材料科学基础-扩散
材料科学基础11章扩散
三.扩散系数(cm2/s,m2/s) 1.无序扩散Dr:质点作布朗运动、不存在化学位梯度时的扩散。 特点:a.移动方向是无序的,无外场推动;b.由热起伏使原子 获得迁移活化能引起;c.不产生定向扩散流,每次跃迁与前次 无关。 1 2 Dr / 6 f r 2 6 f为跃迁频率,f=AoNvexp[-Gm/RT],A比例常数,o振动 频率1013次/秒,Nv(空位)缺陷浓度,Gm跃迁(扩散)活化能。r 为每次跃迁距离,r=kao,ao晶格参数,Dr=1/6k2ao2f ,令γ=A/6 k2 ,γ结构因子 Dr=ao2oNvexp[-Gm/RT] 用扩散系数描述质点扩散: D↑→扩散↑; T↑、Nv↑、 Gm↓→D↑→扩散↑。
二、菲克定律与扩散动力学方程
1855年德国物理学家 A· 菲克(Adolf Fick)在研究大量扩散现象的基础 上,首先对这种质点扩散过程作出定量描述,得出著名的菲克定律,建立了 浓度场下物质扩散的动力学方程。
1.费克第一定律:稳定扩散的原子扩散通量与浓度梯度成正比。 一维方向: Jx=-Dc/x c c c J D C D(i j k ) 三维方向: x y z
§11-2 扩散的推动力
一、扩散的一般推动力
根据广泛适用的热力学理论,可以认为扩散过程与其他物 理化学过程一样,其发生的根本驱动力应该是化学位梯度。一 切影响扩散的外场(电场、磁场、应力场等)都可统一于化学 位梯度之中,且仅当化学位梯度为零,系统扩散方可达到平衡。 下面以化学位梯度概念建立扩散系数的热力学关系(能斯特-爱 因斯坦公式) 。
2. 晶界的内吸附
晶界能量比晶粒内部高,如果溶质原子位于晶界上,可降低体系总能 量,它们就会扩散而富集在晶界上。
3 .固溶体中发生某些元素的偏聚
材料科学基础-扩散
稳定扩散 若扩散物质在扩散层dx 内各处的浓度不随时间而变化,即dc/dt=0。
这种扩散称稳定扩散不稳定扩散 扩散物质在扩散层dx 内的浓度随时间而变化,即dc/dt≠0。
这种扩散称为不稳定扩散菲克第一定律在扩散体系中,参与扩散质点满足xC-DJ ∂∂=,即菲克第一定律 菲克第二定律 在扩散体系中,参与扩散质点满足xC D t C22∂=∂∂∂,即菲克第二定律 本征扩散 扩散系统仅受热运动的影响形成的扩散称之为本征扩散非本征扩散 因扩散受固溶引入的杂质离子的电价和浓度等外界因素所控制,故称之为非本征扩散。
相应的D 则称为非本征扩散系数自扩散 一种原子或离子通过由该种原子或离子所构成的晶体中的扩散 互扩散 两种或两种以上的原子或离子同时参与的扩散 扩散系数 扩散系统中,单位浓度梯度下的通量扩散通量 扩散系统中,单位时间内通过垂直于x 轴的单位平面的原子数量上坡扩散 溶质原子从浓度地处向浓度高处迁移的现象称为上坡扩散;产生的原因是扩散的推动力是化学位梯度,而不是浓度梯度扩散激活能原子在晶体结构中由一个平衡位置跳向相邻的平衡位置时,通常要越过一个自由能垒,该能垒高度称为扩散激活自由能,它是原子扩散的阻力。
扩散激活自由能的内能部分称为扩散激活能柯肯达尔效应 对于置换型固溶体中溶质原子的扩散,由于溶质与溶剂原子的半径相差不大,原子扩散必须与相邻原子间做置换,能观察到这种结果的实验现象称为柯肯达尔效应反应扩散 伴随有化学反应或相变的扩散过程称之为反应扩散或相变扩散,反应扩散速度主要受化学反应和扩散速度控制短路扩散 固态金属中原子沿表面,晶界,位错等途径的扩散1.扩散机构总结扩散机构扩散方向 扩散激活能 扩散系数迁移方式 空位扩散机构(主要)空位扩散方向的逆方向空位形成能和迁移能之和和空位形成能和迁移能之扩散激活能,大小等于:)22exp()(exp *00Q RTQ D HHD Df+∆-=-=质点从结点位置上迁移到相邻的空位中间隙扩散机构(主要)间隙原子迁移能 )(exp 0RT Q D D -=间隙质点穿过晶格迁移到另一个间隙位置 亚间隙机构间隙质点从间隙位置迁移结点位置,并将结点位置上的质点撞离结点位置而成为新的间隙质点 易位扩散机构两个相邻结点位置上的质点直接交换位置进行迁移环易位机构几个结点位置上的质点以封闭的环形依次交换位置进行迁移1.空位机构和间隙机构是金属体系和离子化合物体系中质点扩散的主要形式2.空位机构比间隙机构的扩散激活能大,但是扩散系数小3.固态金属中扩散方向是化学位梯度降低方向 2.扩散中常用公式)(exp 0RT Q D D -=δ261D Γ=(频率,自由程)xC -D J ∂∂=(适用于稳定扩散和非稳定扩散)x C D t C 22∂=∂∂∂(不稳定扩散) dxdc -DA JA dt dm == Dt K x =(实验测得的浓度已知) DtA t x x4),(lnI 2-=(A :图像的截距,Dt41-为斜率;)3.扩散的结果都是使不均匀体系均匀化,不平衡逐渐达到平衡4.非稳定扩散类型①扩散质在晶体表面浓度恒定情况:)2(),(C 0Dtx erfc t x C =②定量扩散质由晶体表面向内部扩散(示踪扩散法原理):)4exp(2),(C 221)(DtM t x xDt -=π5.本征扩散一般处于高温处,非本征扩散一般处于低温处;由杂质扩散转变为本征扩散,其T1-ln D r 曲线上会出现转折点;置换型固溶体扩散一般只能在高温进行;杂质浓度升高,转折点升高6.扩散系数测定一般使用示踪扩散方法7.扩散动力学方程式(能斯特-爱因斯坦方程))ln ln 1)((D 211221~γγ∂∂++=D N D N①(γγ21ln ln 1∂∂+)>0:扩散系数大于0,正常扩散,高浓度向低浓度迁移,溶质趋于均匀②(γγ21ln ln 1∂∂+)<0:扩散系数小于0,反常扩散,低浓度向高浓度迁移,溶质偏聚或分相8.影响扩散系数因素①温度:影响扩散激活能和改变物质结构 ②杂质 ③气氛 ④固溶体类型:间隙性固溶体比置换型固溶体更容易扩散;在置换型固溶体中,原子间尺寸差别越小,电负性越大,亲和力越强,扩散越困难 ⑤扩散物质性质和结构 ⑥化学键类型和强度 ⑦扩散介质结构:体心立方结构大于面心立方结构的扩散系数 ⑧结构缺陷:结构缺陷活化能小,容易扩散 9.激活能越大,扩散速率对温度的敏感性越大 10.反应扩散对扩散层深度的影响过程实际上反应扩散起初由于新相层较浅,原子扩散不是主要矛盾,过程由表面扩散所支配,新相层的增加服从直线关系;随新相层深度增加,原子扩散逐步称为主要矛盾,新相层的增加服从抛物线规律。
材料科学基础-第4章-扩散
边界条件:t>0时,若x=0,则ρ=ρs
ρ0
若x=∞,则ρ=ρ0
由
x
ρ A 1 exp( β )dβ A 2
2 0 β
ρ
ρs ρ0 0
得解为:
)
ρ ρ s (ρ s - ρ 0 )erf(
x 2 Dt
11
第二章
固体结构
例题:在930℃对原始含碳量为ρ0的钢制工件进行渗碳,其表 面含碳量维持为ρs。渗碳t1 时,距表面深度0.2mm处含碳量为 ρc,求渗碳t2 时,含碳量为ρc处距离表面的深度。
散物质量。 D -扩散系数;ρ-扩散物质质量浓度;x -沿扩散方向距离 式中负号表示物质扩散方向与浓度梯度方向相反。 菲克第一定律反映稳态扩散,即扩散过程中,各处浓度不 随时间变化(
ρ t 0
)。
J x
2
第二章
固体结构
二、菲克扩散第二定律
通常扩散为非稳态扩散,即扩散过程中,各处浓度随时间 而变化(
若知各β值,查误差函数表可得erf(β) 值,若知 erf(β) 值,反查误差函数表可得β值。
7
第二章
固体结构
8
第二章 对(4)式
ρ A 1 exp( β
0 β 2
固体结构
)d β A 2
由初始条件确定积分常数,当t=0时: 若x>0,则ρ=ρ1,β 代入ρ
A1
x 2
2
ρ 2 M πDt exp(2
lnρ
x
2
)
4Dt
x2
示踪原子
有: ln ρ A
x
4Dt
由lnρ-x2 曲线斜率可计算出D。
24
材料科学基础-第七章_扩散讲解
浓度C
C = C2
C2 > C1
C = C1 x
C2
原始状态
最终状态
C1
距离 x
扩散对溶质原子分布的影响
第七章 扩散-§7.2 扩散定律
阿道夫·菲克(Adolf Fick)于1855年通过实验得出了关于稳定态扩散的 第一定律,即在扩散过程中,在单位时间内通过垂直于扩散方向的单位截 面积的扩散物质流量(称为扩散通量J)与浓度梯度dC/dx成正比:
-x
0
+x
t0
t1 t2
原子间结合力越大,排列越紧密,激活能越大,原子跃迁越困难。
对称的周期势场
第七章 扩散-§7.1 概述
倾斜的周期势场
激活原子的跃迁
对称和倾斜的势能曲线及激活原子的跃迁
对称的周期势场不会引起物质传输的宏观扩散效果。 倾斜的周期势场使原子自左向右跃迁的几率大于自右向左跃迁的几率。 扩散正是这种原子随机跃迁过程。
J q q
q-通过管壁的碳量
At 2πrlt
根据菲克第一定律:
D dC q dr 2rlt
解得:q D(2πlt) dC dln r
通过实验可求得q和碳含量沿筒壁的径 向分布,作出C-lnr曲线,即可求出D。
l
测定扩散系数的示意图
1000C时lnr与C的关系
第七章 扩散-§7.2 扩散定律
丝
Kirdendall 实验
不等量扩散导致Mo丝移动的现象称为柯肯达尔效应。
第七章 扩散-§7.1 概述
2.扩散现象的本质
固态扩散是大量原子随机跃迁的统计结果。
金属的周期势场
材料科学基础重点总结 3 扩散
三材料的扩散扩散是物质中原子(分子或离子)的迁移现象,是物质传输的一种方式。
扩散的本质是原子依靠热运动从一个位置迁移到另一个位置。
是固体中原子迁移的唯一方式。
研究扩散一般有两种方法:表象理论—根据所测量的参数描述物质传输的速率和数量等;(宏观)原子理论—扩散过程中原子是如何迁移的。
(微观)3.1 扩散的分类1. 根据有无浓度变化自扩散:原子经由自己元素的晶体点阵而迁移的扩散。
(如纯金属或固溶体的晶粒长大-无浓度变化)互扩散:原子通过进入对方元素晶体点阵而导致的扩散。
(有浓度变化)2. 根据扩散方向下坡扩散:原子由高浓度处向低浓度处进行的扩散。
上坡扩散:原子由低浓度处向高浓度处进行的扩散。
固态扩散的条件1、温度足够高;2、时间足够长;3、扩散原子能固溶;4、具有驱动力:5、化学位梯度。
菲克第一定律稳态扩散:扩散过程中各处的浓度及浓度梯度不随时间变化(əC/ət=0,əJ/əx=0)菲克第一定律:在稳态扩散过程中,扩散通量J与浓度梯度成正比J为扩散通量,表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量,其单位为kg/(m2s)或kg/(cm2s)。
D为扩散系数,其单位为m2/s;ρ是扩散物质的质量浓度,其单位为kg/m3。
式中的负号表示物质从高浓度向低浓度扩散的现象,扩散的结果导致浓度梯度的减小,使成份趋于均匀。
菲克第二定律非稳态扩散——各处的浓度和浓度梯度随时间发生变化的扩散过程。
(əC/ət≠0, əJ/əx≠0)。
大多数扩散过程是非稳态扩散过程,某一点的浓度是随时间而变化的菲克第二定律:扩散过程中,扩散物质浓度随时间的变化率,与沿扩散方向上物质浓度梯度随扩散距离的变化率成正比。
3.2 置换式固溶体中的扩散---互扩散与柯肯达尔效应互扩散——柯肯达尔效应柯肯达尔最先发现互扩散,在α黄铜—铜扩散偶中,用钼丝作为标志,785℃下保温不同时间后,钼丝向黄铜内移动,移动量与保温时间的平方根成正比,Cu-黄铜分界面黄铜侧出现宏观疏孔。
材料科学基础--扩散
设晶面间距为,则1、2面附近的溶质 体积浓度为 n n
C1
1
; C2
2
;
由于两晶面距离很近
dC C C2 C1 n2 n1 ; 2 dx x dC n2 n1 2 dx
替换n1-n2得
dC J p dx
2
与扩散第一定律比较,得
D p
2 2
间隙扩散激活能是溶质原子跳动时所需的额外 内能。
(3)柯肯达尔效应
Mo 丝 标 记
在黄铜表面,敷上一 750oC加热 Cu+30%Zn 些很细的钼丝,然后 d Cu 在黄铜上镀铜。钼丝 就被包围在铜和α 黄 0.14 铜的分界面上。 将它们放在750℃保温,0.10 使Zn和Cu发生互扩散。0.06 发现钼丝向内移动, 扩散后黄铜界面上有 0.02 0 1 2 3 4 5 6 7 8 9 微孔 加 热 时 间 t1/2 / 天 1/2
2
0
令
0
2
4
x 2 Dt
x 2 Dt 0
c A exp(
2
)d B A
exp( 2 )d B
(3)成为
x C A erf B 2 Dt
利用边界条件,定出积分参数
C1 C2 C1 C2 x C erf 2 2 2 Dt
固态扩散的条件
扩散与原子热运动(点缺陷的运动)相关,因此必须 在满足以下条件才能实现 (1)温度足够高; (2)时间足够长; 对于互扩散,还要满足 (3)扩散原子能固溶; (4)具有驱动力:化学位梯度。
本章主要内容
扩散方程 扩散的微观机制 扩散的热力学 反应扩散 影响扩散系数的因素
材料科学基础-第七章_扩散
J D dC dx
扩散第一方程
式中:J-扩散通量(Diffusion Flux);
D-扩散系数(Diffusion Coefficient);
dC/dx-体积浓度梯度(Concentration Gradient);
“-”表示物质扩散方向与浓度梯度方向相反,即扩散从浓度高处
向
浓度低处进行。
提示:
菲克第一定律描述的是浓度仅随距离变化,而不随时间变化的扩散过 程,这种扩散即稳定态扩散。
解得:q D(2πlt) dC dln r
通过实验可求得q和碳含量沿筒壁的径 向分布,作出C-lnr曲线,即可求出D。
l
测定扩散系数的示意图
1000C时lnr与C的关系
第七章 扩散-§7.2 扩散定律
二、菲克第二定律(Fick’s Second Law)
扩散过程大多为非稳定态扩散,即各点的浓度不仅随距离变化,而且还 随时间变化。
第七章 固态金属中的扩散
Chapter 7 Diffusion in Metals and Alloys
主要内容:
概述 扩散定律 影响扩散的因素 扩散机制
第七章 扩散
扩散是物质中原子(或分子)的迁移现象,是物质传输的一种形式。 在一定温度下,物质内部能量较高的原子可以脱离周围原子的束缚,离开 其原来的平衡位置跃迁至一个新的位置,从而发生原子的迁移。大量的原子 迁移造成物质的宏观流动,即扩散。 在固体中,原子或分子的迁移只能靠扩散来进行。
2.7 0.999
第七章 扩散-§7.2 扩散定律
代入原式:
C C1 C2 C1 C2 2 xቤተ መጻሕፍቲ ባይዱ2 Dt eβ2 dβ C1 C2 C1 C2 erf( x )
材料科学基础---第七章 扩散与固相反应
稳定扩散: 若扩散物质在扩散层dx内各处的浓度不随时间
而变,即 dc 0 ,这种扩散是稳定扩散。
dt
不稳定扩散: 扩散物质在扩散层dx内的浓度随时间而变化
即 dc 0,为不稳定扩散。
dt
1. 菲克定律
第一定律:
内容:若扩散介质中存在着扩散物质的浓度差, 在此浓度的推动下产生沿浓度减少方向的定向扩 散。当扩散为稳定扩散时,在dt(s)时间内,通 过垂直于扩散方向平面上的ds(m2)面积的扩散 流量(质点数目)与沿扩散方向上的浓度梯度成 正比。
C(x,t) C0 (1
2 ) e 2 d 0
引入误差函数的余误差函数概念:
erf ( ) 2 e 2 d
0
erfc( ) 1 2 e 2 d
0
C(x,t) C0 erfc(x 2 Dt )
erfc( )可由误差函数表查得
N
I
)
exp
S M
R
exp
H M
RT
讨论:
1.当温度足够高时,N
' V
NI
,此时扩散为本征扩散
控制:
Q H f 2 H M
D0
a0 20
exp S f
2 R
S M
2.当温度足够低时,
N
' V
i Ci
C Ni , d ln Ci
Bi
i ln Ci
d ln Ni
Di
Bi
i ln Ni
i
0 i
材科-第五章-扩散
Rn na
第 二 节 扩 散 的 微 观 机 理
考虑每次跃迁与前次跃迁的相关性,引入相关系数 f,
则:
D 1 fΓa 2 6
相关系数 f 值主要取决于晶体结构和扩散机制。
第 五 章 则:
第二节 扩散的微观机理
1 2 D f a 6
第 二 节 扩 散 的 微 观 机 理
相关系数 f 值主要取决于晶体结构和扩散机制。 如果扩散以空位机理进行, 对于金刚石结构: f=0.5 对于bcc结构: f=0.72 对于fcc结构和hcp结构:f=0.79 a值主要取决于晶体的点阵类型和点阵常数,变化不大。
基 本 概 念
第 五 章
第五章 材料中的扩散
(2)根据扩散方向 下坡扩散:原子由高浓度处向低浓度处进行的扩散。 上坡扩散:原子由低浓度处向高浓度处进行的扩散。 (3)根据是否出现新相 原子扩散:扩散过程中不出现新相。 反应扩散:由之导致形成一种新相的扩散。 3 固态扩散的条件 (1)温度足够高; (2)时间足够长; (3)扩散原子能固溶; (4)具有驱动力:化学位梯度。
置换扩散:主要以空位机制进行
式中, Δ Gf –空位形成自由能; H f H m D0 exp ΔSf – 空位形成熵; RT ΔHf –空位形成焓。
C mol/cm3、g/cm3
“-” 表示粒子从高浓度向低浓度扩散,即逆浓度梯度方向扩散
C x
浓度梯度(矢量)
C J=-D x
dC 稳定扩散: 扩散质点浓度不随时间变化,也可写为 J源自 D dx推动力: 浓度梯度
C J 、 x x C J 0、 0 t x
描述: 在扩散过程中,体系内部各处扩散质点的浓度不随 时间变化,在x方向各处扩散流量相等。
材料科学基础-第四章 晶态固体中的扩散
2 r i r i j 0
i 1 j 1
n 1 n i
当存在相关效应时,可用一种简便的方法 定量表示这些相关,即求实际的<R2实际>和完全 无规行走的< R2无规行走>之比。由式4.11和4.12 可得
n 1 n i 2 r i r i j 1 i 1 j 1 f lim n n 2 ri i 1
(4.4)
若沉积物是臵于试样表面的薄层, 只向x﹥0处扩散,则其解应为
x2 M C x, t exp 4 Dt Dt
(4.5)
适用于薄膜材料的扩散问题。
2. 误差函数解
在t时间内,试样表面扩散组元i的浓度Cs 被维持为常数,试样中i组元的原始浓度为Co, 则方程(4.2)的 初始条件 t=0时 x﹥0 C=Co 边界条件 t≥0时 x=0 C=Cs x=∞ C=Co 其解为
空位扩散机制
在纯金属和臵换式固溶体中,组元的原 子直径比间隙位臵要大的多,这时主要通过 溶质原子与空位交换位臵进行扩散。
4.其他机制 在直接换位机制ห้องสมุดไป่ตู้, 两个邻近原子直接交换位
臵。这会引起很大的点阵
瞬间畸变,需克服很高的 势垒,只能在一些非晶态 合金中出现。
直接换位机制
环形换位机制具
有较低的势垒,不过
二、菲克第二定律
大多数扩散过程是非稳态扩散,即在扩散过程 中任一点的浓度随时间而变化( dc/dt≠0 )。
解决这类扩散问题,可由第一定律结合质量守 恒条件,推导出菲克第二定律来处理。 如图表示在垂至于物质运动的方向x上,取一个 截面积均为A, 长度为dx的体积元,设流入及流出此 体积元的扩散物质通量J1和J2,由质量平衡可得: 流入速率-流出速率=积存速率
材料科学基础————扩散
求解过程
设A,B是两根成分均匀的等截面金属棒,长度符合上
述无穷长的要求。A的成分是C2,B的成分是C1。将两根
在t时间内,试样表面扩散组元I的浓度Cs被维持为常数,试 样中I组元的原始浓度为c1,厚度为4 Dt ,数学上的无限” 厚,被称为半无限长物体的扩散问题。此时,Fick’s secondlaw的初始、边界条件应为 t=0,x >0,c= 0 ; t ≧ 0,x=0,c= Cs ;x=∞,c= 0 满足上述边界条件的解为
图3 扩散过程中溶质原子的分布
由扩散通量的定义,有
C J D x
(1)
上式即菲克第一定律 式中J称为扩散通量常用单位是g/(cm2.s)或 mol/(cm2.s) ; D是同一时刻沿轴的浓度梯度;是比例系数, 称为扩散系数。
图4 溶质原子流动的方向与浓度降低的方向一致
讨论:
对于菲克第一定律,有以下三点值得注意: (1)式(1)是唯象的关系式,其中并不 涉及扩散系统内部原子运动的微观过程。 (2)扩散系数反映了扩散系统的特性,并 不仅仅取决于某一种组元的特性。 (3)式(1)不仅适用于扩散系统的任何 位置,而且适用于扩散过程的任一时刻。
Dk ( P2 P 1) A F JxA l
引入金属的透气率表示单位厚度金属在单位压 差(以为单位)下、单位面积透过的气体流量 δ=DS 式中D 为扩散系数,S为气体在金属中的溶解度, 则有 F J ( p1 p2 )
在实际中,为了减少氢气的渗漏现象,多采用 球形容器、选用氢的扩散系数及溶解度较小的 金属、以及尽量增加容器壁厚等。
材料科学基础第06章--扩散
扩散方程的误差函数解
扩散方程的误差函数解
半无限长棒扩散方程的误差函数解
解为:
定义函数:
一维半无限长棒中扩 散方程误差函数解:
高斯误差函数
高斯误差函数
无限长棒中的扩散模型
实际意义:将溶质含量不同的两种材料焊接在一起,因 为浓度不同,在焊接处扩散进行后,溶质浓度随时间的 会发生相应的变化。
无限长棒扩散方程的误差函数解
为了解释上坡扩散的现象,正确分析扩散规律, 必需用热力学来讨论扩散过程的实质,因为扩散的自发 进行方向也必然是系统吉布斯自由能下降。
驱动扩散的真实动力是自由能
化学位的定义,某溶质i的化学位为
平衡条件是各处的化学位相等。如果存在一化学位 梯度,表明物质迁移 dx 距离,系统的能量将变化了。 好象有一作用力推动它移动一样,设这个力为 F,所作
菲克第二定律 引出
如图所示设为单位面积A上 取dx的单元体,体积为Adx, 在dt的时间内通过截面1流入 的物质量为
而通过截面2流出的物质量 在dt时间内,单元体中的积有量为:
菲克第二定律 微分方程
在dt时间内单元体的浓度变化量 则需要的溶质量为
菲克第二定律 微分方程标准型
在一维状态下非稳态扩散的微分方程,即为 菲克第二定律的数学表达式,又称为扩散第二方
菲克定律的表达式是正确的,用它分析可以把 问题简化。 应用那种模式要具体分析。
第四节 扩散的微观机制
• 原子热运动和扩散系数的关系 • 间隙扩散机制 • 空位扩散机制
原子热运动和扩散系数的关系
图示出晶体中两个相邻的晶面1、 2,面间距为α,截面的大小为单位面 积。假定在1、2面上的溶质原子数(面 密度)分别为 n1和 n2.。每个原子的 跃迁频率Γ是相同的,跃迁方向是随 机的,从晶面1到晶面2(或者相反)的 几率都是P。如果n1 > n2,在单位时间 从晶面1到晶面2的净流量为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意: (1) 非稳态扩散——普遍、通用的扩散方程 (2) 求解难:须对具体扩散条件进行分析后,通过建
立边界条件、初始条件以及C 表达式的推测,给出 特殊的解。
——常见几种解参考卢光熙《金属学教程》上海科技出版社
三、扩散应用举例 铸件均匀化退火
若溶质原子沿举例x方向分布:
均匀化时,振幅减小,波长λ不变
§2 扩散定律
一、菲克第一定律
各处体积浓度C只随距离x变化, 即单位时间通过垂直截面物质量J 各处相等(稳定扩散):
J = - D·dC/dx
J :扩散通量,(g/c㎡·s)
C
D:扩散系数(c㎡/s)
dC/dx:浓度梯度
第一定律适于稳态扩散,如气体通过金
属薄膜且不与金属发生反应时
ⅠⅡC1 J ຫໍສະໝຸດ 2即边界条件:(x=0)
=0
最大值 有:
若均匀化后,成分偏析振幅降低1%,此时:
均匀化退火的时间与枝晶间距、扩散系数关系
金属的粘结
钎焊——只钎料熔化, 相 互扩散形成牢固结合 钎料成分向基材扩散量按 扩散第一定律计算:
1100℃下Cu钎焊铁基材时
根据相图判断钎焊组织。钎料B与母材A,若存在化合物
也存在扩散,但固体扩散速率十分缓慢,如柯肯达 尔效应:(置换互溶的组元)
扩散定义: 物质中原子或分子通过无规运动导致宏 观迁移与传质的现象。(移动距离超过平均原子间距 )
固体金属原子扩散本质:
原子在其平衡位置进行热振动,由于能量起伏, 部分原子越过能垒;当大量原子不断克服原子之间 能垒,跃迁到邻近位置时,即实现宏观的物质迁移过 程。
dx x
x x+dx
二 、 扩散第二定律(菲克第二定律) 非稳态扩散: 各处浓度随时间、距离变化,即C(x, t) 或dC/dt≠0; 如图,物质积存速率
微体积Adx内物质积存速率用体积浓度C变化率表示:
A
化简:
将扩散第一定律代入:
适于非稳态 即 dC/dt≠0
扩散第二定律(菲克第二定律)表达式:
根据扩散中是否析出新相分类 ① 原子扩散——扩散时晶格类型不变,无新相产生 ② 反应扩散——溶质超过固溶度,扩散中有新相产生
反应扩散可依据相图分析。如:1000℃下Fe-O相图 由外至里依次:Fe2O3,Fe3O4, FeO,最后γ-Fe
反应扩散在相界面处产生浓度突变(极限溶解度); 依据相律可知,二元系扩散层中不可能存在两相区
§3 影响扩散的因素
单位时间扩散量与扩散系数和浓度梯度有关 J = - D·dC/dx → 参数: D; dC/dx 其中:D = D0·exp(-Q/RT) (1) 温度
,T1下母材向钎料中溶解,界面达C,出现γ金属化合物。
钎料B与母材A形成共晶相图,B在A中若超过溶解度极限 在晶界上形成低熔点共晶体。
镀锌——洗净的钢板浸入450℃熔融锌槽若干分钟。根据相
图分析镀层组织:锌镀层由表至里为Zn、θ、ξ、ε、α五个单
相区,金属化合物镀层易剥落,适量加入铝减少脆性化合物 的量 。
粉末冶金烧结
采用烧结工艺提高粉末冶金制品的强度和致密度。粉末材 料研制成型后,粉末微粒很多部位彼此接触,在烧结过程中原 子首先通过接触面积大量扩散,使孔隙尺寸减小;同时晶粒长 大,原子通过晶界扩散使大量孔隙消失;若长时间烧结可消除 孔隙,是材料致密。粉末越细,扩散距离越短,烧结时间越短
烧结质量取决于: 压坯密度 粉体性质与粒度 烧结工艺——烧结温度、时间等
① 下坡扩散——沿浓度降低的方向扩散,即原子由 高浓度区向低浓度区扩散。如:固溶体均匀化过 程、渗碳等。
② 上坡扩散——沿浓度升高的方向扩散,即原子由 低浓度区向高浓度区扩散。如:奥氏体转变为珠光 体时,
【要点】扩散的驱动力——化学位梯度,因多数情况 下化学位梯度与浓度梯度方向一致,故看起来扩散方 向似顺着浓度梯度方向。此外,温度梯度、应力梯度、 电场梯度、磁场梯度等作用下也可发生上坡扩散。
挤列扩散机制
哑铃转位扩散
三、固态金属扩散的条件
① 存在扩散驱动力——化学位梯度(不是浓度梯 度);此外,化学位梯度、温度梯度、应力梯度、 电场梯度、磁场梯度等也可以引起扩散(热力学) ② 扩散原子与基体固溶——(前提条件) ③ 温度足够高——温度越高,跃迁几率大(动力学) ④ 足够长时间——扩散1mm距离,必须跃迁亿万次
(宏观迁移的动力学条件)
四、固态扩散的分类
通常扩散伴随浓度变化, 且高浓度→低浓度,但 实际上:并非一定如此
例如: 纯金属以及均匀固溶体中晶粒的长大(晶界的 迁移)——扩散中无浓度变化;
又如: 奥氏体转变为珠光体时: 奥氏体转变为渗碳体时碳由低浓度的奥氏体向
高浓度的渗碳体扩散 ——扩散的种类(类型)不同
阻 力:邻近原子间势能垒(激活能Q)
驱动力:热振动原子的能量起伏——与温度有关
固态扩散是大量原子无序跃迁的统计结果
若晶体周期场的势能曲线是倾斜的,导致向右跳跃 的原子数大于反向跳回的原子数,大量原子无序迁跃 的统计结果,即造成了物质的定向输送——扩散
设存在纯金属8列原子,中间四列原子含有4个同位素原子,每 个原子平均跃迁一次后出现的同位素原子分布情况。
根据扩散中是否发生浓度变化分类
① 自扩散——扩散中无浓度变化,即:扩散与浓 度梯度无关。如:纯金属以及均匀固溶体中晶 粒的长大
② 互(异)扩散——伴随有浓度变化的扩散,即扩散 与浓度梯度有关,又称化学扩散;如:不均匀固 溶体均匀化过程中异类原子的相对扩散、互相 渗透过程等。
根据扩散方向与浓度梯度方向是否相同分类
第八章 扩散
扩散是物质中原子(分子)的迁移现象,是物质 传输的一种方式。例如:熔炼,偏析,均匀化,氧 化等过程
气、液 态——对流、扩散、(带电粒子迁移) 固态 ——扩散(唯一机制)
本章重点 : (1) 扩散的概念与本质 (2) 固态金属扩散的条件 (3) 影响扩散的因素
§1 扩散概述
一、扩散现象和本质 扩散通常是自浓度高的向低浓度方向进行;固体
二、扩散机制 扩散不仅由原子热运动所控制,而且还要受具体的
晶体结构所制约;即扩散机制随晶体结构不同而变化
两种主要机制: (1) 空位扩散—主要机制 如:自扩散,置换扩散
(2) 间隙扩散—小原子 如:碳在奥氏体中扩散
交换机制
环形机制
空位机制
松弛机制
简单间隙机制
推填子间隙机制
非共线推填子
哑铃间隙扩散