世界上最大的风力涡轮叶片和海上风力发电场平台

世界上最大的风力涡轮叶片和海上风力发电场平台
世界上最大的风力涡轮叶片和海上风力发电场平台

世界上最大的风力涡轮叶片和海上风力发电场平台

风力发电产业作为一种新技术在全球的发展中已赢得媒体的关注,最近,无排放发发电部门一年一年又一年的继续增加其全球范围内的装机容量。

西门子早在八月宣布,它已建成75米高的风力发电机,是世界上最大的风力涡轮机转子叶

片。

通过比较,了解到西门子新的叶片有多长,参加2012年4月在哥本哈根举行的欧洲风能协会年度盛会的人还记得,大量的LM风力发电机有73.5米长的叶片在贝勒中心以外(Bella Center)。

西门子说,大量的玻璃纤维制成的叶片将用在该公司的新的6兆瓦海上风力发电机组。

该公司表示,在今年夏天晚些时候在丹麦安装?sterild154米转子的第一个原型,6兆瓦的涡轮机将被安装风力发电机叶片。

公司的新闻稿指出:“每个转子直径为154米,占地18600平方米,这是两个半足球场的大小,”。

叶片移动速度将达到80米每秒,每小时290公里。巨大的转子可以通过特殊的技术,使用西门子非常坚固而轻巧的结构。“

然而,根据风电月刊的一篇文章中,中国风机制造商中船重工将在在江苏省示范海上风电场建设海上安装一个5兆瓦的风力涡轮机也将采用75米的叶片安装。

中船重工是不是在中国唯一的75米的风力发电机叶片制造商,风电月刊说,中孚Liazhong

今年早些时候表示,它也能产生这种规模的风力发电机叶片。这一切,是为了再次提醒欧洲的政治家,中国发展非常迅速,欧盟必须大力投资于风电技术研发,如果它要保持领先。在另一方面,也将有利于海上风电行业,三星重工最近公布的世界上最大的风力发电场安装船的交付。

三星表示,该公司的新闻稿称,Pacific Orca的运输和安装将有助于继续建立其在沿海水域的海上风力发电市场。

Pacific Orca是161米长,宽49米,高10.4米的庞然大物。三星表示,该容器是能够携带和安装多达12台3.6兆瓦级的风电场。

发布的消息称:“这也可以让安装在深度为60米的海上风力发电场,在世界上最深的地方成为可能,以及超大规模的风电场,容量为10兆瓦或更大的安装量。”。

该公司增加了新船的建立是为了安装的风力发电场,即使在极端条件下速度为每秒20米,波高为2.5米的大风中依然能正常工作。

此外,三星还表示,全球海上风电场容量达到293万千瓦,到2030年预计将增长迅速。“这是目前的市场规模3.5万千瓦,1000台3.5兆瓦级发电机约70倍。”

注:来源自青岛日川精密机械有限公司https://www.360docs.net/doc/227678018.html,

2020年中国风力发电行业现状及未来发展趋势分析

2017年中国风力发电行业现状及未来发展趋势分析 风能是一种淸洁而稳定的新能源,在环境污染和温室气体排放日益严重的今天,作为 全球公认可以有效减缓气候变化、提高能源安全、促进低碳经济增长的方案,得到各国政府、 机构和企业等的高度关注。此外,由于风电技术相对成熟,且具有更高的成本效益和资源有 效性,因此,风电也成为近年来世界上增长最快的能源之一。 1、全球发展概况 2016年的风电市场由中国、美国、徳国和印度引领,法国、上耳其和荷兰等国的表现 超过预 期,尽管在年新增装机上,2016年未能超过创纪录的2015年,但仍然达到了一 个相当令人满意的水平。根据全球风能理事会发布的《全球风电发展年报》显示,2016年 全球风电新增装机容量 54.600MW,同比下降14.2%,英中,中国风电新增装机容量达 23328MW (临时数据),占2016年全球 风电新增装机容量的42.7%o 到2016年年底, 全球风电累计装机容量达到486J49MW,累计同比增长 12.5%。其中,截至2016年底, 中国总量达到16&690MW (临时数据),占全球风电累计装机总量的34.7%。 2001-2016年全球风电装机置计容量 450.000 400.000 350.000 300.000 土 250.000 W 200.000 150,000 1W.OOO 50.000 数据来源:公开资料整理 ■ ■ ■ ■ ■ 11 nUr l ■蛊计装机容蚤

按照2016年底的风电累计装机容量计算,全球前五大风电市场依次为中国、美国、徳国、印度和西班牙,在2001年至2016年间,上述5个国家风电累计装机容量年均复合增长率如下表所示: 数据来源:公开资料整理 2、我国风电行业概况 目前,我国已经成为全球风力发电规模最大、增长最快的市场。根据全球风能理事会(Global Wind Energy Council)统讣数据,全球风电累计装机容量从截至2001年12月31 日的23.9OOMW增至截至2016年12月31日的486.749MW,年复合增长率为22.25%, 而同期我国风电累计装机容量的年复合增长率为49.53%,增长率位居全球第一:2016年,我国新增风电装机容量23328MW (临时数据),占当年全球新增装机容量的42.7%,位居全球第一。 (1)我国风能资源概况 我国幅员辽阔、海岸线长,陆地而积约为960万平方千米,海岸线(包括岛屿)达32,000 千米,拥有丰富的风能资源,并具有巨大的风能发展潜力。根据中国气象局2014年公布的最新评估结果,我国陆地70米高度风功率密度达到150瓦/平方米以上的风能资源技术可开发量为72亿千瓦,风功率密度达到200瓦/平方米以上的风能资源技术可开发量为50 亿千瓦;80米高度风功率密度达到150瓦/平方米以上的风能资源技术可开发量为102亿千瓦,达到200瓦/平方米以上的风能资源技术可开发量为75亿千瓦。 ①风能资源的地域分布 我国的风能资源分布广泛,苴中较为丰富的地区主要集中在东南沿海及附近岛屿以及北部(东北、华北、西北)地区,内陆也有个别风能丰富点。此外,近海风能资源也非常丰富。 A. 沿海及其岛屿地区风能丰富带:沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10千米宽的地带,年风功率密度在200瓦/ 平方米以上,风功率密度线平行

海上风力发电发展现状解读

海上风电发展 大纲: 一、国外海上风电发展现状及各国远景规划 二、海上风电的特点与面临的困难 三、海上风电发展的关键技术 四、国外海上风电发展现状及各国远景规划 目前已进入运营阶段的海上风电场均位于西北欧,西班牙和日本也建立了各自的首个试验性海上风电场。截至2006年6月,全球共建立了24个海上风电场,累计安装了了402台海上风机,总容量805MW,年发电量约2,800,000,000千瓦时。 西北欧地区的海上风电场布局如下图所示,红色标志由兆瓦级风机构成的运营风电场,紫红色标志由小容量风机构成的运营风电场,而灰色则标志已完成规划的在建风电场。 图1 西北欧海上风电场 已投入运营的大规模海上风电场大多集中在丹麦和英国。其中丹麦海上风电总装机容量达426.8MW,其次是英国339MW,共计现有海上风电装机容量的95%。而德国早在2004年就在北海的Emden树立了首台Enercon的4.5MW风机,西班牙也于今年在其北部港市毕尔巴鄂树立了5台Gamesa 2MW风机。美国已经规划的三个海上风电场Cape Cod,Bluewater Wind,Nai Kun正处于不同阶段的论证与评估阶段,其中Cape Cod风电场将于2009年正式投入运营。 由此可见,各风电大国都不约而同地把注意力集中到海上风电开发的技术研发与运营经验实践中,以图控制海上风电发展的制高点。 根据欧盟的预测,到2020年欧洲的海上风电场总装机容量将从现有的805兆瓦增长到40,000MW。相比之下,过去7年来欧洲海上风电装机容量的年增长率约为35%。欧盟指派的工作组预测欧洲的海上风电潜力约达140,000MW。

海上风电场海水养殖一体化

Perceived Concerns and Advocated Organisational Structures of Ownership Supporting ‘Offshore Wind Farm —Mariculture Integration’ 表示关注和主张 组织结构的企业 支持“离岸风场 —海水养殖一体化” Gesche Krause, Robert Maurice Griffin and Bela Hieronymus Buck 1Leibniz Center for Tropical Marine Ecology (ZMT), Bremen 1莱布尼兹热带海洋生态中心(ZMT),不莱梅 2Department of Environmental and Natural Resource Economics, University of Rhode Island 2环境与自然资源经济学院,罗德岛大学 3Alfred Wegener Institute for Polar and Marine Science (AWI), Bremerhaven 3阿尔弗雷德韦格纳极地和海洋科学研究所(AWI),不来梅港 4Institute for Marine Resources (IMARE), Bremerhaven 4海洋资源研究所(IMARE),不来梅港 5University of Applied Sciences Bremerhaven, Bremerhaven 5不莱梅应用科学技术大学,不来梅港 1,3,4,5Germany 1,2,4,5 德国 2USA 2 美国

海上风力发电及其关键技术分析 林亮

海上风力发电及其关键技术分析林亮 发表时间:2019-09-05T10:34:49.077Z 来源:《中国电业》2019年第09期作者:林亮屈伟 [导读] 随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 中国船舶重工集团(天津)海上风电工程技术有限公司天津 300450 摘要:随着我国社会不断发展,能源日益紧缺的背景下,低碳环保的理念受到人们重视,并被应用到电力企业中,企业越来越重视清洁新能源的开发与利用。 关键词:海上;风力发电;关键技术 1我国风力发电技术发展所面临的障碍 1.1发电机组安全性能不足 即使风力发电技术在今年来备受国家和企业重视,然而在安全性能方面没有过多关注,无法保证发电机组的安全性与稳定性,甚至部分设备存在安全隐患。发电机组是风力发电系统重要组成部分,机组运行效率与安全稳定性直接关系到系统的运行效率。国家与电力企业对风力发电技术推广不到位,部分地区没有科学进行技术改革,导致发电机组缺乏安全性,经常出现机组事故,给风力发电系统带来不良影响,降低系统安全性与稳定性,不利于新能源产业的可持续发展。 1.2成本高且监管力度薄弱 经济是限制海上风电发展的重要原因,对比化石能源电力,海上风电的发电成本高,现在我国近海风电统一电价0.85元/千瓦时,一些海域预期投资收益不理想。海上风电对设备和施工技术要求严格,海上风电机组要克服台风、盐雾腐蚀问题,且施工需要专业施工队伍和施工船舶。除此,有的海上设施寿命短,以及停止使用后的拆除与续期的问题都不可避免。海底电缆审批和海域论证审批的分离加大了企业成本,事中事后监管不足,相关配套政策的缺失也加大了建设与运营维护的难度。 1.3风力发电的市场化水平低 风力发电虽然已经有一定的发展时期,但在和市场对接方面仍处于起步阶段,商品化程度依旧很低。风力发电在商品化这一方面仍需要长时间的发展,才能有一台完善的市场机制。相应的市场化人才也是不可或缺的,风力发电需要的商品化人才依旧处于空缺阶段。国家和社会仍需要投入大量的人力物力财力发展相配套的设施和人员。 2海上风力发电及其关键技术分析 2.1海上风力发电技术概述 与传统能源的开采利用相比,利用海上风力资源面临空前的技术难题,如:能量转换设备的设计研发、发电设备的安装施工、海上风力发电电能的传输和供电网络的建设以及海上风力电场的运维管理等方面。因此尽管早在二十世纪的七十年代就有人提出了利用海上风力发电的设想,但是全面的科学研究和实践应用到上个世纪末才真正的全面展开。这由于与陆地风力发电技术的研究相比,海上风力发电面临的复杂施工地质环境缺乏成熟和可借鉴的工程技术做为基础,针对海水的波浪冲击、海冰影响、海水腐蚀以及海上风力和风向变化也没有系统的荷载计算和分析标准。另一方面因为特殊的工程环境和施工、运输以及运维技术需要等因素,造成海上风力发电场建设缺少足够的成熟经验做为参考,导致建设海上风力发电场的投资规模和回报率具有很多不确定性,因而海上风力发的商用推广近十年才随着相关技术的日渐成熟真正展开。 2.2关键技术 (1)海上风力发电机的选择 1)双馈式感应风力发电机双馈式感应风力发电机在海上风力发电站的应用最广泛,基本上普及了海上风力发电站。根据电刷和滑环调节转子电功率频率方式的不同,又可以分为有刷和无刷两种。2)永磁直驱式风力发电机永磁直驱式风力发电机组是目前海上风机发电的主要研究方向。它的涡轮机可以直接进行驱动,减少了齿轮箱环节,有效降低了发电机组运行过程中产生的噪音,且故障率较低,维护成本较低。永磁同步发电机直接与涡轮机连接,利用涡轮机的转化能力,将风能转化为机械能,然后利用永磁同步发电机将传递过来的机械能转化为交流电,并利用并网变频器实现对交流电的蒸馏、升压及逆变处理,最终得到三相电压频率恒定的交流电,并入到电网系统。3)无铁芯电机随着科学技术的发展,无铁芯电机具有安装和运输成本低的优点,越来越多地应用到海上风力发电机组设计中。例如:通过定子和转子均无铁芯的辐条式结构设计,降低了电机重量,同时有效扩大了电机容量。 (2)完善风力产业结构 风力发电技术发展过程中,需要重视风力产业结构的科学与完善。近日,某智慧新能源企业开展“变频控制风力发电系统的拓扑结构”,项目结构简单,功能全面且造价成本低。企业研究部署海上风力发电产业建设工作,推动区域内产业结构调整和风能结构调整,技术人员实地调研生产车间与大数据中心。技术人员使用3MW风机在珠海进行台风测试,设备在每秒68.5m风速下依旧可以稳定运行,并利用台风中的风资源为企业提供额外发电量。例如电白黄岭风电场,与同兆瓦级风电场单机相比,电白黄岭的电机累计发电量高达78.6%,真正意义上实现了风力产业的高质量发展与绿色发展。 (3)桩基式基础技术原理及其应用 在目前已经建成的海上风力发电场当中,桩式基础的应用占有最大的比例,尤其是其中的单桩式基础,是海上风电大国丹麦海上电场建设的主要基础形式。这一方面是因为这一设计形式的施工技术相对简单和经济,另一方面与丹麦沿海的海床工程地质条件有关。单桩式基础的材料采用大径空心柱形钢管,利用大功率的打桩设备直接嵌入海床,为了实现风电设施在海上的可靠稳定运行,单体式的钢管直径最大可达六米,能够适用的海水最大深度为30m。但是由于来自海水、海风和风机运行荷载的承载形式所限,这种风电设施基础形式对海床工程地质的要求相对较高,而且由于目前海上风力发电机组的单机容量越来越大,单桩的直径过大导致其经济性变差和面临施工技术瓶颈。因此在实践应用过程中又演化出了单立柱三桩、导管架式以及多桩承台式等多种桩基式基础,通过复杂的结构形式来增强基础的稳定性和对施工地质条件、荷载变化规律的适应性。其中的导管架式基础由于良好的经济性和广泛的适用性而获得了较多应用,而多桩承台式基础在桥梁和码头的建设中有着广泛应用,因此在我国有着比较丰富的设计使用经验和施工技术资源,因此在国内的海上风力发电场建设

风力发电概况论文

风力发电概况论文 This model paper was revised by LINDA on December 15, 2012.

风力发电概况论文

目录 引言 (4) 1 风力发电技术的发展历史 (5) 2 风特性 (6) 风形成的原因 (6) 近地面风特性 (7) 脉动风特性 (8) 3 风力发电机组类型、结构组成、工作原理 (8) 恒速风力发电机 (9) 有限变速风力发电机 (9) 变速风力发电机 (10) ........................................... 错误!未定义书签。 ........................................... 错误!未定义书签。 ........................................... 错误!未定义书签。 4 风力发电场及投资 (13) 风电场宏观选址程序 (13)

、风力发电机选址的原则 (14) ........................................... 错误!未定义书签。 ........................................... 错误!未定义书签。 ........................................... 错误!未定义书签。 风力发电机高度范围内风垂直切变要小 (15) (15) 风能资源的评估 (15) 风力发电投资 (16) 政策因素对风电电价的影响 (17) 5 风力发电技术的发展趋势 (18) 6 结语 (19) 引言 风能是取之不尽、用之不竭、洁净无污染的可再生能源。可再生能源包括风能、太阳能、水能、生物质能、地热能、海洋能等。风力发电是可再生能源领域中除水能外技术最成熟、最具规模开发条件和商业化发展前景的发电方式之一。近年来越来越受到世界各国的重视。其蕴量巨大,全球可用来发电的风能资源有100亿千瓦,比地球上可开发利用的

DL_T_5383-2007风力发电场设计技术规范

风力发电场设计技术规范DL/T5383-2007 Technical specification of wind power plant design 1.范围本标准 规定了风力发电场设计的基本技术要求。本标准适用于 装机容量5MW及以上风力发电场设计。 2.规范性引用文件 GB5005935~110KV变电所设计规范 GB5006166KV及以下架空电力线路设计规范 DL/T5092110KV~500KV架空送电线路设计技术规程 DL/T5218220KV~500KV变电所设计技术规程 3.总则 3.0.1风力发电场的设计应执行国家的有关政策,符合安全可靠、技术先进和经济合理 的要求。 3.0.2风力发电场的设计应结合工程的中长期发展规划进行,正确处理近期建设与远期 发展的关系,考虑后期发展扩建的可能。 3.0.3风力发电场的设计,必须坚持节约用地的原则。 3.0.4风力发电场的设计应本着对场区环境保护的,减少对地面植被的破坏。 3.0.5风力发电场的设计应考虑充分利用声区已有的设施,避免重复建设。 3.0.6风力发电场的设计应本着“节能降耗"的原则,采用先进技术、先进方法,减少 损耗。 3.0.7风力发电场的设计除应执行本规范外,还应符合现行的国家有关标准和规范的规 定。 4.风力发电场总体布局 4.0.1风力发电场总体布局依据:可行性研究报告、接入系统方案、土地征占用批准 文件、地质勘测报告、环境影响评价报告、水土保持评价报告及国家、地方、 行业有关的法律、法规等技术资料、 4.0.2风力发电场总体布局设计应由以下部分组成: 1.风力发电机组的布置 2.中央监控室及场区建筑物布置 3.升压站布置。 4.场区集电线路布置 5.风力发电机组变电单元布置 6.中央监控通信系统布置 7.场区道路 8.其他防护功能设施(防洪、防雷、防火) 4.0.3风力发电场总体布局,应以下因素: 1.应避开基本农田、林地、民居、电力线路、天然气管道等限制用地的区域。 2.风力发电机组的布置应根据机组参数、场区地形与范围、风能分布方向确定,并与本声规划容量、接入系统方案相适应。 3.升压站、中央监控室及场区建筑物的选址应根据风力发电机组的布置、接入系统的方案、地形、地质、交通、生产、生活和安全要素确定,不宜布置在主导风能分布的下风各或不安全区域内。 4.场区集电线路的布置应根据风力发电机组的布置,升压站的位置及单回集电线路的输送距离、输送容量、安全距离确定。

海上风电

Nysted海上风电场:项目时间表与前期招标 2007-12-06 21:45 Nysted海上风电场:项目时间表与前期招标 供稿人:张蓓文;陆斌供稿时间:2007-6-15 项目时间表 现简单介绍其项目时间表与前期招标情况。 1998年,丹麦政府同生产商达成协议,实施一个大型海上风力发电示范项目,目的在于调查发展海上风力发电场的经济,技术和环境等问题,并为未来风力发电场选择区域。 1999年,丹麦能源部原则上批准安装,并开始了Horns Rev和Nysted初期调研和设计。 2000年夏天,政府得到风力发电场的环境影响评估,于2001年批准了发电场建造的申请。 海上风力发电场的基座建设起始于2002年7月末,基座的建造和安装根据时间表执行,始于承包公布的2002年3月,2003年夏天全部完成,并做好了接收风力涡轮机的准备。第一台涡轮机于年5月9日起开始安装,2003年7月12日开始运行。最后一台涡轮机于2003年9月12日安装并电网,试运行在2003年11月1日结束。 前期招标 ENERGI E2为项目准备了一份技术上非常详细的招标书,其中评价了ENERGI E2在丹麦东部传统火和电网建造,策划和运行方面的经历,以及来自海上风力发电场Vindeby(11×450 kW Bonus)Middelgrunden(10 of 20 x 2MW Bonus)的经验。 涡轮机的选择:选择涡轮机的重要参数有:96%可用性;雷电保护;塔架低空气湿度(为防止腐采用单个起重机用于安装大型部件;能完全打开机舱;在所有电力设备采用电弧监测的防火措施等最后丹麦制造商Bonus(现为Siemens)获得了生产涡轮机的合同,涡轮机额定容量为2.3MW(是机组的升级版),是2004年Bonus所能生产的最大容量涡轮机。 风机叶片的选择:Bonus为Nysted的2.3MW涡轮机开发了一种特殊的叶片(不含胶接接头,一片成此前,叶片先在2000年1.3MW涡轮机预先检测过,运行一年后被拆卸进行全面观察。此外,Bon 专门成立队伍从生产线随机抽取叶片来检测,检测内容包括20年的寿命测试和叶片的断裂测试。基座的选择:海上风机基座设计需要考虑Nysted风力发电场的工作负载、环境负载、水文地理条地质条件。基座适用性包括涡轮机尺寸、土壤条件、水深、浪高、结冰情况等多个技术要素。水力可用于冲刷保护和起重机驳船安装基座的操作研究。基座面积大约为45000m2,占发电场总面积0.2%。水力模型研究包括各项可能的极端事件,如:波浪扰动的数值模拟和海浪,水流和冰受力算。由于Nysted海底石头较多,单桩式基座不可行,重力式基座较为合适。图1: Nysted 风电用的重力型基座,基座运载和安装的过程要求混凝土基座尽可能轻质。为此,该项目的基座采用带个开孔、单杆、顶部冰锥形的六边形底部结构,底部直径15米,最大高度16.25米,单个基座在中重量低于1300吨,适合海上操作。EIDE V号起重机船从运输码头把基座运载过去。然后,通过孔内添加重物和单杆为基座又增加了500吨重量,这些重量可保持基座的稳定性,防止滑移和倾覆刷保护分为两层结构,包括石头外层和一过滤层,材料由驳船上的液力挖掘机放置。 塔架要求:每个塔架有69米高,比陆上涡轮机的塔架低大约10%,这是由于陆上风切高于海上,只要采用较低的塔架就可获得相同的发电量。

中国风力发电的发展现状及未来前景要点

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

(非常好)海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发

海上风电场经验总结:由ScrobySands、Nysted等建设得到的启发 作者:张蓓文陆斌发布日期:2008-5-8 18:13:30 (阅270次) 关键词: 风电总结 DS 海上风电场的风速高于陆地风电场的风速,不占用陆地面积,虽然其电网联接成本相对较高,但是海上风 能开发的经济价值和社会价值正得到越来越多的认可,海上风电的发电成本也将越来越低。海上风电场的 建设对于风电行业的进一步发展而言很关键,现已进入到一个重要阶段,进一步发展可以吸引大量项目资 金的进入,其具有震撼力的阵形正在全球范围地受到沿袭[1]。全球海上风力发电场装机容量增长详见图1。欧洲地区的发展目前领先于全球。丹麦于1991年建成第一个海上风力发电场,此后直到2006年末,全球 运行了超过900MW装机容量的海上风电场,几乎所有发电场都在欧洲[2]。 表1.17座离岸1km以外的建成或在建风电场 建设地点始建年 份风电机组数量 (台) 风电机组型号总装机容 量 TunaKnob丹麦1995 10 VestasV39/500kW 5MW Utgrunden瑞典2000 7 EnronWind70/1500kW 10.5MW Middelgrunden丹 麦2001.3 20 Bonus76/2.000MW 40MW HornsRev丹麦2002.12 80 VestasV80/2.000MW 160MW Nysted丹麦2003.11 72 Bonus82,4/2.300MW 165.6MW NorthHoyle英国2003.12 30 VestasV80/2.000MW 60MW KentishFlats英国2005.8 30 VestasV90/3.000MW 90MW Beatrice英国2006.9 2 OWEZ荷兰2006.11 36 VestasV90/3.000MW 108MW 来源:“Off-andNearshoreWindEnergy”,上海科技情报研究所整理 国外海上风力发电场技术正日趋成熟,建成的风电场容量为2.75至165.6MW(详见表1),规划中的风电场容量为4.5至1000MW[3]。而海上风电场产业还处于“做中学”的阶段[5],对于以往的经验教训进行总结对未来产业发展是很有必要的。笔者之前已依据德国专业研究机构公开的 “CaseStudy:Eur opeanOffshoreWindFarms-ASurveyfortheAnalysisoftheExperiencesandLessonsLearntbyDevelope

海上风力发电概况

摘要 绿色能源的未来在于大型风力发电场,而大型风电场的未来在海上。本文简要叙述了全球海上风力发电的近况和一些主要国家的发展计划,并介绍了海上风电场的基础结构和吊装方法。 关键词:海上风电;风力发电机组;基础结构;吊装方法。 要旨 このページグリーンエネルギーの未来は大型風力発電場、大型風力発電の未来は海上。本文は簡単に述べた世界の海上風力発電の近況といくつかの主要国の発展計画を紹介した海上風力発電の基礎構造と架設方法。 キーワード海上風力発電、風力発電ユニット;基礎構造;架設方法。

1 引言 1.1 风力发电是近年来世界各国普遍关注的可再生能源开发项目之一,发展速度非常快。1997~2004年,全球风电装机容量平均增长率达26.1%。目前全球风电装机容量已经达到5000万千瓦左右,相当于47座标准核电站。随着风电技术逐渐由陆上延伸到海上,海上风力发电已经成为世界可再生能源发展领域的焦点。 1.2 海上风能的优点 风能资源储量大、环境污染小、不占用耕地;低风切变,低湍流强度——较低的疲劳载荷;高产出:海上风电场对噪音要求较低,可通过增加转动速度及电压来提高电能产出;海上风电场允许单机容量更大的风机,高者可达5MW—10MW 2 海上风能的利用特点 海上风况优于陆地,风流过粗糙的地表或障碍物时,风速的大小和方向都会变化,而海面粗糙度小,离岸10km的海上风速通常比沿岸陆上高约25%;海上风湍流强度小,具有稳定的主导风向,机组承受的疲劳负荷较低,使得风机寿命更长;风切变小,因而塔架可以较短;在海上开发利用风能,受噪声、景观影响、鸟类影响、电磁波干扰等问题的限制较少;海上风电场不占陆上土地,不涉及土地征用等问题,对于人口比较集中,陆地面积相对较小、濒临海洋的国家或地区较适合发展海上风电海上风能的开发利用不会造成大气污染和产生任何有害物质,可减少温室效应气体的排放。 3 海上风电机组的发展 3.1 第一个发展阶段——500~600kW级样机研制 早在上世纪70年代初,一些欧洲国家就提出了利用海上风能发电的想法,到1991~1997年,丹麦、荷兰和瑞典才完成了样机的试制,通过对样机进行的试验,首次获得了海上风力发电机组的工作经验。但从经济观点来看,500~600kW级的风力发电机组和项目规模都显得太小了。因此,丹麦、荷兰等欧洲国家随之开展了新的研究和发展计划。有关部门也开始重新以严肃的态度对待海上风电场的建设工作。 3.2第二个发展阶段——第一代MW级海上商业用风力发电机组的开发 2002年,5 个新的海上风电场的建设,功率为1.5~2MW的风力发电机组向公共

世界上最大的风力涡轮叶片和海上风力发电场平台

世界上最大的风力涡轮叶片和海上风力发电场平台 风力发电产业作为一种新技术在全球的发展中已赢得媒体的关注,最近,无排放发发电部门一年一年又一年的继续增加其全球范围内的装机容量。 西门子早在八月宣布,它已建成75米高的风力发电机,是世界上最大的风力涡轮机转子叶 片。 通过比较,了解到西门子新的叶片有多长,参加2012年4月在哥本哈根举行的欧洲风能协会年度盛会的人还记得,大量的LM风力发电机有73.5米长的叶片在贝勒中心以外(Bella Center)。 西门子说,大量的玻璃纤维制成的叶片将用在该公司的新的6兆瓦海上风力发电机组。 该公司表示,在今年夏天晚些时候在丹麦安装?sterild154米转子的第一个原型,6兆瓦的涡轮机将被安装风力发电机叶片。 公司的新闻稿指出:“每个转子直径为154米,占地18600平方米,这是两个半足球场的大小,”。 叶片移动速度将达到80米每秒,每小时290公里。巨大的转子可以通过特殊的技术,使用西门子非常坚固而轻巧的结构。“ 然而,根据风电月刊的一篇文章中,中国风机制造商中船重工将在在江苏省示范海上风电场建设海上安装一个5兆瓦的风力涡轮机也将采用75米的叶片安装。 中船重工是不是在中国唯一的75米的风力发电机叶片制造商,风电月刊说,中孚Liazhong

今年早些时候表示,它也能产生这种规模的风力发电机叶片。这一切,是为了再次提醒欧洲的政治家,中国发展非常迅速,欧盟必须大力投资于风电技术研发,如果它要保持领先。在另一方面,也将有利于海上风电行业,三星重工最近公布的世界上最大的风力发电场安装船的交付。 三星表示,该公司的新闻稿称,Pacific Orca的运输和安装将有助于继续建立其在沿海水域的海上风力发电市场。 Pacific Orca是161米长,宽49米,高10.4米的庞然大物。三星表示,该容器是能够携带和安装多达12台3.6兆瓦级的风电场。 发布的消息称:“这也可以让安装在深度为60米的海上风力发电场,在世界上最深的地方成为可能,以及超大规模的风电场,容量为10兆瓦或更大的安装量。”。 该公司增加了新船的建立是为了安装的风力发电场,即使在极端条件下速度为每秒20米,波高为2.5米的大风中依然能正常工作。 此外,三星还表示,全球海上风电场容量达到293万千瓦,到2030年预计将增长迅速。“这是目前的市场规模3.5万千瓦,1000台3.5兆瓦级发电机约70倍。” 注:来源自青岛日川精密机械有限公司https://www.360docs.net/doc/227678018.html,

(完整版)我国风力发电的发展现状

我国风力发电的发展现状我国是世界上风力资源占有率最高的国家,也是世界上最早利用风能的国家之一,据资料统计,我国10m 高度层风能资源总量为3226 GW,其中陆上可开采风能总量为253 GW,加上海上风力资源,我国可利用风力资源近1000 GW。如果风力资源开发率达到60%,仅风能发电一项就可支撑我国目前的全部电力需求。 我国利用风力发电起步较晚,和世界上风能发电发达国家如德国、美国、西班牙等国相比还有很大差距,风力发电是20 世纪80 年代才迅速发展起来的,发展初期研制的风机主要为1 kW、10 kW、55 kW、220 kW 等多种小型风电机组,后期开始研制开发可充电型风电机组,并在海岛和风场广泛推广应用,目前有的风机已远销海外。至今,我国已经在河北张家口、内蒙古、山东荣城、辽宁营口、黑龙江富锦、新疆达坂城、广东南澳和海南等地建成了多个大型风力发电场,并且计划在江苏南通、灌云及盐城等地兴建GW 级风电场。截止2007 年底,我国风机装机容量已达到6.05 GW,年发电量占全国发电量的0.8%左右,比2000 年风电发电量增加了近10 倍,我国的风力发电量已跃居世界第5 位。 1.1 小型风电机组的发展 目前,我国小型风力发电机组技术已相当成熟,建设速度也较快,特别是5 kW 以下风力发电机组的制造技术成熟,已大量使用,并达到批量生产的要求。100、200、300、500 W 及1 kW、2 kW、5 kW 的小型风力发电机,年生产能力可达到5 万台以上。 1.2 大型风电机组的发展

我国大型风电机组的开发研制工作也正在加快。我国大型风电机组基本上依赖进口,通过多年来的开发研制,如今,大型风电机组的主要部件已基本实现国产化,其成本比进口机组低20%~30%,国产化是我国大型风电机组发展的必然趋势。我国的大型风电机组从建设之初的山东荣成第一个风力发电场开始,到后来的广东南澳4 台250kW 机组、辽宁营口安装660 kW 风电机组、黑龙江富锦单机960 kW 机组,再到即将在山西、山东、江苏等地安装的大型机组,我国已建成一大批大型风力发电场,使我国风力发电迈上了一个新台阶。 我国风能资源虽然蕴藏丰富,但由于经济实力和技术力量还远不及发达国家,故我国的风力发电普及率还很低。在我国,还有一些无电村,其中部分地区风能资源丰富,应开发利用风力发电。 2国外风力发电的发展状况 风能的开发利用在国外发达国家已相当普及,尤其在德国、荷兰、西班牙、丹麦等西欧国家,风力发电在电网中占相当比重。20 世纪70 年代发生了世界性的能源危机,欧美国家政府加大补贴投入,鼓励开展风力发电事业。1973 年联邦德国风能资源投入30 万美元,到1980 年投资就增至6800 万美元;美国20 世纪80 年代初期安装了1700 多台风电机组,总装机容量达到3 MW;1979 年丹麦能源部决定给风轮机设备厂投入补贴,政府拨款建立小型风轮机试验中心,承担发风轮机许可证任务。到20 世纪80 年代末,全球共有大型风轮机近2 万台,总装机容量2 GW。国际市场风力发电成本不断降低,有些条件较好的风力发电场,机组发电成本仅为8 美分/kWh,风场运行维修费为1.5 美分/kWh。从当前世界风力发电情况来看,无论从风机容量投资、

风力发电场设计技术规范----DL

风力发电场设计技术规范DL/T 2383-2007 Technical specification of wind power plant design 1. 范围本标准规定了风力发电场设计的基本技术要求。本标准适用于装机容量5MW 及以上风力发电场设计。 2. 规范性引用文件 GB 50059 35~110KV 变电所设计规范 GB 50061 66KV 及以下架空电力线路设计规范 DL/T 5092 110KV~500KV 架空送电线路设计技术规程 DL/T 5218 220KV~500KV 变电所设计技术规程 3. 总则 3.0.1 风力发电场的设计应执行国家的有关政策,符合安全可靠、技术先进和经济合理的要求。 3.0.2 风力发电场的设计应结合工程的中长期发展规划进行,正确处理近期建设与远期发展的关系,考虑后期发展扩建的可能。 3.0.3 风力发电场的设计,必须坚持节约用地的原则。 3.0.4 风力发电场的设计应本着对场区环境保护的,减少对地面植被的破坏。 3.0.5 风力发电场的设计应考虑充分利用声区已有的设施,避免重复建设。 3.0.6 风力发电场的设计应本着“节能降耗”的原则,采用先进技术、先进方法,减少损耗。 3.0.7 风力发电场的设计除应执行本规范外,还应符合现行的国家有关标准和规范的规定。 4. 风力发电场总体布局 4.0.1 风力发电场总体布局依据:可行性研究报告、接入系统方案、土地征占用批准文件、地质勘测报告、环境影响评价报告、水土保持评价报告及国家、地方、行业有关的法律、法规等技术资料、 4.0.2 风力发电场总体布局设计应由以下部分组成: 1.风力发电机组的布置 2.中央监控室及场区建筑物布置 3.升压站布置。 4.场区集电线路布置 5.风力发电机组变电单元布置 6.中央监控通信系统布置 7.场区道路

第二章 海上风电场的选址

第二章海上风电场的选址 2.1 概述 近海风电场一般都是在水深10~20m、距岸线10~15km左右的近海,从空间上看,地域大,选址余地大。实际上海上风电场的建设受到诸多因素的影响和制约。按制约因素的性质可为以下几方面: 硬性制约(比如军事区、航道等)、软性制约(如:渔民的利益、规划上的冲突)、技术制约(如:风资源、海床条件、不利因素等)、环境制约(如:生态因素、噪声等)、经济制约。 根据各国的海上风电场经验,综合各种影响因素,得出风电场选址的几项基本原则: (1)考虑风资源的类型、频率和周期 (2)考虑海床的地质结构、海底深度和最高波浪级别 (3)考虑地震类型及活跃程度及雷电等其它天气情况 (4)考虑城市海洋功能区的规划要求 (5)场址规划与城市建设规划、岸线和滩涂开发利用规划相协调 (6)符合环境和生态保护的要求,尽量减少对鸟类、渔业的影响。 (7)避开航道,尽量减少对船舶航行及紧急避风的影响。 (8)避开通信、电力和油气等海底管线的保护范围。 (9)尽量避开军事设施及周围 (10)考虑基础施工条件和施工设备要求及经济性,场址区域水深一般控制在5~15m。 2.2 选址考虑的各种因素 2.2.1 风资源因素 1. 风资源:风资源是风电场选址的首要因素,一个良好的风资源是必备条 200W/m2 。我国最佳风资源区在台湾海峡,平均风速达到8m/s以上,功率密度达到700w/m2 ,其次就是广东、再次就是上海江浙一带,然后就是山东、河北等地。 在从风资源方面选址上,首先要从宏观上确定区域,然后再进行区域风资源

测试评估。 2. 风资源上的不利因素:台风 海上风电场在风资源上的不利因素首先就是台风,强台风不仅仅损害叶片、机舱,还包括结构部件,如塔筒和基础,对发电设备影响很大。 台风机倒了20台,整个风场几乎报废。”如果没有科学、扎实的研究,海上风场

海上风力发电所面临的困境

海上风力发电所面临的困境 1、规划困局 据业内人士透漏,“与陆上风电多建设在人烟稀少之地不同,海洋寸海寸金,各地方政府早已对自己的海域做出规划。显然,在生态农业、养殖、旅游以及沿海城镇经济诸多选择中,目前仅能盈亏“平衡甚至亏本的海上风电并不是各级政府的首选项目。在海上发展风电,不只是发改委、能源局说了算,海洋局是海域的直接管理部门,能源局的风电规划与海洋区域功能区划之间缺乏协调沟通,而地方利益在海上风电中也没有得到体现。”[行业透视, 2012年2月,xx] 2、技术瓶颈 在海上建设风电场,所需风电设备的技术含量要大大超过陆上风电。我国的风机制造企业,由于起步较晚,技术水平相比国外普遍落后,目前国内企业制造的大型风机,存在着稳定性不足的问题,而海上风机的维修时间较长,且成本非常高,这样也间接推高了海上风电场的投资成本。在经营风险较大的情况下,一些企业对海上风电领域内的投资采取了观望的态度。除了风机技术外,输电技术也是制约海上风电开发的关键技术。要想解决海上风电的并网问题,我国需建设女全、稳定和高效运行的智能电网。 海洋工程技术在海上风电的开发过程中,同样是小可缺少的关键技术。海上风电设备研制和风电场的建设可以说是海洋工程装备设计研发的一个重要领域,或者说是海洋工程装备的重要拓展领域。目前海上风电场大都位于水深 20m左右的近海海域,采用固基的着底式风电机塔。今后将逐步向水深100m 甚至几百米的海域发展,浮基海上风电场将是一种经济性和实用性兼顾的重要发展方向。从保证海上风电塔(固基或浮基)、锚碇系统有效运行的观点而言,除了其本身的特殊要求外,与传统的海洋工程装备(如各类海洋石油平台)有相当多的共性关键技术问题。 3、成本问题

中国海上风力发电发展现状以及趋势

中国海上风力发电发展现状以及趋势【摘要】:由于具有资源丰富,对人们的生产生活影响小,以及不占用耕地等优势,近几年,我国的海上风力发电得到越来越多的关注。本文就我国近海风电的行业背景、海上风电市场区域分析、国家政策、社会效益、技术支持、发展瓶颈及建议、以及未来发展趋势等几个方面进行论述。 【关键词】:海上风力发电,发展现状,发展趋势,海上风电技术,社会效益,国家政策 前言: 相对于我国陆地风能,海上风能以其资源丰富,风速稳定,对环境负面影响小,装机容量大,且不占用耕地等优势得到了众多风电开发商的青睐。 经过连续多年的高速增长,我国风电装机容量已居世界第1位。目前我国正在大力推动海上风电发展,将从以陆上风电开发为主向陆上和海上风电全面开发转变,目标是成为海上风电大国。近年来,政府相关部门多次出台技术和管理政策,大力推动我国海上风电开发进程。 1、行业背景: 我国近海风能资源丰富。拥有18,000多公里长的大陆海岸线,可利用海域面积多达300多万平方公里,是世界上海上风能资源最丰富的国家之一。据统计,我国可开发利用的风能资源初步估算约为10亿kW,其中,海上可开发和利用的风能储量约7.5亿kW]。 目前我国已经成功并网发电的海上风电项目有:东海大桥海上风电示范项目,响水潮间带实验项目,龙源如东潮间带风电场项目,华能荣成海上风电项目等。另外有南港海上风电项目,江苏大丰200MW海上风电项目等44个项目拟建或者在建。这意味着我国的海上风电正在高速发展着。 另外,随着海上风能的高速发展,也带动着风能产业链的高速发展。我国现有海上风机供应厂家12家,其中以明阳风能以及金风科技最为卓越,在全球最佳海上风机评选中,分别位列第二和第十,这标志着我国风机制造业已经拥有国际先进水平。 据数据分析,未来的15年内,我国风电设备市场的总利润将高达1400亿至2100亿元。巨大的利润,也必将使得我国海上风机制造业得到更加快速的发展。

我国风电概况

1中国风电基本情况 1.1中国风电发展背景 全球化石能源日益枯竭及其使用带来的全球变暖、污染等环境问题,特别是二氧化碳排放对气候变化的影响,引起了国际社会的高度重视。在 2009 年召开的哥本哈根世界气候大会上,我国政府已向国际社会郑重承诺, 2020 年非化石能源占一次能源消耗比重达到 15%,单位 GDP 二氧化碳排放强度比 2005 年下降 40~45%。必须加大节能减排、加快能源结构调整、大力提高非化石能源的比重。 2020 年我国非化石能源的比例由现在的 7%提高到 15%以上,除了大力发展核电、水电外,风电的装机容量须达到 1.5 亿千瓦。为此,国家已规划了内蒙古蒙西、蒙东、甘肃酒泉、新疆哈密、河北、吉林、山东以及江苏沿海等八大千万千瓦级风电基地并提出 2015 年全国风电开发规划规模 1 亿千瓦,2020 年全国风电开发规模超过 1.6 亿千瓦。 1.2中国风电发展概况 风电新增装机容量连续多年快速增长,2009年以来,我国成为新增风电装机规模最多的国家。到2012年年底,风电累计并网装机容量6237万千瓦,同比增长32.7%,占全国总装机容量5.4%,超越美国成为世界第一风电大国,年发电量超过1000亿千瓦。 2内蒙古风能基本情况 2.1内蒙古电网风电运行优势 内蒙古风电发展优势明显,主要表现在: (一)风能资源优势 内蒙古风能资源丰富,开发潜力巨大。全区风能资源总储量为13.8亿千瓦,技术可开发量3.8亿千瓦,占全国50%以上,居全国首位,且风向稳定、连续性强、无破坏性台风和飓风,风能利用率高,全区大多数地区具备建设百万千瓦级、甚至千万千瓦级以上风电场的条件。 (二)土地资源优势 内蒙古土地辽阔,风电建设条件好,开发成本低。全区土地总面积118.3万平方公里,其中草原、沙地、沙漠、荒漠化土地和盐碱地等约占全区总面积的70%左右。风能集中在沿边广袤的荒漠和草原,征地、建设成本低。目前我区已

相关文档
最新文档