,由题意得1111333,()(2)8.a d a a d a d +=-⎧⎨++=⎩ 解得12,3,a d =⎧⎨=-⎩或14,3.a d =-⎧⎨=⎩所以由等差数列通项公式可得23(1)35n a n n =--=-+,或43(1)37n a n n =-+-=-.故35n a n =-+,或37n a n =-. (Ⅱ)当35n a n =-+时,2a ,3a ,1a 分别为1-,4-,2,不成等比数列;当37n a n =-时,2a ,3a ,1a 分别为1-,2,4-,成等比数列,满足条件. 故37,1,2,|||37|37, 3.n n n a n n n -+=⎧=-=⎨-≥⎩记数列{||}n a 的前n 项和为n S .当1n =时,11||4S a ==;当2n =时,212||||5S a a =+=; 当3n ≥时,234||||||n nS S a a a=++++5(337)(347)(37)n=+⨯-+⨯-++-2(2)[2(37)]311510222n nn n-+-=+=-+. 当2n=时,满足此式.综上,24,1,31110, 1.22nnSn n n=⎧⎪=⎨-+>⎪⎩21.解:(Ⅰ)如图1,设(,)M x y,00(,)A x y,则由||||(0,1)DM m DA m m=>≠且,可得x x=,||||y m y=,所以x x=,1||||y ym=. ①因为A点在单位圆上运动,所以22001x y+=. ②将①式代入②式即得所求曲线C的方程为2221 (0,1)yx m mm+=>≠且.因为(0,1)(1,)m∈+∞,所以当01m<<时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为(0),0);当1m>时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为(0,,(0,.(Ⅱ)解法1:如图2、3,0k∀>,设11(,)P x kx,22(,)H x y,则11(,)Q x kx--,1(0,)N kx,直线QN的方程为12y kx kx=+,将其代入椭圆C的方程并整理可得222222211(4)40m k x k x x k x m+++-=.依题意可知此方程的两根为1x-,2x,于是由韦达定理可得21122244k xx xm k-+=-+,即212224m xxm k=+.因为点H在直线QN上,所以2121222224km xy kx kxm k-==+.于是11(2,2)PQ x kx=--,22112121222242(,)(,)44k x km xPH x x y kxm k m k=--=-++.而PQ PH⊥等价于2221224(2)4m k xPQ PHm k-⋅==+,即220m-=,又0m>,得m,故存在m=2212yx+=上,对任意的0k>,都有PQ PH⊥.图2 (01)m<<图3 (1)m>图1数学(文史类)试卷A型 第8页(共9页)解法2:如图2、3,1(0,1)x ∀∈,设11(,)P x y ,22(,)H x y ,则11(,)Q x y --, 1(0,)N y ,因为P ,H 两点在椭圆C 上,所以222211222222,,m x y m m x y m ⎧+=⎪⎨+=⎪⎩ 两式相减可得 222221212()()0m x x y y -+-=. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合, 故1212()()0x x x x -+≠. 于是由③式可得212121212()()()()y y y y m x x x x -+=--+. ④又Q ,N ,H 三点共线,所以QN QH k k =,即1121122y y y x x x +=+. 于是由④式可得211212121121212()()12()()2PQ PHy y y y y y y m k k x x x x x x x --+⋅=⋅=⋅=---+. 而PQ PH ⊥等价于1PQ PHk k ⋅=-,即212m -=-,又0m >,得m ,故存在m =2212y x +=上,对任意的0k >,都有PQ PH ⊥.22.解:(Ⅰ)因为(1)f b =,由点(1,)b 在1x y +=上,可得11b +=,即0b =.因为1()(1)n n f x anx a n x -'=-+,所以(1)f a '=-.又因为切线1x y +=的斜率为1-,所以1a -=-,即1a =. 故1a =,0b =. (Ⅱ)由(Ⅰ)知,1()(1)n n n f x x x x x +=-=-,1()(1)()1n nf x n x x n -'=+-+.数学(文史类)试卷A型 第9页(共9页) 令()0f x '=,解得1n x n =+,即()f x '在(0,)+∞上有唯一零点01n x n =+. 在(0,)1nn +上,()0f x '>,故()f x 单调递增; 而在(,)1nn +∞+上,()0f x '<,()f x 单调递减. 故()f x 在(0,)+∞上的最大值为1()()(1)111(1)nn n n n n n f n n n n +=-=++++. (Ⅲ)令1()ln 1+(0)t t t t ϕ=->,则22111()= (0)t t t t t tϕ-'=->. 在(0,1)上,()0t ϕ'<,故()t ϕ单调递减; 而在(1,)+∞上()0t ϕ'>,()t ϕ单调递增.故()t ϕ在(0,)+∞上的最小值为(1)0ϕ=. 所以()0(1)t t ϕ>>,即1ln 1(1)t t t >->.令11t n =+,得11ln 1n n n +>+,即11ln()ln e n n n++>, 所以11()e n n n++>,即11(1)e n n n n n +<+. 由(Ⅱ)知,11()(1)en n n f x n n +≤<+,故所证不等式成立.。