第二章 控制系统的传递函数
合集下载
《自动控制原理》第2章 线性系统的传递函数
![《自动控制原理》第2章 线性系统的传递函数](https://img.taocdn.com/s3/m/0651e271856a561253d36f0b.png)
+
anc(t)
=
b0
dm dtm
r(t)
+
b1
d m−1 d t m −1
r(t)
++
bm−1
d dt
r(t)
+
bmr(t)
(m n)
设r(t), c(t)及各阶导数在t=0时的值均为零(零初始条件), 则对方程两端求拉氏变换,可得系统的传递函数
Ch2 控制系统的数学模型
◼ 传递函数的一般形式:
Ch2 控制系统的数学模型
第二章 控制系统的数学模型
Ch2 控制系统的数学模型
本章内容
❖ 引言 ❖ 物理系统的微分方程 ❖ 拉氏变换与拉氏反变换 ❖ 线性系统的传递函数 ❖ 方框图及其等效变换 ❖ 信号流图与Mason公式*
Ch2 控制系统的数学模型
2.3 线性系统的传递函数
一. 传递函数的定义
Ux(s) =
I
(s) − I2(s) sC1
(2)
I 2 (s)
=
Ux
(s) −Uo(s) R2
(3)
U o (s)
=
I 2 (s) sC2
(4)
Ch2 控制系统的数学模型
I (s) = Ui (s) −U x (s) (1) R1
Ui _
I
1/R1
Ux
Ux(s) =
I
(s) − I2(s) sC1
Uo (s)
Ui (s) (b)
I(s) Uo (s)
Ch2 控制系统的数学模型
I(s)
(c)
Uo (s)
Ui (s)
I(s)
- Uo (s) (d)
传递函数
![传递函数](https://img.taocdn.com/s3/m/f235cfdce009581b6bd9ebac.png)
图2-1的RLC无源网络用复数
阻抗表示后的电路如图2-10所示.
图中Z1=R+Ls, Z2=1/Cs . 由图可直 接写出电路的传递函数为
ui
Z1 Z2
uo
复阻抗表示的RLC电路
作业:P78 2-7,2-8,2-9(a)
例1 对RC无源网络,求传递函数Uo(s)/Ui(s)。
解: (1)由KVL,得
又因为
ui (t) Ri(t) uo (t)
i(t) C duo (t) dt
消去中间变量 i(t)
标准化
ui
(t)
RC
duo (t) dt
uo
(t)
RC
duo (t) dt
uo
(t)
ui
(t)
RC
为
G(s)
U (s) (s)
Kt
或
G(s)
U (s) (s)
Kts
分别用方块图表示如下:
(s)
U(s)
(s)
Kt
测速发电机的方块图
sKt U(s)
⑶ 电枢控制直流伺服电动机
直流伺服电动机在控制系统中广泛用作执行机构,用来对被 控对象的机械运动实现快速控制.根据例2-9可用下列方块图表 示三种情况下的直流伺服电动机.
传递函数-系统的复数域数学模型
拉氏变换法求解系统微分方程时,可得到 控制系统在复数域中的数学模型—传递函数。
传递函数不仅可表征系统的动态性能, 且可用来研究系统的结构或参数变化对系统 性能的影响。
经典控制论中广泛应用的频率法和根轨 迹法,就是以传递函数为基础的,传递函数 是经典控制理论中最基本和最重要的概念。
自动控制原理-第二章-控制系统的数学模型—结构图-信号流图-传递函数
![自动控制原理-第二章-控制系统的数学模型—结构图-信号流图-传递函数](https://img.taocdn.com/s3/m/e6ea0181f8c75fbfc67db263.png)
(1)单位脉冲 (2)单位阶跃 (3)单位斜坡 (4)单位加速度 (5)指数函数 (6)正弦函数 (7)余弦函数
f (t)
(t)
1(t )
t t2 2
e at
sin t cos t
F (s)
1
1s 1 s2 1 s3
1 (s a)
(s2 2) s (s2 2)
2.2 线性定常微分方程的求解 拉普拉斯反变换:部分分式展开法
时域 差分方程
解析式模型
状态方程
复域
传递函数 结构图-信号流图
图模型
频域 频率特性
数学模型是一个反应变量之间关系的表达式,在不同的域中有不同的表现形式!
1.引言
解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表 达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(例如阶跃信号、单位脉冲信号、正弦信 号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。
k 1 v n1
s
l 1 n2
(Ti s 1)
(T
2 j
s2
2Tj
s
1)
i 1
j 1
适用于 频域分
析
3.2 传递函数的基本概念 传递函数的标准形式
K:增益
K*=根轨迹增益
K与K*的关系:
两者关系
m
zj
K K*
j 1 n
pi
i 1
3.3 典型环节及其传递函数
一个传递函数可以分解为若干个基本因子的乘积,每个基本因子就称为典型环节。常见 的几种形式有:
Y (s)
R(s)
Y (s)
f (t)
(t)
1(t )
t t2 2
e at
sin t cos t
F (s)
1
1s 1 s2 1 s3
1 (s a)
(s2 2) s (s2 2)
2.2 线性定常微分方程的求解 拉普拉斯反变换:部分分式展开法
时域 差分方程
解析式模型
状态方程
复域
传递函数 结构图-信号流图
图模型
频域 频率特性
数学模型是一个反应变量之间关系的表达式,在不同的域中有不同的表现形式!
1.引言
解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表 达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(例如阶跃信号、单位脉冲信号、正弦信 号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。
k 1 v n1
s
l 1 n2
(Ti s 1)
(T
2 j
s2
2Tj
s
1)
i 1
j 1
适用于 频域分
析
3.2 传递函数的基本概念 传递函数的标准形式
K:增益
K*=根轨迹增益
K与K*的关系:
两者关系
m
zj
K K*
j 1 n
pi
i 1
3.3 典型环节及其传递函数
一个传递函数可以分解为若干个基本因子的乘积,每个基本因子就称为典型环节。常见 的几种形式有:
Y (s)
R(s)
Y (s)
第二章 2-2传递函数
![第二章 2-2传递函数](https://img.taocdn.com/s3/m/f19f3125aaea998fcc220e4f.png)
6
3
为了方便,常把传递函数分解为一次因式的乘积,
式(2-51)中的K常称为传递函数的增益或传递系 数(放大系数)。
4
二、传递函数的零、极点
式(2-52)中zj (j=1.2……m)为分子多项式的根,称为传 递函数的零点。 Pi(1.2……n)为分母多项式的根,称为传递函数的极点。 传递函数的零、极点可以是实数或零,也可以是复数,由 于传递函数分子、分母多项式的系数都是实数,故若有复数 零极点时,它们必是成对共轭的。 传递函数的分母多项式就是相应微分方程式 (2-49)的特 征多项式,令该分母多项式等于零,就可得到相应微分方程 的特征方程。 在特征方程中,s最高阶次等于输出量最高阶导数的阶次, 如果s的最高阶次等于n,这种系统就称为n阶系统。
1
一、传递函数的定义:线性定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比,称为该系 统的传递函数。
若线性定常系统的微分方程为:
在初始条件为零时,对(2-49)进行拉氏变换,得
2
根据传递函数的定义,描述该线性定常 系统的传递函数为:
可见,传递函数是由系统微分方程经拉氏变换而引出的。 系统输入、输出及传递函数之间的相互关系可用下图表示, 输出是由输入经过G(s)的传递而得到的,因此称G(s)为传递 函数。因为传递函数是在零初始条件下定义的,故在初始条 件为零时,它才能完全表征系统的动态性能。
§2-2传递函数
控制系统的微分方程,是时域中描述系统动态性能的数 学模型,求解微分方程可以得到在给定外界作用及初始条 件下系统的输出响应,并可通过响应曲线直观地反映出系 统的动态过程。 但系统的参数或结构形式有变化,微分方程及其解都会 同时变化,不便于对系统进行分析与研究。 根据求解微分方程的拉氏变换法,可以得到系统的另一 种数学模型 ——传递函数。 它不仅可以表征系统的动态特性,而且可以方便地研究 系统的参数或结构的变化对系统性能所产生的影响。 在经典控制理论中广泛应用的根轨迹法和频率法,就是 在传递函数基础上建立起来的。
3
为了方便,常把传递函数分解为一次因式的乘积,
式(2-51)中的K常称为传递函数的增益或传递系 数(放大系数)。
4
二、传递函数的零、极点
式(2-52)中zj (j=1.2……m)为分子多项式的根,称为传 递函数的零点。 Pi(1.2……n)为分母多项式的根,称为传递函数的极点。 传递函数的零、极点可以是实数或零,也可以是复数,由 于传递函数分子、分母多项式的系数都是实数,故若有复数 零极点时,它们必是成对共轭的。 传递函数的分母多项式就是相应微分方程式 (2-49)的特 征多项式,令该分母多项式等于零,就可得到相应微分方程 的特征方程。 在特征方程中,s最高阶次等于输出量最高阶导数的阶次, 如果s的最高阶次等于n,这种系统就称为n阶系统。
1
一、传递函数的定义:线性定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比,称为该系 统的传递函数。
若线性定常系统的微分方程为:
在初始条件为零时,对(2-49)进行拉氏变换,得
2
根据传递函数的定义,描述该线性定常 系统的传递函数为:
可见,传递函数是由系统微分方程经拉氏变换而引出的。 系统输入、输出及传递函数之间的相互关系可用下图表示, 输出是由输入经过G(s)的传递而得到的,因此称G(s)为传递 函数。因为传递函数是在零初始条件下定义的,故在初始条 件为零时,它才能完全表征系统的动态性能。
§2-2传递函数
控制系统的微分方程,是时域中描述系统动态性能的数 学模型,求解微分方程可以得到在给定外界作用及初始条 件下系统的输出响应,并可通过响应曲线直观地反映出系 统的动态过程。 但系统的参数或结构形式有变化,微分方程及其解都会 同时变化,不便于对系统进行分析与研究。 根据求解微分方程的拉氏变换法,可以得到系统的另一 种数学模型 ——传递函数。 它不仅可以表征系统的动态特性,而且可以方便地研究 系统的参数或结构的变化对系统性能所产生的影响。 在经典控制理论中广泛应用的根轨迹法和频率法,就是 在传递函数基础上建立起来的。
机械控制工程基础第二章物理系统的数学模型及传递函数
![机械控制工程基础第二章物理系统的数学模型及传递函数](https://img.taocdn.com/s3/m/340d4b6e8f9951e79b89680203d8ce2f006665c7.png)
数; 因为系统每增加一个独立储能元件,其内部 就多一层能量(信息)的交换。
系统的动态特性是系统的固有特性,仅 取决于系统的结构及其参数,与系统的输 入无关。
线性系统与非线性系统 线性系统 可以用线性微分方程描述的系统。如果方程的 系数为常数,则为线性定常系统;如果方程的
系数是时间t的函数,则为线性时变系统;
其中:
K1
f x1
,
x1 x10 x2 x20
K f 2
x2
x1 x10 x2 x20
滑动线性化——切线法
线性化增量方程
y=f(x)
为:
y y' =xtg
y0
A
切线法是泰勒级
x
数法的特例。
y y’
0
x0
x
非线性关系线性化
系统线性化微分方程的建立
步骤 确定系统各组成元件在平衡态的工作点; 列出各组成元件在工作点附近的增量方程; 消除中间变量,得到以增量表示的线性化微
y
f
(x0 )
df (x) dx
x
(x x0
x0 )
或:y
-
y0
=
y
=
Kx,
其中:K
df (x) dx
x
x0
上式即为非线性系统的线性化模型,称为增
量方程。y0 = f (x0)称为系统的静态方程;
由于反馈系统不允许出现大的偏差,因此,
这种线性化方法对于闭环控制系统具有实际
意义。
增量方程的数学含义就是将参考坐标的原 点移到系统或元件的平衡工作点上,对于实际 系统就是以正常工作状态为研究系统运动的起 始点,这时,系统所有的初始条件均为零。
i(t)
R
系统的动态特性是系统的固有特性,仅 取决于系统的结构及其参数,与系统的输 入无关。
线性系统与非线性系统 线性系统 可以用线性微分方程描述的系统。如果方程的 系数为常数,则为线性定常系统;如果方程的
系数是时间t的函数,则为线性时变系统;
其中:
K1
f x1
,
x1 x10 x2 x20
K f 2
x2
x1 x10 x2 x20
滑动线性化——切线法
线性化增量方程
y=f(x)
为:
y y' =xtg
y0
A
切线法是泰勒级
x
数法的特例。
y y’
0
x0
x
非线性关系线性化
系统线性化微分方程的建立
步骤 确定系统各组成元件在平衡态的工作点; 列出各组成元件在工作点附近的增量方程; 消除中间变量,得到以增量表示的线性化微
y
f
(x0 )
df (x) dx
x
(x x0
x0 )
或:y
-
y0
=
y
=
Kx,
其中:K
df (x) dx
x
x0
上式即为非线性系统的线性化模型,称为增
量方程。y0 = f (x0)称为系统的静态方程;
由于反馈系统不允许出现大的偏差,因此,
这种线性化方法对于闭环控制系统具有实际
意义。
增量方程的数学含义就是将参考坐标的原 点移到系统或元件的平衡工作点上,对于实际 系统就是以正常工作状态为研究系统运动的起 始点,这时,系统所有的初始条件均为零。
i(t)
R
《自动控制原理》第二章传递函数
![《自动控制原理》第二章传递函数](https://img.taocdn.com/s3/m/4806e9d276eeaeaad1f330f9.png)
G2 ( s ) N ( s) 1 + G1 ( s)G 2 ( s) H ( s)
∑ C ( s ) = Φ ( s) R( s) + Φ ( s) N ( s) =
G2 ( s )[G1 ( s) R ( s) + N ( s )] 1 + G1 ( s)G 2 ( s ) H ( s)
20
N ( s)
14
例2.23
R(s)
G4 G1 A G3 H2 H1
C
p1 = G1G2G3
_
-
B
G2
C (s)
∆1 = 1
L1 = −G1 G 2 H 1
p2 = G1G4
∆2 = 1
L2 = − G 2 G 3 H 2 L3 = −G 1 G 2 G3
L4 = − G 4 H 2
注意:回路 注意: 找不全是最 大的问题
5
1 R 1 G1 -1 1 G2 -1 1 G3 -1 K C
1
-1
•前向通路:开始于输入节点,沿支路箭头方向,每个节点 前向通路:开始于输入节点,沿支路箭头方向, 前向通路 只经过一次,最终到达输出节点的通路称之前向通路。 只经过一次,最终到达输出节点的通路称之前向通路。 •回路:起点和终点在同一节点,并与其它节点相遇仅一次的通路。 回路:起点和终点在同一节点,并与其它节点相遇仅一次的通路。 回路 •回路中所有支路的乘积称为回路增益。 回路中所有支路的乘积称为回路增益。 回路中所有支路的乘积称为回路增益 •不接触回路:回路之间没有公共节点时, 不接触回路:回路之间没有公共节点时, 不接触回路 不接触回路。 这种回路叫做 不接触回路。 •在信号流图中,可以有两个或两个以上不接触回路。 在信号流图中, 在信号流图中 可以有两个或两个以上不接触回路。
控制工程基础:第二章 控制系统的数学模型及传递函数
![控制工程基础:第二章 控制系统的数学模型及传递函数](https://img.taocdn.com/s3/m/827ce0d4eff9aef8951e0618.png)
用线性微分方程描述的系统,称为线性系统。 如果方程的系数为常数,则称为线性定常系统; 如果方程的系数不是常数,而是时间的函数,则称为线性时 变系统。
线性系统的重要性质是可以应用叠加原理:
(1)多个输入同时作用于线性系统的总响应,等于各个输入 单独作用时分别产生的响应之和,且输入增大若干倍时,其输出 亦增大同样的倍数。
一、 拉氏变换的定义
§2.2 拉普拉斯积分变换
1. 拉氏变换的定义
如果有一个以时间t为自变量的实函数f (t),
它的定义域是t 0,那么函数f (t)的拉氏变换为:
L[ f (t)] F (s) f (t)est dt 0
复变量:s j
原函数: f (t) 象函数: F (s)
F(s) L[ f (t)]
(6)式即为二阶常系数线性微分方程。
四、小结:
§2.1系统运动微分方程的建立
(1)物理本质不同的系统,可以有相同形式的数学模型。
机械平移动力学系统:
d2 m dt2
xo
(t
)
B
d dt
xo (t) kxo (t)
fi (t)
电网络系统:
LC
d2 dt 2
uo
(t)
RC
d dt
uo
(t)
uo
(t)
L[Ax1(t) Bx2 (t)] AX1(s) BX 2 (s)
2. 微分定理和积分定理
(1)微分定理
在所有初始条件均 为零时
L[ df (t)] sF (s) dt
L[ f (t)] F(s)
L[ df (t)] sF (s) f (0) dt
L[ d 2 f (t)] s 2 F (s) sf (0) f (0) dt 2
机电控制基础 第二章第四节传递函数
![机电控制基础 第二章第四节传递函数](https://img.taocdn.com/s3/m/0019fb4e49d7c1c708a1284ac850ad02de8007f4.png)
G(s) b0 b0
b0
b0
a0 a0 sn an1 sn1 ... a1 s 1
an
an
an
m1
m2
( k s 1)
(
2 l
s
2
2
l
s
1)
G(s) K
k 1 v n1
s
l 1 n2
(Ti s 1)
(T
2 j
s
2
2Tj
s
1)
i 1
j 1
2.4、控制系统的复域模型—传递函数
例1 已知
10
2.4、控制系统的复域模型—传递函数
4.积分环节
微分方程 传递函数
t
c(t) K 0 r(t)dt
G(s) C(s) K R(s) s
例6:液压缸 输入:流量q(t) 输出:活塞位移y(t)
q(t) A dy(t) dt
y(t)
1 A
q(t)dt
Y (s) 1 Q(s) As
G(s) Y(s) 1 Q(s) As
Ts 1
s 2 2 s 1
n2
n
e s
7
2.4、控制系统的复域模型—传递函数
1.比例环节
运动学方程
c(t) Kr(t)
传递函数
G(s) C(s) K R(s)
例3: 测速发电机 输入:角速度ω 输出:电压u
u(t) Kt(t)
G(s)
U (s) (s)
Kt
2.4、控制系统的复域模型—传递函数
(3) 画出对应的零极点图; (4) 求系统的单位脉冲响应;
(3) 如图所示
(4)
k(t)
L1[G ( s )]
机械工程控制基础-第二章-传递函数
![机械工程控制基础-第二章-传递函数](https://img.taocdn.com/s3/m/363152370722192e4536f632.png)
华中科技大学材料学院
典型环节
比例环节 惯性环节 微分环节 积分环节 振荡环节 延时节例
华中科技大学材料学院
比例环节
1、传递函数函:G(s) K (放大环节)
2、特性:输入输出成正比,无惯性,不失真, 无延迟 X(s) Y(s) K 3、参数:K 4、单位阶跃响应:输出按比值复现输入, 无过渡过程。
华中科技大学材料学院
4)方框图不唯一。由于研究角度不一样,传递函数 列写出来就不一样,方框图也就不一样。 5) 研究方便。对于一个复杂的系统可以画出它的方 框图,通过方框图简化,不难求得系统的输入、输出 关系,在此基础上,无论是研究整个系统的性能,还 是评价每一个环节的作用都是很方便的。
华中科技大学材料学院
n 2
2
p1 p2 n , p1 p2 2n 2 1
n e p t e p t y (t ) 1 ( ) 2 p1 p2 2 1
1 2
华中科技大学材料学院
p1 p2 ,当 1时, p1 p2
则
n e p t y (t ) 1 2 2 1 p2
华中科技大学材料学院
延迟环节
1. 传函
W ( s) e
s
x
y
1
t
1
(t ) 2.单位阶跃响应 y(t ) L1[es 1 s ] 1 3.参数 延迟时间 4.特性:能充分复现输入,只是相差 ,该环节
t
是线性的,他对系统稳定性不利。然而过程控制中,
系统多数都存在延迟环节,常用带延迟环节的一阶
x(t )
1
y(t )
K
t
t
比例环节实例
1)分压器
第二章 (2.1,2.2)控制系统的微分方程、传递函数
![第二章 (2.1,2.2)控制系统的微分方程、传递函数](https://img.taocdn.com/s3/m/b565a491b9d528ea81c77946.png)
拉氏变换的重要应用——解线性定常微分方程
求微分方程的拉氏变换,注意初值!!
求出 C ( s ) 的表达式 拉氏反变换,求得 c (t )
例1 已知系统的微分方程式,求系统的输出响应。
d 2c(t ) dc(t ) 2 2c(t ) r(t ) 2 dt dt d2 解: 在零初态下应用微分定理: 2 s 2
+
i (t )
R
–
u (t )
+
i (t )
u (t ) i (t ) R
du ( t ) 1 i (t ) dt C
di (t ) u (t ) L dt
电容
C
–
u (t )
+
ቤተ መጻሕፍቲ ባይዱi (t )
电感
u (t )
–
L
机械系统三要素的微分方程
设系统输入量为外力,输出量为位移
d 2 x (t) m f (t) 2 dt
d uc (t ) duc (t ) LC RC uc (t ) ur (t ) 2 dt dt
2
3.机械位移系统
输入量为外力: F (t ) 输出量为位移: y (t )
dy 2 (t ) 依据牛顿定律: F m dt 2
dy (t ) d y (t ) F (t ) ky (t ) f m 2 dt dt
d 2 y (t ) dy (t ) m f ky (t ) F (t ) 2 dt dt
微分方程结构一致 二阶线性定常微分方程
不同形式的物理环节和系统可以建立相同形式的数学模型。
系统微分方程由输出量各阶导数和输 入量各阶导数以及系统的一些参数构成。 n阶线性定常系统的微分方程可描述为:
课件:控制系统的传递函数
![课件:控制系统的传递函数](https://img.taocdn.com/s3/m/158a1332195f312b3069a57e.png)
s
Rs
如果H(s)=1,则下图所示的系统为单位反馈系统,它的闭环 传递函数为
CR s Rs
1
G1 s G2 s G1sG2s
Gs 1 Gs
(2 - 50)
5
如果H(s)=1
CR s Rs
1
G1 s G2 s G1sG2 s
1
Gs Gs
(2 - 50)
其中Gs
G1
s
G2
s
,
若令Gs
U V
s s
CR s R(s)
CR s Rs
1
G1 s G2 s G1 s G2 s H
s
pp58:练习2-3 15
2.7 控制系统的反馈特性
闭环控制系统又名反馈控制系统。这类系统之所以被人们 广泛应用,其原理是它有着下列开环系统所没有的特性。
一: 反馈能减小参数变化对系统的影响
图(a)和(b)分别为开环和闭环系统的方框图。开环系统的输出
s
H
s
Rs
1
G2 sHs G1sG2 sH
s
Ds
(2-57)
当满足|G1(s)H(s) |>>1和|G1(s)G2(s)H(s) |>>1时,可得出如下 的结论:
13
CR s Rs
1
G1 s G2 s G1 s G2 s H
s
(2- 49)
1)当 | G1(s) G2(s ) H(s) |>>1时,由式(2-49)得
20
图2-41 扰动作用下系统的框图
10
求得扰动误差的传递函数为:
ED s Ds
1
G2sH s G1 s G2 s H
《自动控制原理》第二章传递函数
![《自动控制原理》第二章传递函数](https://img.taocdn.com/s3/m/d5d495dba58da0116c1749f9.png)
输出信号的拉氏变换 传递函数 = 输入信号的拉氏变换 零初始条件
C ( s) G(s) = R( s)
autocumt@ 1 中国矿业大学信电学院
一、 传递函数的定义和主要性质
设线性定常系统由下述n阶线性常微分方程描述: 设线性定常系统由下述n阶线性常微分方程描述:
dn d n −1 d a 0 n c (t ) + a1 n −1 c (t ) + ⋅ ⋅ ⋅ + a n −1 c (t ) + a n c (t ) dt dt dt d m −1 d dm = b0 m r (t ) + b1 m −1 r (t ) + ⋅ ⋅ ⋅ + bm −1 r (t ) + bm r (t ) dt dt dt
autocumt@
15
中国矿业大学信电学院
自动控制原理
4、振荡环节
特点:包含两个独立的储能元件,当输入量发生变化时,两个 包含两个独立的储能元件,当输入量发生变化时, 包含两个独立的储能元件 储能元件的能量进行交换,使输出带有振荡的性质。 储能元件的能量进行交换,使输出带有振荡的性质。
z1 n 2 (t) = n1 (t) z2
G(s) = N 2 (s) z1 = =K N1 (s) z 2
传递函数: 传递函数:
autocumt@
9
中国矿业大学信电学院
其它一些比例环节
自动控制原理
R2 R1
r (t )
Ec
R
c (t )
ic (t )
r1
r2
r (t )
c(t )
C
例:积分电路 积分电路
i1 (t )
R1
控制工程基础4-第2章 (数学模型-2:传递函数)
![控制工程基础4-第2章 (数学模型-2:传递函数)](https://img.taocdn.com/s3/m/1363bd0476c66137ee06199e.png)
第三节 传递函数
拉氏变换可以简化线性微分方 程的求解。还可将线性定常微分方 程转换为复数S域内的数学模型— 传递函数。
一、传递函数的概念
二、典型环节的传递函数
一、 传递函数概念
输入
输入拉氏 变换
设一控制系统 r(t) c(t) 系统 G(S)
R(S)
输出 输出拉氏 变换
C(S)
传递函数的定义:
零初始条件下,系统输出量拉氏变换与系 统输入量拉氏变换之比。
R(s)
G1(s)+G2(s)
C(s)
+ G2(s) C2(s)
n C1(s)=R(s)G1(s) C2(s)=R(s)G2(s) G (s)=Σ Gi (s) n个环节的并联 i=1 C(s)=C1(s)+C2(s) =R(s)G1(s)+R(s)G2(s) C(s) =G (s)+G (s) G(s)= R(s) 1 等效 2
2) 传递函数取决于系统的结构和参数, 与外施信号的大小和形式无关。
3) 传递函数为复变量S 的有理分式。
4) 传递函数是在零初始条件下定义 的,不能反映非零初始条件下系统的运 动过程。
二、 基本环节的传递函数
不同的物理系统,其结构差别很 大。但若从系统的数学模型来看,一 般可将自动控制系统的数学模型看作 由若干个典型环节所组成。研究和掌 握这些典型环节的特性将有助于对系 统性能的了解。
结构图特点
• 结构图是方块图与微分方程(传函)的结合。一方面它直观反映了整 个系统的原理结构(方块图优点),另一方面对系统进行了精确的定 量描述(每个信号线上的信号函数均可确定地计算出来) • 能描述整个系统各元部件之间的内在联系和零初始条件下的动态性能, 但不能反映非零条件下的动态性能 • 结构图最重要的作用:计算整个系统的传函 • 对同一系统,其结构图具有非唯一性;简化也具有非唯一性。但得到 的系统传函是确定唯一的. • 结构图中方块≠实际元部件,因为方框可代表多个元件的组合,甚至 整个系统
拉氏变换可以简化线性微分方 程的求解。还可将线性定常微分方 程转换为复数S域内的数学模型— 传递函数。
一、传递函数的概念
二、典型环节的传递函数
一、 传递函数概念
输入
输入拉氏 变换
设一控制系统 r(t) c(t) 系统 G(S)
R(S)
输出 输出拉氏 变换
C(S)
传递函数的定义:
零初始条件下,系统输出量拉氏变换与系 统输入量拉氏变换之比。
R(s)
G1(s)+G2(s)
C(s)
+ G2(s) C2(s)
n C1(s)=R(s)G1(s) C2(s)=R(s)G2(s) G (s)=Σ Gi (s) n个环节的并联 i=1 C(s)=C1(s)+C2(s) =R(s)G1(s)+R(s)G2(s) C(s) =G (s)+G (s) G(s)= R(s) 1 等效 2
2) 传递函数取决于系统的结构和参数, 与外施信号的大小和形式无关。
3) 传递函数为复变量S 的有理分式。
4) 传递函数是在零初始条件下定义 的,不能反映非零初始条件下系统的运 动过程。
二、 基本环节的传递函数
不同的物理系统,其结构差别很 大。但若从系统的数学模型来看,一 般可将自动控制系统的数学模型看作 由若干个典型环节所组成。研究和掌 握这些典型环节的特性将有助于对系 统性能的了解。
结构图特点
• 结构图是方块图与微分方程(传函)的结合。一方面它直观反映了整 个系统的原理结构(方块图优点),另一方面对系统进行了精确的定 量描述(每个信号线上的信号函数均可确定地计算出来) • 能描述整个系统各元部件之间的内在联系和零初始条件下的动态性能, 但不能反映非零条件下的动态性能 • 结构图最重要的作用:计算整个系统的传函 • 对同一系统,其结构图具有非唯一性;简化也具有非唯一性。但得到 的系统传函是确定唯一的. • 结构图中方块≠实际元部件,因为方框可代表多个元件的组合,甚至 整个系统
自动控制理论第二章传递函数_图文
![自动控制理论第二章传递函数_图文](https://img.taocdn.com/s3/m/9741ff6c312b3169a451a4ce.png)
解:前向通路4条 独立回路3个
§2.6 一般反馈控制系统
传递函数的各种术语 误差传函 扰动传函 一般控制作用
1. 一般控制系统
前向通道传函 闭环系统的开环传函 系统闭环传递函数 系统在给定作用下的输出
1、由系统输入到系统输出端的信号通路定义为系统 前向主通路(道)[简称主通路或前向通路]
②方框:表示输入、输出信号之间的传递 关系。
③引出点(测量点):表示信 号引出或测量位置,从同一 点引出的信号完全相同。
④比较点(综合点):表示两个或两个以上 的信号,在该点相加、减。注意,比较点 处信号的运算符号必须标明正(+)、负(-), 一般不标者取正号。同时进行运算的信号 必须具有相同的量纲。
梅逊公式
回路总增益 (闭环传函)
第i条前向通 道余子式
第i个前向 通道增益
特征式
例:三级RC滤波网络如
图所示,求传递函数G(s)。
解: 前向通路1条 独立回路5个
两两不接触回路6个
三三不接触回路 特征式 余子式 传递函数
例:试求取图示系统的传递函数
解:前向通路3条
独立回路2个
例:系统结构图如图所示,试求其传递函数
积分器框图
特性:调节系统稳态误差,也称为无差 环节。
电压的传递函数
三、纯微分环节
定义:环节的输出响应正比于输入信号的变化率 。
微分方程 传递函数
测速发电机
四、惯性环节
定义:环节的输出不能立即复现输入,而是经过 一定时间后才能复现输入的变化。
微分方程
传递函数
运算放大器
五、振荡环节
定义:在输入作用下,环节输出响应随时间变化的 过渡过程总是在某一稳定值上下出现衰减振荡,而 最终趋于稳定值。
§2.6 一般反馈控制系统
传递函数的各种术语 误差传函 扰动传函 一般控制作用
1. 一般控制系统
前向通道传函 闭环系统的开环传函 系统闭环传递函数 系统在给定作用下的输出
1、由系统输入到系统输出端的信号通路定义为系统 前向主通路(道)[简称主通路或前向通路]
②方框:表示输入、输出信号之间的传递 关系。
③引出点(测量点):表示信 号引出或测量位置,从同一 点引出的信号完全相同。
④比较点(综合点):表示两个或两个以上 的信号,在该点相加、减。注意,比较点 处信号的运算符号必须标明正(+)、负(-), 一般不标者取正号。同时进行运算的信号 必须具有相同的量纲。
梅逊公式
回路总增益 (闭环传函)
第i条前向通 道余子式
第i个前向 通道增益
特征式
例:三级RC滤波网络如
图所示,求传递函数G(s)。
解: 前向通路1条 独立回路5个
两两不接触回路6个
三三不接触回路 特征式 余子式 传递函数
例:试求取图示系统的传递函数
解:前向通路3条
独立回路2个
例:系统结构图如图所示,试求其传递函数
积分器框图
特性:调节系统稳态误差,也称为无差 环节。
电压的传递函数
三、纯微分环节
定义:环节的输出响应正比于输入信号的变化率 。
微分方程 传递函数
测速发电机
四、惯性环节
定义:环节的输出不能立即复现输入,而是经过 一定时间后才能复现输入的变化。
微分方程
传递函数
运算放大器
五、振荡环节
定义:在输入作用下,环节输出响应随时间变化的 过渡过程总是在某一稳定值上下出现衰减振荡,而 最终趋于稳定值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
控制系统的传递函数
2.1 微分方程模型(时间域模型)
一、控制系统微分方程的分类
线性系统:可由线性微分方程描述的系统。线性微分方程是指微分方程 是定常和线性的。线性系统可应用叠加原理,将多输入及多输出的 系统转化为单输入和单输出的系统进行处理分析,最后进行叠加。 另外线性系统还有一个重要的性质,就是齐次性,即当输入量的数 值成比例增加时,输出量的数值也成比例增加,而且输出量的变化 规律只与系统的结构、参数及输入量的变化规律有关,与输入量数 值的大小是无关的。 非线性系统:研究非线性系统的运动规律和分析方法的一个分支学科。 非线性系统最重要的问题之一就是确定模型的结构,如果对系统的 运动有足够的知识,则可以按照系统运动规律给出它的数据模型。 一般来说,这样的模型是由非线性微分方程和非线性差分方程给出 的,对这类模型的辨别可以采用线性化,展开成特殊函数等方法。 非线性系统理论的研究对象是非线性现象,它反映出非线性系统运 动本质的一类现象,不能采用线性系统的理论来解释,主要原因是 非线性现象有频率对振幅的依赖性、多值响应和跳跃谐振、分谐波 振荡、自激振荡、频率插足、异步抑制、分岔和混沌等。
控制系统的传递函数
例 2:RLC 电路(L-R-C 无源四端网络)如图,建立输入输出间的微分方程关
由基尔霍夫定律,回路的压降为 0,即输入电压由电感、电阻、电容上的电压 平衡。 Ur=UL+UR+UC 电流 与 有 即 的关系
第二章
控制系统的传递函数
与 在数值上具有一 ~
注意:该系统也是一个二阶系统 与例 1 相比,它们具有相同的模型形式。当
线性系统满足叠加原理,而非线性系统不满足叠加原理。
第二章
控制系统的传递函数
二、微分方程模型的建立 根据系统物理机理建立系统微分方程模型的基本步骤: (1)确定系统中各元件的输入、输出物理量; (2)根据物理定律或化学定律(机理),列出元件的原始方程,在条 件允许的情况下忽略次要因素,适当简化; (3)列出原始方程中中间变量与其他因素的关系; (4)消去中间变量,按模型要求整理出最后形式。
定关系时, 上述二个微分方程具有完全相同的形式。 也就是说, 在数学上 , ~
具有相同的关系(静、动态关系),由此可见利用数学模型
研究控制系统的重要性、方便性。另外,用电气系统模拟机械系统进行实验 研究也是工程中的常用方法,就系统理论而言,可以撇开系统的具体属性进 行普遍意义的分析和研究。
第二章
控制系统的传递函数
第二章
2.3 传递函数模型
控制系统的传递函数
重点:传递函数的概念 传递函数的性质 传递函数的列写
2.3.1 定义
传递函数是经典控制理论对线性系统进行研究、分析和综合的数学工具。通过传递 函数可以将实数域中的微分、积分运算化为复数域中的代数运算,大大简化了计算工作 量,而且由传递函数导出的频率特性还具有物理意义,运用线性系统的传递函数和频率 特性有利于对系统研究、分析和综合。
三、系统微分方程中变量形式的选择
四、 系统元件间的负载效应 对于两个物理元件组成的系统而言,若其中一个元件的存在,使 另一个元件在相同输入下的输出受到影响,则有如前者对后者施加了 负载,因此这一影响称为负载效应,也称耦合。这时,如只是孤立的 分别写出两个元件的动力学方程,则经过消去中间变量而得到的整个 系统的动力学方程将是错误的。 例1 复习:1、数学模型的类型 2、建立数学模型的方法 3、建立数学模型的步骤
2.3.2 几点说明(性质) (1)传递函数是系统数学模型的又一种形式,也是一种表示输入输出 的模型形式。 它表示了系统本身的特性而与输入信号无关。 它仅能表示输入输出关系,而无法表示出系统的内部结构。 传递函数的分母和分子分别反映系统本身与外界无关的固有特性 和系统同外界之间的联系。 (2)若输入已定,则系统的输出完全取决于其传递函数,因为, Xo(s)=G(s)Xi(s) (或C(s)=G(s)R(s)) 通过拉氏变换,可求得系统在时域的输出: Xo(t)=L-1[Xo(s)]=L-1[G(s)Xi(s)] 或c(t)=L-1[C(s)]=L-1[G(s)R(s)]
分析方法:根轨迹法。
第二章
控制系统的传递函数
(8)传递函数的反拉氏变换是系统的单位脉冲响应
该式表明:系统的传递函数与系统的脉冲响应有单值对应的关系, 由于传递函数是系统的一种数学模型,能反映系统的静、动态性能, 故系统的脉冲响应也可以反映系统的静、动态性能,即系统的脉冲响 应也可以作为系统的数学模型。 2.3.3 传递函数的列写 法一:列写系统的微分方程 消去中间变量 在初始条件为0的情况下,取拉氏变换 求输出与输入拉氏变换之比
第二章
控制系统的传递函数
二、建立数学模型的依据 通过系统本身的物理特性来建立。 如力学三大定律、流体力学定律、电学定律、欧姆定律、克希霍夫定律等 三、数学模型的特点 1、实物→(抽象)数学表达式 2、不同的控制系统可以具有相同的数学模型 即可用同一个数学模型去描述不同的系统,如,单摆在平衡位置附近 的自由运动 电阻、电容、电感电路中电容的放电过程 都是衰减振荡 。 相似系统:控制系统中具有相同的数学模型的系统。 应用: 模拟:两相似系统,通过分析一个系统而达到对另外系统分 析研究,称为模拟,这种方法称为功能模拟法。
-阻尼系数 与位移的变化量成正比
由上面两式有
整理得
注意: 习惯上将系统(元件)的输出及输出的各阶导数放在等式的 左边,输入及输入的各阶导数放在等式的右边; 由于系统总是存在着储能元件,一般地,等式左边的阶次高于 右边的阶次; 上式中左边输出的最高阶次为二,称该系统为二阶系统。
第二章
系式。
第二章
控制系统的传递函数
例 2 前一节例 1,机械位移系统 直接由得到的微分方程模型 求拉氏变换有: ,在零初始条件下,对上式两端 ,整理得该系统得传递函数:
例 3 前一节例 2 RLC 网络 由得到得微分方程模型 求拉氏变换有: ? ,在零初始条件下,对上式两端 ,整理得该系统得传递函数:
第二章
第二章
控制系统的传递函数
借助表达系统输入、输出之间动态关系的微分方程:
anxo ( n ) (t ) ... a1 xo (1) (t ) a0 xo(t ) bmxi ( m ) (t ) ... b1 xi (1) (t ) b0 xi (t )
i=0,1…n j=0,1,…m 可对系统进行描述。 1、线性定常系统 ai,bj 都不是xo(t)和xi(t)及它们导数的函数,也不 是时间的函数; 2、线性时变系统 ai,bj 是时间的函数; 3、非线性系统 ai,bj 有一个依赖xo(t)和xi(t)或它们导数,或者在 微分方程中出现时间的其他函数形式。
例1:单自由度机械位移系统(如插床、刨床)如图, 建立 ~ 间的微分方程关系式。 分析: 输入: 力 输出: m的位移
第二章
控制系统的传递函数
质量-弹簧-阻尼器系统
(1)对于 m,由牛顿定律
m的受力分析
,质点所受的合力与惯性力相等。有
(2)弹簧力
-弹簧系数
与位移成正比
第二章
阻尼器力
控制系统的传递函数
控制系统的传递函数
例 4 如图表示一个汽车悬浮系统的原理图。当汽车沿着道路行驶时,轮胎的垂直位移作 为一个运动激励作用在汽车的悬浮系统上。该系统的运动,由质心的平移运动和围绕质心的 旋转运动组成。建立这个系统的数学模型相当复杂。 (b)图给出了一种大为简化的悬浮系统,设 p 点的运动 为系统的输入,车体的垂直运 动 为系统的输出,只考虑车体在垂直方向的运动时,求 。
第二章
控制系统的传递函数
2、为什么要建立控制系统的数学模型 控制系统的数学模型是由具体的物理问题、工程问题从定性的 认识上升到定量的精确认识的关键!(这一点非常重要,数学的意 义就在于此) 一方面,数学自身的理论是严密精确和较完善的,在工程问题 的分析和设计中总是希望借助于这些成熟的理论。事实上凡是与数 学关系密切的学科发展也是快的,因为它有严谨和完整的理论支持 ;另一方面,数学本身也只有给它提供实际应用的场合,它才具有 生命力。“1”本身是没有意义的,只有给它赋予了单位(物理单位 ) 才有意义。 建立系统数学模型的方法很多,主要有两类: 机理建模 (白箱-系统的各元件及参数已知,结构已知); 实验建模(数据建模,系统辨识) (黑箱-结构全不知道或灰箱-知 道一部分)。
第二章
控制系统的传递函数
本章重点:1 掌握控制系统建立数学模型的方法 2 应用拉普拉斯变换求解微分方程
2.0 概述 主要解决的问题: 1 2 3 什么是数学模型 为什么要建立系统的数学模型 对系统数学模型的基本要求
第二章
控制系统的传递函数
2.0 概述 一、数学模型的定义 1、 控制系统的数学模型是描述系统或环节内部、外部各物理量(或 变量)之间动、静态关系的数学表达式或图形表达式或数字表达 式。亦:描述系统性能的数学表达式(或数字、图像表达式)。 控制系统的数学模型按系统运动特性分为:静态模型 动态模型 静态模型:在稳态时(系统达到平衡状态)描述系统各变量间关系 的数学模型。 动态模型:在动态过程中描述系统各变量间关系的数学模型。 关系:静态模型是t时系统的动态模型。 控制系统的数学模型可以有多种形式,建立系统数学模型的方法 可以不同,不同的模型形式适用于不同的分析方法。
说明:一般由于机械系统比较复杂,参数调整不方便,在很多情况下,采用电模拟的 方法,对系统分析,特别是在现在,电气、电子技术的发展,为电模拟提供了良好的 条件。在专用模拟机或通用模拟机上,采用数学模型相似的电网络代替要研究的系统 来进行计算和研究,方便,易行。
第二章
控制系统的传递函数
3、同一控制系统可以有不同的数学模型 同一控制系统具有各种物质运动形式(机械传动、电磁量运动、热 变形等),而不同的物质运动形式又分别受不同的物理规律约束,因而 建立的数学模型可能不同。 因此,建立数学模型时,一定要搞清输入 量、输出量。 四、数学模型的分类 1、微分方程 时间域 t 单输入 单输出 2、传递函数 复数域 s=σ+iω --3、频率特性 频率域 ω --4、状态方程 时间域 t 多输入 多输出 用一组微分方程描 述系统的状态特性