关于物理化学课后习题答案
(完整版)物理化学课后答案

第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学实验课后习题答案

1. 电位差计、标准电池、检流计及工作电池各有什么作用?如何保护及正确使用?答:(1)电位差计是按照对消法测量原理设计的一种平衡式电学测量装置,能直接给出待测电池的电动势值,测定时电位差计按钮按下的时间应尽量短,以防止电流通过而改变电极表面的平衡状态。
(2)标准电池是用来校准工作电流以标定补偿电阻上的电位降。
(3)检流计用来检验电动势是否对消,在测量过程中,若发现检流计受到冲击,应迅速按下短路按钮,以保护检流计。
检流计在搬动过程中,将分流器旋钮置于“短路”。
(4)工作电池(稳压电源)电压调至与电位差计对电源的要求始终相一致。
3.电位差计、标准电池、检流计及工作电池各有什么作用?答:电位差计:利用补偿法测定被测电极电动势;标准电池:提供稳定的已知数值的电动势EN,以此电动势来计算未知电池电动势。
检流计:指示通过电路的电流是否为零;工作电池:为整个电路提供电源,其值不应小于标准电池或待测电池的值。
4.测电动势为何要用盐桥?如何选用盐桥以适合不同的体系?答:(1)对于双液电池电动势的测定需用盐桥消除液体接界电势。
(2)选择盐桥中电解质的要求是:①高浓度(通常是饱和溶液);②电解质正、负离子的迁移速率接近相等;③不与电池中的溶液发生反应。
具体选择时应防止盐桥中离子与原电池溶液中的物质发生反应,如原电池溶液中含有能与Cl-作用而产生沉淀的Ag+、Hg 离子或含有能与K+离子作用的ClO-离子,则不可使用KCl盐桥,应选用KNO3或NH4NO3盐桥。
5.在测定电动势过程中,若检流计的指针总往一个方向偏转,可能是什么原因?答:若调不到零点,可能的原因有:(1)电池(包括工作电池、标准电池和待测电池)的正负极接反了;(2)电路中的某处有断路;(3)标准电池或待测电池的电动势大于工作电池的电动势,超出了测量范围。
4.为何本实验要在恒温条件下进行,而且乙酸乙酯和氢氧化钠溶液在混合前还要预先恒温?答:温度对反应速率常数k影响很大,故反应过程应在恒温条件下进行。
物理化学课后答案

第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1T T pV p V V T V V⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(÷)=小时1-3 0℃、的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ 1-4 一抽成真空的球形容器,质量为。
充以4℃水之后,总质量为。
若改用充以25℃、的某碳氢化合物气体,则总质量为。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
物理化学课后答案-热力学第二定律

第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
物理化学习题课答案(一)

物理化学习题课答案〔一〕_________________ _________________ _________________一. 选择题1. 对于理想气体的内能有下述四种理解:<1> 状态一定,内能也一定<2> 对应于某一状态的内能是可以直接测定的<3> 对应于某一状态,内能只有一个数值,不可能有两个或两个以上的数值<4> 状态改变时,内能一定跟着改变其中正确的是:< D ><A>〔1〕〔2〕〔B〕〔3〕〔4〕<C>〔2〕〔4〕〔D〕〔1〕〔3〕2. 下列宏观过程:<1> p ,273 K 下冰融化为水<2> 电流通过金属发热<3> 往车胎内打气<4> 水在101 325 Pa, 373 K 下蒸发可看作可逆过程的是:< A ><A>〔1〕〔4〕〔B〕〔2〕〔3〕<C>〔1〕〔3〕〔D〕〔2〕〔4〕3. 一定量的理想气体从同一始态出发,分别经<1> 等温压缩,<2> 绝热压缩到具有相同压力的终态,以H1,H2分别表示两个终态的焓值,则有:< C ><A> H1> H2<B> H1= H2<C> H1< H2<D> 不能确定4. 对于下列的四种表述:<1> 因为ΔH=Q p,所以只有等压过程才有ΔH<2> 因为ΔH=Q p,所以Q p也具有状态函数的性质<3> 公式ΔH=Q p只适用于封闭体系<4> 对于封闭体系经历一个不作其它功的等压过程,其热量只决定于体系的始态和终态上述诸结论中正确的是:< B ><A>〔1〕〔4〕〔B〕〔3〕〔4〕<C>〔2〕〔3〕〔D〕〔1〕〔2〕5. ΔH = Q p适用于下列哪个过程?< B ><A> 理想气体从1×107Pa反抗恒定的外压1×105Pa膨胀到1×105Pa<B> 0℃、101325Pa下冰融化成水<C> 101325Pa下电解CuSO4水溶液<D> 气体从298K,101325Pa可逆变化到373K、10132.5Pa6. 在体系温度恒定的变化中,体系与环境之间:< CD><A> 一定产生热交换<B> 一定不产生热交换<C> 不一定产生热交换<D> 温度恒定与热交换无关7. 在一个刚性的绝热容器中燃< B >C6H6<l> + <15/2>O2<g> 6CO2〔g〕+ 3H2O<g><A> ΔU = 0 ,ΔH < 0 ,Q = 0 <B> ΔU = 0 ,ΔH > 0 ,W = 0 <C> ΔU = 0 ,ΔH = 0 ,Q = 0 <D> ΔU ≠0 ,ΔH ≠0 ,Q = 08. 体系的压力p<体系>与环境的压力p<环境>有何关系? < D ><A> 相等 <B> 无关系<C>p<体系>> p<环境> <D> 可逆变化途径中p<体系>=p<环境>9. 如图,在绝热盛水容器中,浸有电阻丝,通以电流一段时间,如以电阻丝为体系,则上述过程的Q 、W 和体系的ΔU 值的符号为: < B ><A> W = 0,Q < 0, ΔU <0 <B> W> 0,Q < 0, ΔU >0 <C> W = 0,Q > 0, ΔU > 0 <D>W < 0,Q = 0, ΔU > 010. 理想气体卡诺循环的图为下列四种情况中的哪一种? < BC > 11. 测定有机物燃烧热Q p ,一般使反应在氧弹中进行,实测得热效应为Q V .由公式得: Q p =Q V +ΔnRT=Q V +p ΔV,式中p 应为何值 < D ><A> 氧弹中氧气压力 <B> 钢瓶中氧气压力 <C> p <D> 实验室大气压力12. 系经历一个正的卡诺循环后,试判断下列哪一种说法是错误的? < D ><A> 体系本身没有任何变化<B> 再沿反方向经历一个可逆的卡诺循环,最后体系和环境都没有任何变化 <C> 体系复原了,但环境并未复原 <D> 体系和环境都没有任何变化13. 在 100℃ 和 25℃ 之间工作的热机,其最大效率为 < D ><A> 100 % <B> 75 % <C> 25 % <D> 20 %14. 在理想气体的S-T 图中,通过某点可以分别作出等容线和等压线,其斜率分别为则在该点两曲线的关系为: 〔A 〕〔A 〕 x < y 〔C 〕 x = y 〔D 〕 无确定关系15. 某气体状态方程为仅表示体积的函数,问在恒温下该气体的熵是随体积的增加而: < A> 〔A 〕 增加 〔B 〕减少 〔C 〕不变 〔D 〕不确定16. 室温25℃下, 1 mol 理想气体进行焦耳实验〔自由膨胀〕,求得 ΔS = 19.16 J·K -1,则体系的吉布斯自由能变化为: < AB ><A> ΔG = -5614 J <B> ΔG < 19.16 J <C> ΔG = -479 J <D> ΔG = 017. 2 mol H 2和 2 mol Cl 2在绝热钢筒内反应生成HCl 气体,起始时为常温常压.则< C ><A> Δr U = 0,Δr H = 0,Δr S > 0,Δr G < 0 <B> Δr U < 0,Δr H < 0,Δr S > 0,Δr G < 0 <C> Δr U = 0,Δr H > 0,Δr S > 0,Δr G < 0 <D> Δr U > 0,Δr H > 0,Δr S = 0,Δr G > 018. 理想气体与温度为T 的大热源接触作等温膨胀,吸热Q,所作的功是变到相同终态的最大功的20%,则体系的熵变为 < C >ӘS ӘT V x , y ,〔A 〕 Q/T 〔B 〕0 〔C 〕5 Q/T 〔D 〕-Q/T19. 单原子理想气体的温度由T 1变到T 2时,等压过程体系的熵变<ΔS>p 与等容过程的熵变<ΔS>v 之比为 < D > 〔A 〕 1:1 〔B 〕2:1 〔C 〕3:5 〔D 〕5:320. 在恒温恒压下不作非体积功的情况下,下列哪个过程肯定能自发进行? < C ><A> ΔH > 0,ΔS > 0 <B> ΔH > 0,ΔS < 0 <C> ΔH < 0,ΔS > 0 <D> ΔH < 0,ΔS < 0二. 空题1. 公式Δmix S = - R ∑B n B lnx B 的应用条件是:封闭体系平衡态、理想气体、等温混合,混合前每种气体单独存在时的压力都相等,且等于混合后的总压力.2. 对一封闭体系,W f = 0 时,下列过程中体系的ΔU ,ΔS ,ΔG 何者必为零?<1> 绝热密闭刚性容器中进行的化学反应过程 ΔU ; <2> 某物质的恒温恒压可逆相变过程 ΔG ;<3> 某物质经一循环恢复原状态 ΔU ,ΔS ,ΔG. 3. 理想气体等温 <T = 300 K> 膨胀过程中从热源吸热 600 J,所做的功仅是变到相同终态时最大功的 1/10,则体系的熵变ΔS = 20 J·K -1. 因为 W R = Q R = 600 J×10 = 6.000 kJ 所以 ΔS = Q R /T = 6000 J/300 K = 20 J·K -14. 理想气体向真空膨胀,体积由V 1变到V 2,其ΔU=0 ,ΔS>0 .5. 1 mol 单原子分子理想气体,从p 1=202 650 Pa,T 1= 273 K 在p/T=常数的条件下加热,使压力增加到p 2=405 300 Pa,则体系做的体积功W = 0J. 因为p/T=常数,当p 2 = 2p 1时,T 2 = 2T 1,即V 2 = V 1 所以W=06. 当一个化学反应的ΔCp 等于零时,该反应的热效应就不受温度影响. Kirchhoff 定律7. 对熵产生d i S 而言,当体系内经历可逆变化时其值=0, 而当体系内经历不可逆变化时其值>0.8. 对于任何宏观物质,其焓H 一定>内能U <填上 >、<、=> ,因为H=U+pV ; 对于等温理想气体反应,分子数增多的ΔH 一定 >ΔU,因为Δn>0 .9. 在恒熵恒容只做体积功的封闭体系里, 当热力学函数 U 到达最 小 值时,体系处于平衡状态.因为10. 300 K 时,将2 mol Zn 片溶于过量的稀硫酸中,若反应在敞口容器中进行时放热Q p ,在封闭刚性容器中进行时放热Q V ,则Q V -Q p = - 4988 J.11. 在自发过程中,体系的热力学概率和体系的熵的变化方向 相同 ,同时它们又都是 状态函数,两者之间的具体函数关系是S = kln Ω,该式称为玻耳兹曼公式,它是联系宏观量和微观量 的重要桥梁.12. 如图.两条等温线的温度分别为T a ,T b .1mol 理想气体经过路径1231的W I 与经过路径4564的W II 大小关系是W I =W II .13. 在绝热封闭条件下,体系的∆S 的数值可以直接用作过程方向性的判据, ∆S = 0表示可逆过程;∆S > 0 表示不可逆过程;∆S < 0 表示不可能发生的过程. 14. 在横线上填上 >、<、= 或 ?〔?代表不能确定〕. 水在 373.15 K 和 101.325 kPa 下通过强烈搅拌而蒸发,则 <A> ΔS____>__Q/TQ 为该过程体系吸收的热量()()()()反应物生成物∑∑-=∆C C Cmp B m p B p ,,νν<B> ΔF____<__ -W<C> ΔF____<__ -W f <忽略体积变化> <D> ΔG____<__ -W f15. 公式ΔS = nRln<V 2/V 1> + C V ln<T 2/T 1>的适用X 围是 封闭体系,理想气体从始态P 1,V 1,T 1经历任何过程到态终态P 2,V 2,T 2 .三. 指出下列公式的适用条件〔1〕dU=δQ–PdV〔2〕ΔH=Q P ; ΔU=Q V 〔3〕2211;T T P V T T C dT U C dT ∆H =∆=⎰⎰〔4〕21ln V W nRT V = 〔5〕W= -PΔV 〔6〕PV γ=常数 〔7〕1221V Vln nR P P lnnR S ==∆〔8〕⎰=∆21P P Vdp G〔9〕ln mix BB S RnX ∆=-∑〔10〕12222111lnln ln ln p v p T V TS nR C nR C p T V T ∆=+=+ 答案: 1. 封闭体系非膨胀功为02. ΔH=Q P , 封闭体系、平衡态,不作非膨胀功,等压过程 ΔU=Q V , 封闭体系、平衡态,不作非膨胀功,等容过程3. 21T P T C dT ∆H =⎰,封闭体系、平衡态,状态连续变化的等压过程21T V T U C dT ∆=⎰,封闭体系、平衡态,状态连续变化的等容过程对于理想气体,适用于一切过程.4. 封闭体系、平衡态,不作非膨胀功,理想气体等温可逆过程.5. 封闭体系、平衡态,不作非膨胀功,等外压膨胀过程6. 封闭体系、平衡态,不作非膨胀功,理想气体绝热可逆过程.7. 封闭体系、平衡态,理想气体,等温过程,不作其他功.8. 封闭体系、平衡态,状态连续变化的等温过程,不作其他功. 9.封闭体系、平衡态,理想气体等温等压混合. 10.理想气体从始态经历任何过程到终态四. 计算题1. 1mol 单原子理想气体,始态为P 1=202650Pa,T 1=273K,沿可逆途径P/T =常数至终态,压力增加一倍.计算V 1,V 2,T 2,Q,W,V 1,ΔH,,ΔU.解答:3111m 0112.0Pa 202650K 273K mol J 314.8mol 1P nRT V 11=⎪⎪⎭⎫⎝⎛⨯⋅⋅⨯==-- 因为P/V=常数,所以:ΔU =nC V ,m 〔T 2 -T 1〕=10.21kJΔH =nC P,m 〔T 2 -T 1〕=17.02kJ Q =ΔU -W =13.61kJ2. 在p θ和373.15 K 下,把1mol 水蒸气可逆压缩为液体,计算Q,W,∆U m ,∆H m ,∆F m ,∆G m 和∆S m .已知在373.15 K 和p θ下,水的摩尔汽化热为40.691 kJ·mol -1.解答:当外压恒定时:W = —p ΔV m = p[V m <l>-V m <g>] ≈pV m <g> = RT =3.101 kJ·mol -1 此时:Q p = ΔH m = -Δvap H m = - 40.691 kJ·mol -1 <2分> ΔU m =ΔH m -p ΔV m = -37.588 kJ·mol -1 <2分> ΔG m = 0ΔF m = W R = 3.103 kJ·mol -1 ΔS m = Q R /T = -109.0 J·K-1·mol -13. 今有 A,B,C 三种液体,其温度分别为 303 K,293 K,283 K.在恒压下,若将等质量的 A 与 B 混合,混合后终态温度为 299 K ;若将A 与C 等质量混合,则终态温度为 298 K.试求 B 与C 等质量混合的终态温度.<设所有混合过程均无热的损失> 解答: A 、B 混合:m<T A -T 1>C p,A =m<T 1-T B >C p,B带入数据得:C p,B =<2/3>C p,AA 、C 混合:m<T A -T 2 >C p,A =m<T 2-T C >C p, C 得:C p,C =<1/3>C p,AB 、C 混合:m<T B -T>C p,B =m<T-T C >C p,C得BC 等质量混合得终态温度为:T=289.7K4. 试根据封闭体系热力学基本方程证明:p 22p )T G(T C ∂∂-= 证明:由dG=-SdT+Vdp 可得故p 22p p p p )TG (T T ))T G(T ()TG ()T H (C ∂∂-=∂∂∂∂-∂∂=∂∂=5. 经历下述可逆等压过程:此体系的 C p = 20 J·K -1,始态熵 S 1= 30 J·K -1.计算过程的Q,W 与体系的ΔU ,ΔH ,ΔS ,ΔF ,ΔG 的值.解答:封闭体系可逆等压过程中,Q p = ΔH =⎰21T T p C dT = 6.000 kJ体积功:W = -p<V 2-V 1> = -228.0 J ΔU = Q + W = 5.772 kJ ΔS =⎰21T T p C dln<T/K> = C p ln<T 2/T 1> = 11.2 J·K -1 S 2=ΔS +ΔS 1= 41.2 J·K -1ΔF =ΔU -Δ<TS> = -11.06 kJ ΔG =ΔH -Δ<TS> = -10.84 kJ6. 请分别根据条件<a>和条件<b>计算说明以下两种状态的的水哪一个更稳定.〔1〕H 2O 〔l,298.2K,p θ〕<2> H 2O <g,298.2K,p θ>.已知如下数据: <a> 水在298.2K 时的饱和蒸汽压是3167.7Pa<b> H 2O 〔l,298.2K,p θ〕→ H 2O <g,298.2K,p θ> 的1m r mol .kJ 01.44H -θ=∆,C p,m <H 2O,g>=30.12+11.3×10-3TJ·K -1·mol -1,C p,m <H 2O,l>=75.30J·K -1·mol -1解答:由Gibbs 判据P43,计算状态〔1〕到〔2〕的Gibbs 自有能变化就能判断哪种状态更稳定.设计如下过程:H 2O 〔l,298.2K, p θ〕→H 2O <l, 298.2K, 3167.7Pa>→ H 2O <g, 298.2K, 3167.7Pa>→H 2O <g, 298.2K, p θ>对于液体0G 1≈∆〔P47〕,02=∆G3G ∆=nRTlnp 2/p 1 P47G ∆=8591J>0,所以:液态水更稳定.7. 根据熵增加原理,请论证一个封闭体系由始态A 到同温的状态B,在等温过程中,可逆过程吸热最多,对外做功最大.且在该体系中所有恒温可逆过程中吸的热和做的功都相等. 证明:a. 设体系由状态A 经任一等温不可逆过程〔I 〕到达状态B,吸热Q iR ,做功W iR , 另外状态A 经等温可逆过程〔II 〕到达状态B,吸热Q R ,做功W R ,用此两过程可以构成一个循环,A 经过程I 到B,然后经II 的逆过程回到A 此时,系统复原,0=体S ∆,由于是等温过程,环境一定是温度为T 的热源,TQ Q S RiR +-∆=环,由于整个循环过程是不可逆的0〉∆+∆环体S S ,所以Q R >Q iR由热力学第一定律 iR iR R R W Q W Q U +=+=∆W R <W iR所以:|W R |>|W iR |b. 同理用以上的思路设计包含两个恒温可逆过程的循环过程,而此过程是可逆的.所以得出两个过程的Q 和W 都相等.8. 一个绝热容器原处于真空状态,用针在容器上刺一微孔,使298.2K,Pθ的空气缓慢进入,直至压力达平衡.求此时容器内空气的温度.〔设空气为理想的双原子分子〕解答:设终态时绝热容器内所含的空气为体系,始终态与环境间有一设想的界面,始终态如 下图所示 在绝热相上刺一小孔后,n mol 空气进入箱内,在此过程中环境对体系做功为 P θV 0.体系对真空箱内做功为0.体系做的净功为Pθ V 0 ,绝热过程Q =0, ΔU =W = P θV 0=nRT 1 又理想气体任何过程: ΔU = C v 〔T 2-T 1〕联立上式:nRT 1=C v 〔T 2-T 1〕 对于双原子理想气体 C v,m =2.5R 则 T 2=1.4T 1=417.5K9. 有一个礼堂容积为1000m 3,气压为Pθ,室温为293K,在一次大会结束后,室温升高了5K,问与会者们对礼堂内空气贡献了多少热量?P=0 V 1 P=P θ V 1, T 2 P=P θ, n mol V 0 T 1=298K解答:若选取礼堂内温度为293K的空气为体系,则随着的温度升高,室内空气不断向外排出,体系已经不在封闭了,实际上这是一个敞开体系,室内空气随着温度的升高逐渐减少,现选取某一时刻礼堂内的空气为体系,在压力和体积维持恒定时,n=PV/ RT.等压过程中的热量计算:会议过程中的总热量:可以近似认为空气为双原子分子,C P,m=7/2R,P,V,R,T1均已知,T2=T1+5=298K代入得Q P=6000.8J。
物理化学课后习题答案

1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 °C,另一个球则维持0 °C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 °C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 °C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 °C,使部分水蒸气凝结为水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于物理化学课后习题答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]第一章两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100 C,另一个球则维持 0 C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,如图所示,一带隔板的容器中,两侧分别有同温、不同压的H2与N2,P(H2)=20kpa,P(N2)=10kpa,二者均可视为理想气体。
H23dm3P(H2) T N2 1dm3 P(N2) T(1)两种气体混合后的压力;(2)计算混合气体中H2和N2的分压力;(3)计算混合气体中H2和N2的分体积。
第二章1mol水蒸气(H2O,g)在100℃,下全部凝结成液态水,求过程的功。
假设:相对水蒸气的体积,液态水的体积可以忽略不计。
1mol某理想气体与27℃,的始态下,先受某恒定外压恒温压缩至平衡态,在恒容升温至℃,。
求过程的W,Q, ΔU, ΔH。
已知气体的体积Cv,m=*mol-1 *K-1。
容积为 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 C,4 mol的Ar(g)及150 C,2 mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的。
已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。
解:图示如下假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计则该过程可看作恒容过程,因此假设气体可看作理想气体,,则冰(H2O,S)在100kpa下的熔点为0℃,此条件下的摩尔熔化焓ΔfusHm=*mol-1 *K-1。
已知在-10~0℃范围内过冷水(H2O,l)和冰的摩尔定压热容分别为Cpm(H2O,l)=*mol-1 *K-1和Cpm(H2O,S)=*mol-1 *K-1。
求在常压及-10℃下过冷水结冰的摩尔凝固焓。
O, l)在100 C的摩尔蒸发焓。
水和水蒸气已知水(H2在25~100℃间的平均摩尔定压热容分别为Cpm(H2O,l)=*mol-1 *K-1和Cpm(H2O,g)=*mol-1 *K-1。
求在25C时水的摩尔蒸发焓。
应用附录中有关物资的热化学数据,计算 25 C时反应的标准摩尔反应焓,要求:(1)应用25 C的标准摩尔生成焓数据;(2)应用25 C的标准摩尔燃烧焓数据。
解:查表知Compound00因此,由标准摩尔生成焓由标准摩尔燃烧焓已知25 C甲酸甲脂(HCOOCH3, l)的标准摩尔燃烧焓为,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水(H2O, l)及二氧化碳(CO2, g)的标准摩尔生成焓分别为、、及。
应用这些数据求25 C 时下列反应的标准摩尔反应焓。
解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓某双原子理想气体1mol从始态350K,200kpa经过如下五个不同过程达到各自的平衡态,求各过程的功W。
(1)恒温可逆膨胀到50kpa;(2)恒温反抗50kpa恒外压不可逆膨胀;(3)恒温向真空膨胀到50kpa;(4)绝热可逆膨胀到50kpa;(5)绝热反抗50kpa恒外压不可逆膨胀。
第三章始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。
求各步骤及途径的。
(1)恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;(3)先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。
解:(1)对理想气体恒温可逆膨胀,U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T:根据理想气体绝热过程状态方程,各热力学量计算如下5mol单原子理想气体从始态300K,50kpa,先绝热可逆压缩至100kpa,再恒压冷却使体积小至85dm3。
求整个过程的W,Q, ΔU, ΔH及ΔS。
绝热恒容容器中有一绝热耐压隔板,隔板一侧为2 mol的200 K,50 dm3的单原子理想气体A,另一侧为3 mol的400 K,100 dm3的双原子理想气体B。
今将容器中的绝热隔板撤去,气体A与气体B混合达到平衡。
求过程的。
解:过程图示如下系统的末态温度T可求解如下系统的熵变注:对理想气体,一种组分的存在不影响另外组分。
即A和B的末态体积均为容器的体积。
绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N2(g)。
一侧容积50 dm3,内有200 K的N2(g) 2 mol;另一侧容积为75 dm3, 内有500 K的N2(g) 4mol;N2(g)可认为理想气体。
今将容器中的绝热隔板撤去,使系统达到平衡态。
求过程的。
解:过程图示如下同上题,末态温度T确定如下经过第一步变化,两部分的体积和为即,除了隔板外,状态2与末态相同,因此注意21与22题的比较。
已知苯(C6H6)的正常沸点为C,ΔvapHm=*mol-1。
液体苯的摩尔定压热容Cp,m=*mol-1 *K-1。
今将,C的苯蒸气1 mol,先恒温可逆压缩至,并凝结成液态苯,再在恒压下将其冷却至60C.求整个过程的W,Q, ΔU, ΔH及ΔS。
已知在 kPa下,水的沸点为100 C,其比蒸发焓。
已知液态水和水蒸气在100 ~ 120 C范围内的平均比定压热容分别为及。
今有 kPa下120 C 的1 kg过热水变成同样温度、压力下的水蒸气。
设计可逆途径,并按可逆途径分别求过程的及。
解:设计可逆途径如下化学反应如下:(1)利用附录中各物质的数据,求上述反应在25 C时的;(2)利用附录中各物质的数据,计算上述反应在25 C时的;(3) 25 C,若始态CH4(g)和H2(g)的分压均为150 kPa,末态CO(g)和H2(g)的分压均为50 kPa,求反应的。
解:(1)(2)(3)设立以下途径已知水在77 C是的饱和蒸气压为 kPa。
水在 kPa下的正常沸点为100 C。
求(1)下面表示水的蒸气压与温度关系的方程式中的A和B值。
(2)在此温度范围内水的摩尔蒸发焓。
(3)在多大压力下水的沸点为105 C。
解:(1)将两个点带入方程得(2)根据Clausius-Clapeyron方程(3)第四章在25 C,1 kg水(A)中溶有醋酸(B),当醋酸的质量摩尔浓度bB介于和之间时,溶液的总体积。
求:(1)把水(A)和醋酸(B)的偏摩尔体积分别表示成bB的函数关系。
(2)时水和醋酸的偏摩尔体积。
解:根据定义当时80 C是纯苯的蒸气压为100 kPa,纯甲苯的蒸气压为 kPa。
两液体可形成理想液态混合物。
若有苯-甲苯的气-液平衡混合物,80 C时气相中苯的摩尔分数,求液相的组成。
解:根据Raoult定律20 C下HCl溶于苯中达平衡,气相中HCl的分压为 kPa时,溶液中HCl的摩尔分数为。
已知20 C时苯的饱和蒸气压为 kPa,若20C时HCl和苯蒸气总压为kPa,求100 g笨中溶解多少克HCl。
解:设HCl在苯中的溶解符合Henry定律在100 g苯中加入 g联苯(C6H5C6H5),所形成溶液的沸点为 C。
已知纯苯的沸点为 C。
求:(1)苯的沸点升高系数;(2)苯的摩尔蒸发焓。
解:现有蔗糖(C12H22O11)溶于水形成某一浓度的稀溶液,其凝固点为 C ,计算此溶液在25 C 时的蒸气压。
已知水的,纯水在25 C 时的蒸气压为。
解:首先计算蔗糖的质量摩尔浓度由知,质量摩尔浓度和摩尔分数有以下关系假设溶剂服从Raoult 定律,则此溶液在25 C 时的蒸气压 人的血液(可视为水溶液)在 kPa 下于 C 凝固。
已知水的。
求:(1) 血液在37 C 时的渗透压;(2) 在同温度下,1 dm3蔗糖(C12H22O11)水溶液中需含有多少克蔗糖才能与血液有相同的渗透压。
解:根据已知条件 稀水溶液条件下,因此稀水溶液时,渗透压与溶质的性质无关, 第五章在真空的容器中放入固态的NH 4HS ,于25 C 下分解为NH 3(g)与H 2S(g),平衡时容器内的压力为 kPa 。
(1) 当放入NH 4HS 时容器内已有 kPa 的H 2S(g),求平衡时容器中的压力。
(2) 容器内原有 kPa 的NH 3(g),问需加多大压力的H 2S ,才能形成NH 4HS 解:反应的化学计量式如下 由题给条件,25 C 下一直下列数据():求下CO(NH2)2的标准摩尔生成吉布斯函数,以及下列反应的。
CO2(g)+2NH3(g)=H2O(g)+CO(NH2)2(s)。