1.5.1有理数的乘方(2)(导学案)

合集下载

有理数的乘方(2)(教案)

有理数的乘方(2)(教案)

北师大版数学七年级2.9有理数的乘方(2)教学设计课题 2.9有理数的乘方(2)单元第二单元学科数学年级七教材分析本课内容主要是学习有理数的乘方的应用,在实际生活中的应用十分广泛。

它既是有理数乘法运算的延伸,也是学生后续学习有理数乘方运算及四则运算等有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识等等的基础。

学情分析学生在小学六年级已学习了一个数的平方、立方运算。

上节课又学习了有理数的乘方运算,本课学习其应用。

所以学生在教学活动中学生会大胆说出自己的认知、体会。

在动手,思考和合作交流的过程中,将能主动探索,敢干实践,勇于发现,学生对学习有理数的乘方应用也很兴趣。

学习目标1.进一步理解有理数乘方的意义并能解决一些相关的数学问题.经历有理数乘方的符号法则的探究过程,通过实际计算发现底数为10的幂的特点.2.利用有理数的乘方运算解决一些简单实际问题,使学生初步了解转化、类比、归纳的数学思想方法.3.参与操作折纸活动让学生在探索问题的过程中体验学习数学的乐趣,增强自主学习、合作学习的意识与习惯.重点利用有理数的乘方法则准确地进行有理数的乘方运算,并适时总结运算规律.难点把实际问题转化成有理数的乘方运算,以此来解决实际问题.教学过程教学环节教师活动学生活动设计意图导入新课1、教师出示课件:计算(1)63(2)(-2)4(3)动手计算通过熟悉的计算,让学生热身讲授新课1、教师出示课件:看一看:观察图片:教师以对底数是10的幂的特点引入:例3:(1)102 = 100, 103 = 1000, 104 =10000, 105=100000(2)(-10)2 = 100,,(-10)3 = -1000, (-10)4 =10000,(-10)5= -100000.教师向提出问题:观察例3的结果,你能发现什么规律?与同伴进行交学生通过观察底数是10的幂的特点,交学生对有理数乘方运算已有认识,以底数是10的幂的特点流从而引出今天学习内容有理数的乘法运算及应用。

【人教版】七年级数学上册1.5.1有理数的乘方(第一课时)学案及练习(含答案)

【人教版】七年级数学上册1.5.1有理数的乘方(第一课时)学案及练习(含答案)

1.5.1有理数的乘方(第一课时)学习目标:1、理解有理数乘方的意义.2、掌握有理数乘方运算3、经历探索有理数乘方的运算,获得解决问题经验.学习重点:有理数乘方的意义学习难点:幂、底数、指数的概念极其表示教学方法:观察、归纳、练习教学过程一、学前准备1、提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?二、合作探究1、分小组合作学习阅读P42页内容,然后再完成下面的问题1)叫乘方,叫做幂,在式子an中,a叫做,n叫做.2)式子an表示的意义是3)从运算上看式子an,可以读作,从结果上看式子an,可以读作.三、新知应用1、将下列各式写成乘方(即幂)的形式:1)(—2.3)×(—2.3)×(—2.3)×(—2.3)×(—2.3)=.2)、(—14)×(—14)×(—14)×(—14)=.3)x ?x ?x ?……?x (2015个)=例1说出下列各数的底数,指数,表示的含义,并求出结果.52,(-3)4,-52,-432,251例2(1)(-4)3;(2)(-2)4;(3)-24.(4)(-32)32、小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?可以知道:正数的任何次幂都是数,负数的奇次幂是数,负数的偶次幂是数,0的任何次幂都是 .3、思考:(—2)4和—24意义一样吗?为什么?四、新知应用完成P43页第1,2题五、小结1、请你对本节课所学知识作个小结2、我们已经学习了五种运算,请把下表补充完整:运算加减乘除乘方运算结果和六、当堂清一、填空题1.在(-2)6中,指数为,底数为.2.在-26中,指数为,底数为.3.(-3)3的意义是_________,-33的意义是___________.4.13的5次幂写成_________.二、解答题5.用乘方的意义计算下列各式:(1)323;(2)223参考答案:1.6,-2,2. 6,23. 三个-3相乘,三个-3的乘积的相反数4. (13)5 5.8 27,43六、学习反思1.5.1乘方1、对任意实数a ,下列各式一定不成立的是()A 、22)(a aB 、33)(a a C 、a a D 、02a 2、填空:(1)2)3(的底数是,指数是,结果是;(2)2)3(的底数是,指数是,结果是;(3)33的底数是,指数是,结果是。

1.5.1有理数的乘方(教案)

1.5.1有理数的乘方(教案)
五、教学反思
在今天的有理数乘方教学中,我发现学生们对乘方的概念和计算法则掌握得还不错,但在实际应用和解决复杂问题时,部分学生仍然感到困惑。这让我意识到,在今后的教学中,我需要从以下几个方面进行改进:
首先,加强学生对乘方概念的理解。虽然学生们能够记住乘方的定义,但在具体问题中,他们有时会忽略乘方的本质,将乘方与乘法混淆。因此,我打算在下一节课中,用更多的生活实例和图形演示,让学生更直观地理解乘方的意义。
1.5.1有理数的乘方(教案)
一、教学内容
本节课选自七年级数学上册《有理数的乘方》章节,主要内容为1.5.1有理数的乘方。具体内容包括:
1.掌握有理数乘方的定义,理解乘方的意义;
2.学会有理数乘方的计算法则,并能熟练运用;
3.掌握有理数乘方的性质,如负数的奇数次幂是负数,负数的偶数次幂是正数;
4.能够解决实际问题中涉及有理数乘方的计算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
本节课旨在培养学生的数学抽象、逻辑推理和数学建模等核心素养。通过学习有理数的乘方,使学生能够:
1.提高数学抽象能力,理解乘方概念的本质,形成对乘方运算的直观认识;
2.培养逻辑推理能力,掌握有理数乘方的计算法则,并能运用逻辑推理解决问题;
3.增强数学建模能力,将乘方运算应用于解决实际问题,提高解决实际问题的能力;

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思

数学人教版七年级上册1.5.1有理数的乘方.5.1有理数的乘方教学设计与反思
3、进行乘方运算应先定符号后计算。
目标检测
1、在46中,底数是,指数,
2、(-4)7读做;
3、(-4)12的结果是数(填“正”或“负”);
4、计算:=;
5、计算:(-1)2n+(-1)2n+1=;
课后作业
教材p47立完成,师生共同订正
通过练习使学生对这节课的知识得以巩固,加深理解
对折3次可裁成8张,即2×2×2张;
问题(1):
若对折10次可裁成几张?请用一个算式表示(不用算出结果)
2×2×2×2×2×2×2×2×2×2
有10个2相乘
若对折100次,算式中有几个2相乘?
在这个积中有100个2相乘。这么长的算式有简单的记法吗?
问题(2):
2个a相加可记为:a+a=a×2
边长为a的正方形的面积可记为:
七、教学评价设计
在探索法则的教学环节中,教师放手学生操作,把课堂还给学生,真正体现学生的主体地位,教师起到一个引导者、合作者、组织者的作用,学生在合作交流与自主探索的过程中归纳出有理数乘方的符号法则。在练习设计中,设置不同难度的计算题,让不同的学生都得到训练,得到提高。为了使学生真正掌握重难点,熟练的进行有理数的乘方运算,设计了一定的试题教学,难点得以突破,学生的能力得到提高,同时培养了学生集体合作的意识。
a×a=a2
3个a相加可记为:a+a+a=a×3
棱长为a的正方体的体积可记为:
a×a×a=a3
4个a相加可记为:a+a+a+a=a×4
那么4个a相乘可记为:
a×a×a×a=a4
n个a相加可记为:a+a+…+a=a×n
n个a相乘可记为:a×a×…×a=an

有理数的乘方的导入

有理数的乘方的导入

课题: 1.5.1有理数的乘方(2) 序号:15学习目标:1、知识和技能:掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.2、过程和方法:通过例题学习,发展学生观察、归纳猜想、推理等能力.3、情感、态度、价值观:体验获得成功的感受、增加学习自信心学习重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算学习难点:灵活应用运算律,使计算简单、准确.导学方法:课时:1个课时导学过程一、课前预习:阅读教材,完成下列问题:《导学案》教材导读、自主测评二、课堂导学:1、导入1)我们已经学习了哪几种有理数的运算?2)有理数的乘方法则是什么?2、出示任务自主学习阅读教材,完成下列问题:计算(1)-8-3×(-1)7-(-1)8 (2)3 +50÷22×(-)-1(3)-32-(-2)3 ×(-4)÷(4)(-2)2 +(-9)÷(-1)(5)-0.52+4-(6)(-1.25)××8-9÷(1)÷23、合作探究《导学案》难点探究三、展示与反馈:学生展示答案,教师点评指导四、学习小结:在进行有理数混合运算时,一般按运算顺序进行,但有时根据运算律会使运算更简便,因此要在遵守运算顺序外,还要注意灵活运用运算律,使运算快捷、准确.五、达标检测1、课本练习2、《导学案》展题设计课后作业:1、《导学案》深化拓展2、习题1.5第3题板书设计:课后反思:一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n 叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3;(2)(-)3;(3)(-)4; (4)-;(5)-22×(-3)2; (6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-an及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.?(2)在-26中,指数为,底数为.?(3)若a2=16,则a=.?(4)平方等于本身的数是,立方等于本身的数是.?(5)下列说法中正确的是()A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是()A.(-1)2003=-1B.-12002=1C.(-1)2n=1(n为正整数)D.(-1)2n+1=-1(n为正整数)(8)下列各数表示正数的是()A.|a+1|B.(a-1)2C.-(-a)D.||第2课时有理数的混合运算教学目标:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算.教学难点:有理数的混合运算.教学过程:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习1.计算:(1)|-|2+(-1)101-×(0.5-)÷;(2)1÷(1)×(-)÷(-12);(3)(-2)3+3×(-1)2-(-1)4;(4)[2-(-)3]-(-)+(-)×(-1)2;(5)5÷[-(2-2)]×6.2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.《小数乘整数教学设计人教版》:小数乘整数教学设计人教版第1篇教学内容:人教版第九册第一单元《小数乘整数》第一课时,做一做。

1.5.1乘方有理数的混合运算(教案)

1.5.1乘方有理数的混合运算(教案)
在实践活动和小组讨论环节,我鼓励学生们积极参与,提出自己的观点和疑问。我发现这种互动式的学习方式能够激发学生的思考,帮助他们更好地消化和吸收知识。同时,我也注意到有些学生在讨论中不够主动,可能是由于对知识点的不熟悉或者性格原因。在未来的教学中,我需要更加关注这部分学生,鼓励他们大胆发言,增强他们的自信心。
五、教学反思
今天在教授“乘方有理数的混合运算”这一章节时,我发现学生们在理解乘方的概念和运算规则方面存在一些困难。尤其是零指数幂和负整数指数幂的部分,学生们觉得比较抽象,难以掌握。在教学中,我尽量通过生动的例子和生活情境来帮助学生理解这些概念。
在讲授新课的过程中,我尝试用简单明了的语言解释乘方的定义,并通过实际案例让学生看到乘方运算在实际问题中的应用。我发现,当学生能够将新知识与现实生活联系起来时,他们对知识的理解和兴趣都会有所提高。
2.提高学生的逻辑推理能力:使学生掌握有理数混合运算的运算法则,并能运用逻辑推理进行正确计算,解决相关问题。
3.增强学生的数学建模能力:培养学生将实际问题转化为数学模型,利用乘方和有理数的混合运算进行求解,从而解决实际问题的能力。
4.发展学生的数学运算能力:通过课堂练习和课后作业,让学生熟练掌握乘方和有理数混合运算的计算方法,提高运算速度和准确性。
2.学会有理数的混合运算,能够熟练运用运算法则进行计算。
-有理数乘方的运算方法。
-乘方与乘除、加减的混合运算。
-混合运算中的运算顺序和运算法则。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数学抽象能力:通过学习乘方运算,使学生能够从具体实例中抽象出数学规律,理解乘方的概念及其运算规则。
(2)有理数的混合运算:熟练掌握有理数乘方与乘除、加减的混合运算,以及运算顺序和运算法则。

1.5.1有理数的乘方(共三课时)

1.5.1有理数的乘方(共三课时)

a a 记作 a2
a
读作:a 的平方(a 的二次方)
a (2)棱长为a 的正方体的体积如何表示?
a a a 记作 a3
a
读作:a 的立方( a 的三次方)
aa
4个a 相乘呢? 5个a 相乘呢?n个a 相乘呢?
求n个相同因数的积的运算叫做乘方
a 乘方的结果叫做幂。 n个a
n
乘方的意义 a×a ×… ×a ×a =
一级运算 二级运算 三级运算
运算




乘方
运算结果
和差积商幂
4.计算:
(1)(3)2 2 ; 3
(2) 23 (3)2;
(3)64 (2)5 .
(4) 14 1 [2 (3)2 ] 6
先乘方、 再乘除
计算
(1) 22 1 ( 1)2 (2)3 42
4. m·m ·m ·… ·m
ma
a个
二、把下列乘方写成乘法的形式:
1、 0.93= 0.9 0.9 0.9 ;
2、 9 =4
7
9999 7777

3、a b2 = a ba b ;
退出 返回 上一张下一张
赏析例一
计算:
1、 (-4)3
(2) 72 2 (3)2 (6) ( 1)2 3
(3)2 (3)3 4 (3) 15 (4)8 23 (4) (7 5)
计算
(1)(2)2 [18 (3) 2] 4 (2)[22 (1)3] 3 3 1 1
(2)( 2)2和 22 呢?
3
3
练习
1、计算
(1)(-1)10 (2)(-1)7(3) 83

人教版初中七年级上册数学《有理数的乘方》导学案

人教版初中七年级上册数学《有理数的乘方》导学案

1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方一、新课导入1.课题导入:大家都见过拉面师傅拉面,一次小明看到拉面师傅拉了6次,一碗面就拉好了,你能列出算式,帮他算算这碗面共有多少根吗?这个问题就是这节课我们要学习的乘方(板书课题).2.三维目标:(1)知识与技能正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.(2)过程与方法①通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.②已知一个数,会求出它的正整数指数幂,渗透转化思想.(3)情感态度培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.3.学习重、难点:重点:知道有理数乘方的意义.难点:能合理地进行乘方运算.二、分层学习1.自学指导:(1)自学内容:教材第41页的内容.(2)自学时间:5分钟.(3)自学要求:注意积中各因数的特点,结合乘法算式,找出相同因数的个数与指数的关系.理解乘方、幂、底数、指数的意义.(4)自学参考提纲:①2×2×2×2×2应记作25,读作2的五次方;12×12×12×12×12应记作125,读作12的5次方;(-3)×(-3)×(-3)×(-3)应记作(-3)4,读作-3的4次方;(-0.3)×(-0.3)×(-0.3)应记作(-0.3)3,读作-0.3的3次方;猜想:a·a·a…a的结果?n个a②一般地,n个相同因数a相乘,即a·a·a…a,记作a n,读作a的n 次方.求n个相同因数的积的运算,叫作乘方,乘方的结果叫做幂.在a n中,a做底数,n叫作指数.当a n看作a的n次方的结果时,也可读作a的n 次幂.特别地,一个数也可以看作这个数本身的一次方,如5就是5的一次方,即5=51,指数为1,通常省略不写.③-24与(-2)4相等吗?为什么?不相等,虽然绝对值相等,但符号不同.④你能解决之前的“拉面问题”吗?其结果是多少?26=642.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题和疑点.a.负数和分数的乘方的记法;b.-24与(-2)4的区别.②差异指导:对学习有困难的学生进行学法指导.(2)生助生:学生相互交流帮助解决一些自学中的疑难问题.4.强化:(1)有理数乘方意义的理解:①乘方是一种运算(乘法运算的特例),即求n个相同因数的积的简便算式;②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;③乘方具有双重含义:既表示一种乘法运算,又表示乘方运算的结果;④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用括号把底数括起来,以体现底数的整体性.(2)在-(-2)5中,底数是-2 ,指数是5,计算的结果是32.1.自学指导:(1)自学内容:教材第42页的例1、例2.(2)自学时间:5分钟.(3)自学要求:观察例1的计算过程和结果,相互交流自己的收获.(4)自学参考提纲:①例1的计算依据是什么?乘方的定义②完成思考并填空.③底数为-1,0,1,10,0.1的幂的特性:0n=0(n为正整数);1n=1(n为整数);10n=100……0(1后面有n个0);0.1n=0.00…01(小数部分1前面有n-1个0)④由②、③可得乘方的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.⑤试确定下列算式的结果是正还是负?a.(-3)×(-3)×…×(-3)共100个(-3)b.(-2)11 c.-(-1)153正;负;正.⑥仿例2用计算器作乘方运算:a.(-11)3 b.(-0.52)4-1331;0.07311616.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题.②差异指导:指导学生的自学方法,帮助学困生解决学习中的疑难问题.(2)生助生:学生通过交流探讨相互帮助解决一些自学疑难问题.4.强化:(1)乘方的符号法则.(2)练习:)4;-(-2)3①计算:(-1);83;(-5)3;0.13;(-10)4;-32;(-12;8.解:1;512;-125;0.001;10000;-9;116②已知n是正整数,那么(-1)2n=1 ,(-1)2n+1=-1.三、评价1.学生的自我评价(围绕三维目标):谈自己在本节学习中的收获和存在的不足之处.2.教师对学生的评价:(1)表现性评价:对本节课学习中大家的态度、方法和成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(15分)在(-2)5中,底数是-2,指数是5,结果是-32.2.(15分)在-24中,底数是2,指数是4,结果是-16.3.(20分)下列各数相等的是(C)A.-33与-23B.32与-23C.-32与-(-3)2D. (-3)2与-324.(20分)计算.(1)(-3)3(2)(-2)4(3)(-1.7)2(4)(-43)3(5)-(-2)3(6)(-2)2×(-3)2 (7)-353(8)-32×(-2)3解:(1)-27;(2)16;(3)2.89;(4)-6427;(5)8;(6)36;(7)-1253;(8)72.二、综合应用(每题15分,共30分)5.(10分)平方等于9的数是几?立方等于27的数是几?解:±3;36.(10分)(1)计算0.12,12,102,1002,观察这些结果,底数的小数点向左(或右)移动一位时,平方数的小数点有什么移动规律?(2)计算0.13,13,103,1003,观察这些结果,底数的小数点向左(或右)移动一位时,立方数的小数点有什么移动规律?解:(1)平方数的小数点向左(向右)移动2位.(2)立方数的小数点向左(向右)移动3位.三、拓展延伸(20分)7.(10分)计算:(-2)2,22,(-2)3,23联系这类具体的数的乘方,你认为当a<0时,下列各式是否成立?(1)a2>0;(2)a2=(-a)2;(3)a2=-a2;(4)a3=-a3.解:4;4;-8;8.(1)(2)成立,(3)(4)不成立.作者留言:非常感谢!您浏览到此文档。

1.5.1有理数的乘方数学教案

1.5.1有理数的乘方数学教案

1.5.1有理数的乘方数学教案
标题:1.5.1有理数的乘方
一、教学目标:
1. 学生能理解并掌握有理数的乘方运算。

2. 学生能够熟练运用有理数的乘方进行计算。

3. 培养学生的逻辑思维能力和抽象思考能力。

二、教学重点和难点:
1. 教学重点:理解和掌握有理数的乘方运算法则。

2. 教学难点:正确理解和运用负数的乘方。

三、教学过程:
1. 导入新课:通过复习以前学过的乘法知识,引导学生进入新课程的学习。

2. 新课讲解:
- 介绍乘方的概念,解释底数和指数的含义。

- 举例说明正数、零和负数的乘方运算。

- 引导学生发现并总结有理数的乘方运算法则。

3. 练习与应用:设计一系列的练习题,让学生在实践中巩固所学知识。

4. 小结与作业:回顾本节课的内容,布置相关的家庭作业。

四、教学策略:
1. 采用直观教学法,借助实例帮助学生理解有理数的乘方。

2. 采用互动教学法,鼓励学生积极参与课堂讨论,提高他们的主动学习能力。

五、教学评价:
1. 进行课堂小测验,检查学生对有理数的乘方的理解程度。

2. 检查学生的家庭作业,了解他们对所学知识的应用能力。

六、教学反思:
对本次教学进行反思,分析存在的问题,提出改进措施。

以上只是一个基本的大纲,你可以在此基础上添加更多的细节和内容,比如具体的教学活动、案例分析等。

同时,你也可以考虑加入一些更深入的主题,如幂的性质、科学记数法等,以增加你的文档的深度和广度。

(导学案)1.5.1乘方(二)

(导学案)1.5.1乘方(二)
课题:1.5.1乘方(二)
教学目标
1.能确定有理数加、减、乘、除、乘方混合运算的顺序;
2.会进行有理数的混合运算;
3.培养并提高正确迅速的运算能力;
重点难点
重点:运算顺序的确定和性质符号的处理;
难点:有理数的混合运算;
导学过程
预习导航
阅读课本第43页至44页的部分,完成以下问题.
收获和疑惑
活动一
【新课引入】
2.计算:
(1)、(—1)10×2+(—2)3÷4;
(2)、(—5)3—3× ;
(3)、 ;
(4)、(—10)4+[(—4)2—(3+32)×2];
3.1、
2、
活动五
【小结】
说说你学习本节课的收获.
【作业设计】
1.课本P47习题1.5第3题
2.计算
(1)(- )÷ -(- )÷(-0.6);
(2)[(1+ )-(- )+(- )]÷(- ).
教师归纳:有理数的混合运算顺序:
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
(3)如有括号,就先进行括号内的运算,按小括号,Байду номын сангаас括号,大括号的顺序依次进行。
活动三
【讨论交流】
1.有理数的混合运算有什么运算顺序?
预习导航
活动四
【解决问题】
例1:教材例1.
解:
【巩固练习】
1.课本第44页练习第1题.
3.
(1)-1-(1-0.5)× ×[2-(-3)²]
(2)当2= ,b= 时,求a²+b²的值。
1、在2+ ×(-6)这个式子中,存在着种运算。

《有理数的乘方》 导学案

《有理数的乘方》 导学案

《有理数的乘方》导学案一、学习目标1、理解有理数乘方的意义。

2、掌握有理数乘方的运算。

3、能熟练进行有理数的乘方运算,并能解决实际问题。

二、学习重难点1、重点(1)有理数乘方的意义。

(2)有理数乘方的运算。

2、难点(1)负数的乘方运算。

(2)有理数乘方的符号法则。

三、知识回顾1、有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与 0 相乘,都得 0。

2、几个不为 0 的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。

四、新课导入同学们,我们已经学习了有理数的加法、减法、乘法和除法运算。

今天,我们将学习一种新的运算——有理数的乘方。

先来看一个例子:边长为 2 的正方形的面积是多少?答案是 2×2 =4。

再看一个例子:棱长为 2 的正方体的体积是多少?答案是 2×2×2 =8。

在数学中,我们把 2×2 记作 2²,读作“2 的平方”;把 2×2×2 记作 2³,读作“2 的立方”。

一般地,n 个相同的因数 a 相乘,记作aⁿ,读作“a 的 n 次方”。

五、知识讲解1、乘方的定义求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在aⁿ中,a 叫做底数,n 叫做指数。

例如,3×3×3×3 可以记作 3⁴,其中 3 是底数,4 是指数,读作“3的 4 次方”,其结果 81 叫做幂。

2、乘方的符号法则(1)正数的任何次幂都是正数。

(2)负数的奇次幂是负数,负数的偶次幂是正数。

(3)0 的任何正整数次幂都是 0。

例如,2³= 8,(-2)³=-8,(-2)²= 4,0⁵= 0。

3、有理数的乘方运算(1)先确定幂的符号。

(2)再计算幂的绝对值。

例如,计算(-3)²,先确定符号为正,然后计算 3×3 = 9,所以(-3)²= 9。

有理数的乘方 导学案

有理数的乘方    导学案

有理数的乘方导学案1. 知道什么是乘方.2.会熟练地进行乘方的运算.重点:理解乘方的意义难点:掌握有理数的混合运算法则1.乘方的定义:一般地,我们把n个相同因数a相乘的积记作:其中a是相同的因数,n是相乘因数的个数.这种求几个相同因数的积的运算叫做乘方,乘方的结果叫幂.一、新知探究探究1 有理数的乘方的意义请你仿照上面的记数方法表示下列各式:(1)5×5×5记作______,3×3×3×3记作______. (2)(-4)×(-4)×(-4)×(-4)记作______,(3)111______.222⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭记作(一)探索新知:解:小结:乘方式与乘积式的互化是理解乘方意义的关键;乘方是一种特殊的乘法运算(因数相同);在将各个因数都相同的乘积式改为乘方式时,当这个相同因数是负数、分数,作底数时,要用括号括起来. (二)典题精练1、指出下列各式表示的意义:()104310414,3,5,,5.3⎛⎫-- ⎪⎝⎭探究2 有理数的乘方运算 (一)探索新知 1.计算,填表.2. 上表中计算结果的符号有什么规律?小结:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数; 0的任何整数次幂都是0.解:小结:(1)两个互为相反数的数的偶次幂相等,奇次幂仍然互为相反数;(2)任意数的偶次幂都是非负数;(3)1的任何次幂都是1;-1的偶次幂是1,-1的奇次幂是-1. (二)典题精练解:小结:非负数之和等于0,每个非负数都为0.(三)典题精讲小试牛刀:探究3:有理数的混合运算考一考: 目前已学过几种运算有理数的运算法则:对于有理数的混合运算,应先算乘方,后算乘除,再算加减;有括号时,先算小括号里面的运算,再算中括号,后算大括号.(一)典题精讲(计算下列各题)(二)小试牛刀(计算下列各题.解:课后作业:书本P9第28-31、34题.学后反思:。

1.5(集体备课)有理数的乘方教案

1.5(集体备课)有理数的乘方教案
1.5.2
给学生讲“从三到万”的故事,让学生体会大数的意义与表示,引入科学记数法,从学生们熟悉的移小数点切入教学。通过小数点的一“找”二“移”三“数”把一个大数表示成科学记数法的形式,再反向的相应移动小数点把科学记数法表示的数表示为一般形式。学生通过训练掌握了两者转化的方法,教师再提出思考“一般形式的数的整数位数与科学记数法中10的指数有什么关系”。
难点:用科学记数法表示近似数,描述科学记数法表示近似数的精确度。
1.5.3(课时2)
重点:熟练掌握精确到小数点前某一位的近似数的求法与表示,会由近似数求准确数的范围;了解有效数字的概念;
难点:理解精确度包含的近似数与准确数之间的数量关系。
三、教学方法
根据内容特点与教师学生的素质情况,这几个课时均以教授法,讲演法,讲练法为主,适当配以学生小组讨论与独立思考的形式进行教学。
基础训练 1.5.3近似数
1.5.3(课时2)
基础训练 拓展空间
名校课堂 第四课时 近似数
请老师们多批评指导,谢谢!
知识与技能:体会准确数与近似数的意义,掌握近似数的求法与表示;
过程与方法:回忆、类比、分析、训练
情感与价值观:体会用近似数描述生活中的量,能理解近似数与准确数之间的关系,感受描述客观世界的态度。
1.5.3(课时2)
知识与技能:熟练掌握精确到小数点前某一位的近似数的求法与表示,能由近似数确定准确数的范围,了解有效数字的概念;
(1)1,9,25,49,,;
(2) , , ,,;
(3)1,﹣2,4,﹣8,,.
1.5.3(课时1)
按要求求下列各数的近似数
(1)489960(精确到千位);
(2)783000(精确到万位);
(3)6498(精确到千位).

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

1.5.1 乘方《第2课时有理数的混合运算》教案【教学目标】:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【教学重点】:根据有理数的混合运算顺序,正确地进行有理数的混合运算.【教学难点】:有理数的混合运算.【教学过程】:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习 1.计算:(1)|-|2+(-1)101-×(0.5-)÷; (2)1÷(1)×(-)÷(-12); (3)(-2)3+3×(-1)2-(-1)4; (4)[2-(-)3]-(-)+(-)×(-1)2; (5)5÷[-(2-2)]×6. 2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a=-1,则A 等于多少? 三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.2.在运算中要注意像-72与(-7)2等这类式子的区别.1.5.1 乘方《第2课时 有理数的混合运算》同步练习1.填空题(1)求几个相同因数的积的运算,叫做_______,即n n a a a a •⋅⋅⋅•=个=a n 在a n 中,a 叫做_______,n 叫做______,a n 叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________; (4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂(2)正数负数正数(3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1). 思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nb b b b ••⋅⋅⋅个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5;(2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)223=49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.(巩固类训练)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b -4)2≥0.又因为(a+12)2+(2b -4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334.6.若n 为自然数,求(-1)2n -(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1.答案:-6.7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值. 思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.1.5.1 乘方《第2课时 有理数的混合运算》导学案【学习目标】:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度【重难点】:有理数的四则混合运算 【学习过程】 一、自主学习: (一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何? (二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。

SX-7-023、1.5有理数的乘方(2)有理数的乘方(2)导学案

SX-7-023、1.5有理数的乘方(2)有理数的乘方(2)导学案
1 (5) 、 (—5)3—3× ( ) 4 ; 2
3 3 (2) 12 1 (12)÷ 6 × (- )3 4 7
2
达 标 测 评
3 3 5 19 1 4 3 (3) (- )3 ( ) 2 2 (1 )3 ( ) 2 ( )3 2 5 19 49 2 5 2
3、能力提升 已知 ab 2 (b 1)2 0 2、观察下面行数: ① -3,9,-27,81,-243,729,… ② 0,12,-24,84,-240,732,… ③ -1,3,-9,27,-81,243,… (1)第①行数有什么规律? (2)第②行数与第①行数有什么关系? (3)第③行数与第①行数有什么关系? (3)取每行数的第 10 个数,计算这三个数的和 2、学习致用 1、计算:
3 3 2 2 11× 2 3÷ 3 (3) 3 ÷ ( 2 )
试求
1 1 1 1 的值 ab (a 1)(b 1) (a 2)(b 2) (a 3)(b 3)
你有什么收获?
教 与 学 反 思
2、 x 、 y 为有理数,且 x 1 2( y 3)2 0 ,求 x2 3xy 2 y 2 的值;
教学反思: 有理数乘法的教学,是教学中的重点。学生也能很快融会贯通,只 是计算中还存在着一些问题,练习过程中我一一指正,并提出要求,针 对学生加减运算中的薄弱环节,在乘法中加入加减运算的练习,让学生 在练习中自己总结经验,牢记结论,做到在简单的运算中不失分。在教 学过程中,我深深感到基本计算能力薄弱,导致所学知识掌握不牢,每 道题目都要进行详细的解答和板书,从而浪费了很多时间,加强计算能 力的培养,有利于加强学生解题的正确性,提高学生的自信心。在教学 设计上,一节课很难练习多个题目,容量总是提高不起来,导致学生的 视野狭窄,由于学生的自觉性很差,不可能自己去找题目做,因而熟练 程度很低,我感觉只有加强课后练习和辅导,才会在一定程度上提高学 生的视野,扩大他们的知识面。这样的教学方法有利于培养学生的分类 讨论的能力。应该把推导的过程留给学生,教师只是起到引导学生进行 思维的作用,不要代替学生思维和推导。

1.5有理数的乘方(教案)

1.5有理数的乘方(教案)
(4)实际应用问题:将乘方知识应用于解决实际问题时,学生可能难以找到乘方的模型。
举例:针对负整数乘方的理解,可以设计以下练习:
求2⁻³的值。
解答:2⁻³ = 1/(2³) = 1/8
针对乘方运算与其他运算的结合,可以设计以下练习:
计算:3² + 2 × 4⁻²
解答:首先计算乘方,3² = 9,4⁻² = 1/4,然后进行乘除运算,2 × 1/4 = 1/2,最后进行加法运算,9 + 1/2 = 9.5。
其次,学生在小组讨论环节中,对于有理数乘方在实际生活中的应用提出了很多有趣的想法,这说明他们已经能够在一定程度上运用所学知识。但同时,我也发现部分学生在讨论中较为被动,需要我在今后的教学中多关注这些学生的参与度,鼓励他们更加积极地参与到课堂讨论中来。
此外,实践活动中的实验操作环节,学生对折叠纸张这个实验很感兴趣,但也有些学生操作不够熟练,导致实验结果出现误差。在今后的教学中,我需要加强对学生实验操作的指导,提高他们的动手能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(3)正整数乘方的性质:培养学生熟练运用正整数乘方的性质,如aⁿ × aᵐ = aⁿ⁺ᵐ,(aⁿ)ᵐ = aⁿᵐ等。
(4)负整数乘方的性质:使学生掌握负整数乘方的性质,如a⁻ᵐ = 1/(aᵐ),(ab)⁻ᵐ = a⁻ᵐb⁻ᵐ等。
举例:讲解正整数乘方的性质时,可以举例如下:

1.5.1 有理数的乘方导学案

1.5.1 有理数的乘方导学案

1.5.1 有理数的乘方 导学案学习目标1.理解有理数的乘方的意义;2.探究并能掌握有理数乘方的符号法则;3.培养观察、比较、归纳的能力。

学习重点: 有理数乘方的表示方法及运算学习难点:乘方、幂、指数的概念,有理数乘方的符号法则一.自主学习(认真阅读教材41、42页内容)(一)导入:1、正方形的边长为2cm ,它的面积是多少? 列式棱长为2cm 的正方体,则体积为多少? 列式2.、 可以写作: 3、 可以写作:(二)乘方的意义1、一般地,n 个相同因数a 相乘,即,记作 ,读作 。

2、.求n 个相同因数的 ,叫作乘方,乘方的结果叫做 。

在n a 中,a 叫做 ,n 叫做 。

n a 叫做 当n a 看作a 的n 次方的结果时,也可读作 。

(三)巩固练习1、在 49中,底数是_________,指数是__________,表示4个____相乘,读作___________,也读作____________.2、 5 的底数是_____, 指数是________特别地一个数可以看作这数本身的 次方。

3、计算:(1)()34- (2)()42-(3)70 (4)332-⎪⎭⎫ ⎝⎛ ()()()()2222-⨯-⨯-⨯-21212121212121⨯⨯⨯⨯⨯⨯有理数乘方的符号法则:负数的 次幂是负数,负数的 次幂是 数。

正数的任何次幂都是 数,0的任何正整数次幂都是 。

4、迅速判断下列各幂的正负516 ( ) 425( ) ()58-( )()63- ( ) ()1011- ( ) 5041-⎪⎭⎫⎝⎛( )5、思考:○1 的意义是否相同?其中结果是否一样?○2 的意义是否相同?其中结果是否一样?小结:负数或分数的乘方,在书写时 一定要把整个负数(连同符号)或分数, 用 .这也是辨认底数的方法;()223-3-与323222=⎪⎭⎫ ⎝⎛二.知识小测1.(-3)4表示( ).A .-3×4B .4个(-3) 相加C .4个(-3)相乘D .3个(-4)相乘2.计算:()=32- ;=21.0 ;=2212-)( . 3.计算=21- ;=43-2 ;=⎪⎭⎫ ⎝⎛332-- . 4.(-1)2= ,(-1)3= ,若n 是正整数,那么2(1)n -= ,21(1)n +-= ___ 5.(1)平方等于本身的数有 ;(2)立方等于本身的数有 ;(3)平方等于立方的数有 .6.若=+=2017x -1x 20182018,则三.布置作业新课程28~29页。

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以更好地组织教学活动。

来参考自己需要的教案吧!以下是人见人爱的小编分享的5篇七年级数学《有理数的乘方》教案设计,希望能够满足亲的需求。

七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
4 、 若 a,b 互 为 相 反 数 , c,d 互 为 倒 数 , 且 a 0 , 则
(a b)
2007
ቤተ መጻሕፍቲ ባይዱ
( cd )
2008
(
a b
)
2009

.
2009
5、 x 1 6 的最小值是 ●体验中招
,此时 x
=

2
6、 已知有理数 x , y , z , x 3 2 y 1 7 ( 2 z 1) =0, x y z 且 求
3
当 堂 测 试

2、对任意实数 a,下列各式一定不成立的是( A 、 a ( a )
2
2
) D、 a
2
3、 ( 2 )
2003
(2)
2002
2
B、 a ( a )
3
3
C、 a a
3
0
3、 x 9 , x 得值是 若 则
; a 8 , a 得值是 若 则
分析:在有关乘方的计算中,最易出现错误的是“符号问题” ,解决问 题的关键是准确理解幂的概念,头脑时刻保持清醒,不要随意的增减 和变换符号,更不要“ 跳步” ,严格按照运算法则进行。 解: 2 ( 2 ) 2 ( 2 ) 2
2 2 3 3
(2 ) ___________________________________________________________; (3) _________________________________________________________
2
5 ] 3 9 2
(3) ( 10 ) [( 4 ) ( 3 3 ) 2 ] ;
2 2 2
三 学 生 展 示 教 师 激 励
2、 2
3
(4) ( 1) (1 0 . 5 )
4
1 3
[2 (2) ] ;
2

2 9 3 4
(2)(—5)3—3×( 、
1 2
) ;
4
学习重点: 运算顺序的确定和性质符号的处理; 学习难点: 有理数的混合运算; 教学方法: 环 节
2
二 合 作 探 究 教 师 引 领
(3) 、
11 5
(
1 3

1 2
)
3 11

5 4

双向五环 学 学 习 案
种运算。

程 备注栏
1、在 2+ 3 × (-6)这个式子中,存在着
3
四 学 生 探 究
1、 (2009 年,河南) ( 1 ) 等于( A、 1 2 、 ( B、1 2009 C、 3 年 ,
2
) D、3
的相反数的倒数。



) .

m n n m,

m 4 , n 3 , 则( m n )
课 后 反 思
2
陡沟镇中心学校 七年级数学 导学案
课 时 题: 间 1.5.1 有理数的乘方(2) 年级 七 主备人 代廷辉 编 号 012 数学组
计算: (1)(—1)10× 、 2+(—2)3÷ 4;
审核人
1、能确定有理数加、减、乘、除、乘方混合运算的顺序; 学习目标: 2、会进行有理数的混合运算; 3、培养并提高正确迅速的运算能力;
(4)(—10)4+[ 、 (—4)2—(3+32)× ; 2] 典例分析 计算: 2 ( 2 ) 2 ( 2 ) 2
2 2 3 3
一 自 主 学 习 教 师 导 学
2、请你们以 4 人一个小组讨论、交流,上面这个式子应该先 算 、再算 、最后算 。 1、由上可以知道,在有理数的混合运算中,运算顺序是: (1 ______________________________________________________; )
4 4 8 8 2 16 10 6
1
【要点归纳】 : 有理数的混合运算的运算顺序是: 【拓展训练】 计算 1、 3 [
2
1、 计算: (1) 3 ( 2 ) ;
2 2
(2) 1
4
1 6
[ 2 ( 3) ] ;
相关文档
最新文档