数学知识点苏科版数学九年级上册2.5《直线与圆的位置关系》word导学案(2)-总结
苏科版九年级上第二章2.5直线及圆位置关系教案设计
苏科版九年级上第二章直线与圆的地点关系教学设计设计直线与圆的地点关系一、知识点梳理订交直线与圆有两个公共点订交(d<r)三种地点相切直线与圆有独一公共点相切(d=r)关系相离直线与圆没有公共点相离(d>r)直线性质切线垂直于过切点的半径分类与圆切线判断方法的与圆有独一公共点d=r讨论经过半径的外端而且垂直于这条半径的直线是圆的切线从圆外一点引圆的两条切线,它们的切线长相等,圆切线长定理心和这一点的连线均分两条切线的夹角定义与三角形的各边都相切的圆内切圆的圆心叫做三角形的心里心里到三角形三边的距离相等例题练习:题型1:直线与圆的地点关系例1、以下判断正确的选项是()数形结1/15苏科版九年级上第二章直线与圆的地点关系教学设计设计①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,?则直线与圆订交.A .①②③B .①②C .②③D .③例2、过圆上一点能够作圆的______条切线;过圆外一点能够作圆的_____条切线;?过圆内一点的圆的切线______.例3.已知Rt△ABC的斜边AB=6cm,直角边AC=3cm。
圆心为A,半径分别为2cm、4cm的两个圆与直线BC有如何的地点关系?半径 r多长时,BC与⊙A相切?变式训练 1.在上题中,“圆心为C,半径分别为2cm、4cm的两个圆与直线AB有如何的地点关系?半径r多长时,直线AB与⊙C相切?[根源m]变式训练 2.在上题中,若将直线AB改为边AB,⊙C与边AB订交,则圆半径r应取如何的值?稳固训练:1、以下直线是圆的切线的是()2/15苏科版九年级上第二章直线与圆的地点关系教学设计设计A .与圆有公共点的直线B .到圆心的距离等于半径的直线C .垂直于圆的半径的直线D .过圆直径外端点的直线2、以三角形一边为直径的圆恰巧与另一边相切,则此三角形是_______.3、在△ABC中,∠A=45°,AC=4,以C为圆心,r为半径的圆与直线AB有如何的地点关系?为何?⑴r=2;⑵r=2 2;⑶r=34、如图,∠AOB=30°,点M在OB上,且OM=5cm,以M为圆心,r为半径画圆,试议论 r的大小与所画⊙M和射线OA的公共点个数之间的对应关系。
初中数学九年级上册苏科版2.5直线与圆的位置关系优秀教学案例
4.在学生解答问题过程中,给予适当的提示和引导,帮助学生克服思维障碍,提高他们的逻辑思维能力。
(三)小组合作
1.将学生分成小组,鼓励他们进行合作交流,共同探讨直线与圆的位置关系。
2.设计小组讨论的任务,引导学生在讨论中思考、表达和交流,培养他们的团队协作能力和沟通能力。
初中数学九年级上册苏科版2.5直线与圆的位置关系优秀教学案例
一、案例背景
本教学案例围绕初中数学九年级上册苏科版2.5直线与圆的位置关系展开,旨在通过深入浅出的教学方法,帮助学生掌握直线与圆的位置关系,并能够运用这一知识解决实际问题。在教学过程中,我以生活实例为导入,激发学生的学习兴趣,接着引导学生通过观察、思考、探究的方式,自主发现直线与圆的位置关系,并在这一过程中培养学生的逻辑思维能力和团队协作能力。在课程的深化阶段,我设计了一系列具有挑战性的练习题,鼓励学生运用所学知识解决实际问题,从而巩固和提高他们的数学素养。同时,我还注重对学生的个性化关怀,针对不同学生的学习特点进行因材施教,使他们在数学学习中找到自信,培养他们持之以恒的学习态度。
3.讲解直线与圆相切、相交和相离三种情况的特点和性质。
4.利用数学符号和语言,描述直线与圆的位置关系。
(三)学生小组讨论
1.将学生分成小组,提出小组讨论的任务,如“探讨直线与圆相切时,切点、圆心、半径之间的关系”。
2.引导学生进行合作交流,分享自己的思考和观点,培养团队协作能力和沟通能力。
3.鼓励学生利用几何画板或实物模型,验证自己的结论,提高实践操作能力。
4.引导学生认识到数学与实际生活的紧密联系,提高他们运用数学知识解决实际问题的能力。
新苏科版九年级数学上册2-5直线与圆的位置关系(5)导学案
新苏科版九年级数学上册2-5直线与圆的位置关系(5)导学案【知识扫描】1.在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的_________.(1)过圆外一点可以作圆的_______条切线;过圆上一点可以作圆的______条切线;(2)如图,PA 、PB 切⊙O 于A 、B ,则PA 、PB 的长就是_________. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的_______相等; 这一点和圆心的连线平分______________. 符号语言:∵PA 、PB 分别切⊙O 于A 、B∴PA=PB ,OP 平分∠APB (∠APO =∠BPO )【基础训练】1.如图,⊙O 是△ABC 的内切圆,⊙O 切BC 于点D ,BD=3,CD=4,△ABC 的周长为18,则AB=________,AC=__________.(第1题) (第2题) 2.如图,PA 、PB 切⊙O 于点A 、B ,点C 是⊙O 上一点,且∠ACB=65°,则∠P=________.3.如图,AB 、AC 为⊙O 的切线,B 和C 是切点,延长OB 到D ,使BD=OB ,连结AD ,如果∠DAC=78°,那么∠ADO=___________°.D O B AC O BA PA B DO C P BAO4.如图,P 是⊙O 的直径AB 的延长线上一点,PC 、PD 切⊙O 于点C 、D 。
若PA=6,⊙O 的半径为2,则PC 的长为_________,∠CPD=________°.(第4题) (第5题) (第6题) 5.如图,在△ABC 中,∠C =90°,它的内切圆O 分别与边AB 、BC 、CA 相切于点D 、E 、F ,且BD =6,AD =4,则⊙O 的半径r =________.6.如图,P 是⊙O 外的一点,PA 、PB 分别与⊙O 相切于点A 、B ,点C 是弧AB 上的任意一点,过C 的切线分别交PA 、PB 于点D 、E.(1)若PA=4,则△PDE 的周长为________;当点C 在劣弧AB 上移动时,△PDE 的周长________(填“变”或“不变”); (2)若∠P=40º,则∠DOE =_________°.7.如图,⊙O 的半径为5,P 为⊙O 外一点,PA 、PB 是⊙O 的切线,A 、B 为切点,AB 交OP 于点C ,且∠APB =90°, 求(1)∠PAB 的度数;(2)AB 的长.O ED A D OBC AO BA CPA BE OD C【拓展视野】8.如图,已知AB=BC=CD ,AC 是⊙B 的直径,DE 切⊙B 与E ,切线CF 交于DE 于F. 则EF :FD=_________.9.如图,AB//DC ,直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G , (1)求∠BOC 的度数;(2)如果BE=9,CG=16,求⊙O 的半径;F EDCBGFCO DB。
苏科版数学九年级上册第2章《直线与圆的位置关系》教学设计
苏科版数学九年级上册第2章《直线与圆的位置关系》教学设计一. 教材分析《直线与圆的位置关系》是苏科版数学九年级上册第2章的内容,本节内容是在学生已经掌握了直线、圆的基本性质的基础上进行授课的。
本节课的主要内容有:直线与圆的位置关系的判断,以及直线与圆的位置关系与圆的切线的性质。
这部分内容在数学中占据着重要的地位,是后续学习圆的方程、圆的相交弦、圆的内接四边形等知识的基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于直线和圆的基本性质有一定的了解。
但是,对于直线与圆的位置关系的判断,以及直线与圆的位置关系与圆的切线的性质,还是陌生的。
因此,在教学过程中,需要引导学生通过观察、思考、操作、交流等活动,自主探索直线与圆的位置关系,以及直线与圆的位置关系与圆的切线的性质。
三. 教学目标1.理解直线与圆的位置关系的概念,掌握判断直线与圆位置关系的方法。
2.理解直线与圆的位置关系与圆的切线的性质,能运用切线的性质解决实际问题。
3.培养学生的空间想象能力,提高学生分析问题、解决问题的能力。
四. 教学重难点1.教学重点:直线与圆的位置关系的判断,直线与圆的位置关系与圆的切线的性质。
2.教学难点:直线与圆的位置关系的判断,直线与圆的位置关系与圆的切线的性质的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生自主探索直线与圆的位置关系,以及直线与圆的位置关系与圆的切线的性质。
2.采用合作交流的教学方法,让学生在小组合作中,共同解决问题,提高学生的合作能力。
3.采用直观演示的教学方法,利用多媒体课件,直观展示直线与圆的位置关系,帮助学生理解知识。
六. 教学准备1.多媒体课件2.直线与圆的位置关系的模型3.圆的切线的模型七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些直线与圆的位置关系的图片,引导学生思考直线与圆的位置关系有哪些。
2.呈现(10分钟)呈现直线与圆的位置关系的模型,让学生观察、思考,引导学生发现直线与圆的位置关系的判断方法。
苏科版数学九年级上册2.5《直线与圆的位置关系》教学设计4)
苏科版数学九年级上册2.5《直线与圆的位置关系》教学设计4)一. 教材分析《直线与圆的位置关系》是苏科版数学九年级上册第2.5节的内容,本节课的主要内容是让学生掌握直线与圆的位置关系,以及掌握判断直线与圆位置关系的方法。
教材通过生活中的实例,引导学生探究直线与圆的位置关系,培养学生的动手操作能力和数学思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本知识,对直线、圆的概念和性质有一定的了解。
但是,对于直线与圆的位置关系的理解和判断,对学生来说是一个新的挑战。
因此,在教学过程中,需要引导学生通过观察、操作、思考、讨论等活动,自主探索直线与圆的位置关系,提高学生的数学思维能力和解决问题的能力。
三. 教学目标1.知识与技能:让学生掌握直线与圆的位置关系,学会判断直线与圆位置关系的方法。
2.过程与方法:通过观察、操作、思考、讨论等活动,培养学生的动手操作能力和数学思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的心态。
四. 教学重难点1.教学重点:直线与圆的位置关系的判断方法。
2.教学难点:对直线与圆位置关系的理解和应用。
五. 教学方法1.引导发现法:教师通过提问、引导,让学生自主发现直线与圆的位置关系。
2.合作交流法:学生分组讨论,共同解决问题,培养团队合作意识。
3.动手操作法:学生通过实际操作,加深对直线与圆位置关系的理解。
六. 教学准备1.教具准备:直尺、圆规、多媒体教学设备。
2.教材准备:苏科版数学九年级上册教材。
3.课件准备:直线与圆的位置关系的课件。
七. 教学过程1.导入(5分钟)教师通过生活中的实例,引导学生思考直线与圆的位置关系,激发学生的学习兴趣。
2.呈现(10分钟)教师利用多媒体展示直线与圆的位置关系的图片,让学生直观地感受直线与圆的位置关系,为学生自主探索提供直观的素材。
3.操练(10分钟)学生分组讨论,利用直尺、圆规等工具,自己动手操作,探索直线与圆的位置关系。
苏科版九年级数学上册第2.5:直线与圆的位置关系 教案设计
初三数学“直线与圆的位置关系”教学设计一、教材简解“直线与圆的位置关系”是苏科版初中几何教材九年级上册第二章《对称图形——圆》的重点内容之一,从知识结构来看,在这之前已学习了直线型图形的有关性质、判定以及点与圆的位置关系,通过本节内容的学习将加深直线与圆的认识,建立运动观念,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,提高运用数学的能力;同时本节内容也是点与圆位置关系的延续,为今后学习圆和圆的位置关系等知识打下坚实的基础.从解决问题的思想方法来看,它运用运动变化的观点揭示了知识的发生过程,渗透了数形结合、分类讨论、类比、化归等数学思想方法,反映了事物内部的量变与质变,通过这些对学生进行辩证唯物主义世界观的教育.所以这一课时无论从知识性还是思想性来讲,在教学中都占有重要的地位,起着承上启下的作用.二、目标预设:(一)、知识技能1、探索并掌握直线与圆的三种位置关系。
2、观察直线与圆的位置关系的变化过程,这三种位置关系对应的圆的半径r与圆心到直线的距离d之间的数量关系。
(二)、能力训练1、经历探索直线与圆的位置关系的过程,培养学生的探索能力。
2、通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化三、教学重点和难点:教学重点:直线与圆的三种位置关系。
教学难点:用数量关系描述直线与圆的位置关系。
四、设计理念从运用数量关系来刻画图形位置关系的活动中,进一步增强数图结合的发展观念,同时提高学生运动变化的观点,观察和分析问题的能力。
1、让学生经历观察、探究、归纳、总结等过程,知道直线和圆相交、相切、相割的定义,会根据定义来判断直线和圆的位置关系。
2、在解决问题的过程中,会根据圆心到直线的距离与圆半径之间的数量关系,揭示直线和圆的位置关系。
五、设计思路本节课利用视频资料创设海上日出的问题情境,进而将动画中的太阳与地平线的位置关系抽象为直线与圆的位置关系;在引出课题后我让学生进行自主探究,目的是要让学生从看似简单的活动中发现规律,培养了学生发现问题、探索问题的能力;同时这两个活动成为本节课的学习线索,让学生运用分类的方法从直线与圆公共点的个数,给出三种位置关系的概念,学生很容易接受;并通过几组实例及时巩固了概念。
苏科版数学九年级上册2.5《直线与圆的位置关系》说课稿
苏科版数学九年级上册2.5《直线与圆的位置关系》说课稿一. 教材分析《直线与圆的位置关系》是苏科版数学九年级上册第2.5节的内容。
这一节主要介绍了直线与圆的位置关系,包括相切、相离和相交三种情况,并学习了如何判断直线与圆的位置关系以及如何求解相关问题。
教材通过生动的图形和实例,让学生更好地理解和掌握这一知识点。
二. 学情分析九年级的学生已经学习过一些几何的基本知识,如直线、圆的性质和相互关系等。
他们对几何图形的认识和理解已经有一定的基础,但直线与圆的位置关系较为抽象,需要通过实例和图形来帮助学生理解和掌握。
三. 说教学目标1.知识与技能目标:学生能够理解直线与圆的位置关系的概念,学会判断直线与圆的位置关系,并能够运用相关知识解决实际问题。
2.过程与方法目标:学生通过观察图形、分析实例,培养观察和思考的能力,提高解决问题的能力。
3.情感态度与价值观目标:学生通过学习直线与圆的位置关系,培养对数学的兴趣和好奇心,提高对几何图形的审美能力。
四. 说教学重难点1.教学重点:直线与圆的位置关系的概念和判断方法。
2.教学难点:如何理解和运用直线与圆的位置关系解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和小组合作学习法。
2.教学手段:利用多媒体课件和几何画板进行教学,通过图形和实例的展示,帮助学生理解和掌握直线与圆的位置关系。
六. 说教学过程1.导入:通过展示一些生活中的实际问题,如自行车轮子与地面的关系,引导学生思考直线与圆的位置关系。
2.新课引入:介绍直线与圆的位置关系的概念,并通过几何画板展示不同位置关系的图形。
3.实例分析:通过分析具体的实例,让学生学会判断直线与圆的位置关系,并求解相关问题。
4.小组合作:学生分组讨论,通过合作解决问题,培养学生的合作意识和解决问题的能力。
5.总结提高:对直线与圆的位置关系进行总结,引导学生运用相关知识解决实际问题。
七. 说板书设计板书设计主要包括直线与圆的位置关系的概念、判断方法和相关问题。
最新苏科版九年级数学上册《直线和圆的位置关系》教学设计(精品教案)
最新苏科版九年级数学上册《直线和圆的位置关系》教学设计(精品教案)2.5直线和圆的位置关系教学目标:1.知道直线与圆有相交、相切、相离三种位置关系.2.会利用直线与圆的位置关系来进行计算和说理.3. 用类比的方法探索直线与圆的位置关系,体会数形结合、分类讨论的数学思想.在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心..教学重点:直线与圆的位置关系与对应数量关系的运用.教学难点:直线与圆的位置关系与对应数量关系的探索.教学过程:一、创设情境1.我们在前面学过点和圆的位置关系,请大家回忆一下它们的位置关系有哪些?板书(设计意图:通过类比掌握新知,这是一种重要的数学学习方法)2.如果把点看成一条直线,想象一下直线与圆有哪几种位置关系?二、活动探索活动一.操作、思考1.联系生活中的具体情境,师生共同举例:如(1)自行车在平坦的地面上骑行,把自行车轮胎看成一个圆,平坦的地面看成一条直线(师生共同画出图形)(2)自行车在泥泞的道路上骑行,把自行车轮胎看成一个圆,泥泞的地面看成一条直线(师生共同画出图形)(3)一个圆形的风车在平坦的地面上转动(师生共同画出图形)(设计意图:联系生活,体会数学问题从生活中来,用所学知识解决生活中的问题)2.观察--操作—猜想,得出直线与圆的三种位置关系:(揭示课题)3.在选取其中一个圆,上、下移动直尺.在移动过程中直线与圆的位置关系发生了怎样的变化?你能描述这种变化吗?(公共点个数、圆心到直线的距离)(设计意图:让学生通过观察、操作、猜想等活动,积累基本的数学活动经验)4.板书相关定义a.直线和圆有两个公共点,叫做直线与圆相交b.直线和圆有唯一个公共点,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点c.直线和圆没有公共点时,叫做直线与圆相离活动二.探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系前面复习知道:点和圆的位置关系可以用圆心到点之间的距离,这一数量关系来刻画他们的位置关系;那么直线和圆的位置关系是否也可以用数量关系来刻画他们三种位置关系呢?下面我们一起来研究一下!(在自己所画的图形中观察)如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1、直线与圆相交<=> d<r< p="">2、直线与圆相切<=> d=r3、直线与圆相离<=> d>r你能根据d与r的大小关系确定直线与圆的位置关系吗?(设计意图:类比点与圆的位置关系得出直线与圆的位置关系与某些数量之间的联系)</r<>。
苏科版数学九年级上册第二章《直线与圆的位置关系》专题解析
《直线与圆的位置关系》专题解析【考点图解】【技法透析】1.判定直线与圆的位置关系的方法有两种:一是从直线与圆的公共交点的个数来进行判断,另一种是根据圆心到直线的距离与圆的半径之间的大小关系来判断.2.切线的判定方法有三种:一是根据定义,直线与圆只有一个公共点;二是圆心到直线的距离等于半径的直线是圆的切线;三是切线的判定定理,当已知条件中明确指出圆与直线有公共点时,常用“连半径证垂直”的方法,当已知条件中没有指出圆与直线有公共点时,常用“作垂直证半径”的方法.3.切线的性质定理有:①切线与圆只有唯一的公共点;②切线和圆心的距离等于圆的半径;③切线垂直于过切点的半径;④经过圆心垂直于切线的直线必过切点;⑤经过切点垂直于切线的直线必过圆心.4.涉及切线的重要性质还有切线长定理和弦切角定理,其中切线长定理及其对应的基本图形、以及圆的外切三角形、外切四边形所存在的线段之间的关系也是解决问题常用的依据租方法,弦切角定理更是转化圆中相关角的重要定理.5.和圆有关的比例线段定理包括相交弦定理、切割线定理及其推论,统称圆幂定理,它揭示了直线与圆相交后所存在的线段间的比例关系.利用这些定理,可直接进行线段的等积式的变换,或比例线段的转化.【名题精讲】考点1直线与圆的位置关系例1 如图10-1,在△ABC中,∠C=90°,∠A=30°,O为AB上一点,OB=m,⊙O的半径为r=12,当m在什么范围内取值时,BC与⊙O相离、相切、相交?【切题技巧】要判断OB=m在什么范围内取值时,BC与⊙O相离、相切、相交,就是要判断圆心O到BC的距离d与⊙O的半径r之间的大小关系.【切题技巧】作OD⊥BC于点D【借题发挥】判断直线与圆的位置关系,根据圆心到直线的距离与圆的半径的大小确定:①若d<r,直线与圆相交;②若d=r,直线与圆相切;③若d>r,直线与圆相离.【同类拓展】1.在Rt△ABC中,∠C=90°,∠B=30°;BC=4cm,以2cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离B.相切C.相交D.相切或相交2.如图10-2,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P 在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是( )A.-1≤x≤1 B.-2≤x≤2C.0≤x≤2D.x>2考点2直线与圆相切的综合问题例2 如图10-3,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线(2)求证:BC=12AB(3)点M是AB的中点,CM交AB于点N,若AB=4,求MN·MC的值.【切题技巧】(1)证∠OCP=∠ACB=90°即可得PC是⊙O的切线,(2)证∠CBO=∠COB得BC=OC,从而有BC=12AB,(3)连MA,MB,先证△BMN∽△CMB得MN·MC=BM2,再在Rt△ABM中求出BM长即可求值.【规范解答】【借题发挥】切线的证明有两种方法:一种是已知切点,连接圆心和切点证垂直;另一种是不知切点,过圆心向已知直线作垂线,证垂线段长等于半径.【同类拓展】3.如图10-4,△ABC中,AB=AC,以AB为直径的半圆O交BC于D,交AC于点E,连接AD,BE交于点M,过点D作DF⊥AC于点F,DH⊥AB于点H,交BE于点G,则以下正确的结论是_______(填序号)①BD=CD ②DF是⊙O的切线③∠DAC=∠BDH ④DG=12BM4.如图10-5,已知Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC 于点D,连接BD.(1)若AD=3,BD=4,求边BC的长;(2)取BC的中点E,连接ED,试证明ED与⊙O相切.考点3线段相等的证明例3 如图10-6,已知AB为⊙O的直径,C为⊙O上一点,延长BC至D,使CD=BC,CE⊥AD,垂足为E,BE交⊙O于F,AF交CE于P,求证:PE=PC【切题技巧】由切割线定理得PC2=PF·PA,要证明PE=PC,只需证明PE2=PF·PA,这样通过圆幂定理把线段相等问题转化为线段等积式的证明,由三角形相似可完成,【规范解答】延长DA交⊙O于K,连结BK,OC.【借题发挥】证比例式或平方法是圆中证线段相等的重要方法,证比例式常通过相似三角形或平行线性质得到,当要证相等的线段中有一条是圆的切线时,常采用平方法,而线段的平方常由切割线定理,相似三角形的性质来证,值得注意的是,几何图形中有直径这一条件,常添加辅助线,构成直径上的圆周角是直角,使其杓成直角三角形.【同类拓展】5.如图10-7,AB是半圆的直径,AC⊥AB,在半圆上任取一点D,过点D 作DE⊥CD,交直径AB于点E,BF⊥AB,交线段AD的延长线于点F,问图中除了AB=AC外,是否还有其它两条线段相等,如果有,指出这两条相等的线段,并给出证明:如果没有,也要说明理由.6.如图10-8,四边形ABCD为正方形,00过正方形的顶点A和对角线的交点P,分别交AB、AD于点F、E.(1)求证:DE=AF;(2)若⊙O的半径为32,AB=2+1,求AEED的值.考点4多边形的切圆问题例4 如图10-9,有一个⊙O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和⊙O相切(我们称T1,T2分别为⊙O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,⊙O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.【切题技巧】(1)由圆内接正六边形的特点可知,相邻两个顶点与圆心构造的三角形是等边三角形,所以它的外接圆半径与边长相等,由此不难得出它们的比值;(2)由相切关系和等边三角形的性质可求得它们之间的比值.【规范解答】(1)如图10-10,连接圆心O和T1的6个顶点可得6个全等的正三角形,且OC⊥AB.∴OA=AB=b,AC=12 b.【借题发挥】解决正多边形外切圆和内接圆问题的一般方法是转化为等腰三角形或直角三角形问题,特别地,对于三角形的内切圆问题,有一条很有用的结论:如图10-11,⊙O切△ABC 的三边于点D,E,F,则AE=AF=12(AB+AC-BC),BD=BF=12(BC+AB-AC),CD=CE=12(AC+BC-AB).【同类拓展】7.如图10-12,在Rt△ABC中,∠A=90°,以BC边上的点O为圆心作圆,分别与AB、AC相切于E,F两点,设AB=a,AC=b,则⊙O的半径等于_______.8.如图10-13,△ABC是正三角形,点C在矩形ABDE的边DE上,△ABC的内切圆半径是1,则矩形ABDE的外接圆直径是_______.考点5 直线与圆的动态问题例5 如图10-14,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB =90°,∠ABC=30°,BC=12 cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,点D,E始终在直线BC上,设运动时间为ts,当t=0s时,半圆O在△ABC的左侧,OC=8cm.(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切?(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.【切题技巧】对于(1)按半圆与直线AC,AB相切分两大类,每一大类又可分两小类:①与线段AC相切,切点为E;②与线段AC相切,切点为D;③与线段AB相切,切点为F;④与线段AB的延长线相切,切点为Q.【规范解答】(1)在图10-15中,①如图10-15①,当点E与点C重合时,AC⊥OE,OC=OE=6cm.所以AC与半圆O所在的圆相切.此时点O运动了2cm,所求运动时间为:t=22=1(s.)②如图10-15②,当点O运动到点C时,过点O作OF⊥AB,垂足为F.在Rt△FOB中,∠FBO=30°,OB=12 cm.则OF=6cm,即OF等于半圆O的半径,所以AB与半圆O所在的圆相切.此时点O运动了8cm,所求运动时间为:t=82=4(s).③如图10-15③,当点O运动到BC的中点时,AC⊥OD,OC=OD=6cm,所以AC与半圆O所在的圆相切.此时点O运动了14cm,所求运动时间为:t=142=7(s).④如图10-15④,当点O运动到B点的右侧,且OB=12cm时,过点O作⊙O上直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ等于半圆O所在的圆的半径.所以直线AB与半圆O所在的圆相切.此时点O运动了32cm,所求运动时间为:t=322=16 (s).因为半圆O在运动中,它所在的圆与AC所在的直线相切只有上述①、③两种情形;与AB 所在的直线相切只有上述②、④两种情形;与BC所在直线始终相交,所以只有当t为1s,4s,7s,16s时,△ABC的一边所在的直线与半圆O所在的圆相切.(2)当△ABC的一边所在的直线与半圆O所在圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有如图②与图③所示的两种情形.①如图10-15②,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6cm的扇形,所求重叠部分面积为:s扇形EOM=14π×62=9(cm2).②如图10-15③,设AB与半圆O的交点为P,连接OP,过点O作OH⊥AB,垂足为H,则PH=BH.Rt△OBH中,∠OBH=30°,OB=6cm,则OH=3cm,BH=33cm,BP=63cm.S△POB=12×63×3=93(cm2).又因为∠DOP=2∠DBP=60°,所以S扇形DOP=16π×62=6π(cm2).所求重叠部分面积为:S△POB+S扇形DO P=(93+6π)(cm2).【同类拓展】9.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,点P,Q分别从点A,C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?参考答案1. B2. C3.①②③④4.(1)203(2)略5.BF=BE 6.(1)略227.aba b219.(1)t=83(s)(2)t=2。
苏科版数学九年级上册《直线与圆的位置关系》word导学案
C A B 直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系和判定;2. 直线与圆的位置关系的判定;3. 能利用圆心到直线的距离d 与圆的半径r 之间的数量关系判别直线与圆的位置关系。
重点难点预测 重点利用圆心到直线的距离d 与圆的半径r 之间的数量关系判别直线与圆的位置关系难点 圆心到直线的距离d 与圆的半径r 之间的数量关系和对应位置关系解决问题.学生活动过程教师导学过程 一、自主预习(独学)任务1:我们已经学习过点和圆的位置关系,请同学们回忆:(1)点和圆有哪几种位置关系?(2)怎样判定点和圆的位置关系?(数量关系——位置关系)结论:练习:已知点P 到⊙O 的最短距离是3cm ,最远距离是5cm.求⊙O 得半径. 任务2:把太阳当做圆来看,把地平线当做直线,,直线与圆的位置关系发生了怎样的变化?这种位置的变化可以用数量之间的关系来描述吗?(模仿点与圆的位置关系)结论:练习:已知⊙O 的半径是3cm,圆心O 到直线l 的距离是d.当直线l 与⊙O 没有公共点时, ;当直线与⊙O 有唯一公共点时, ;当直线与⊙O 有两个公共点时, .任务:3(1)知道什么是直线与圆相交、相切、相离;什么是圆的切线、切点.(2)能概括出直线与圆的位置关系及与其相对应的数量关系.结论:练习:完成课本P65练习第1题、第2题.二、合作探究1.对学:任务1:问题1、已知:在Rt △ABC 中,∠C=90°,AC=3,BC=4.(1) 在下列条件下,以C 为圆心,r 为半径的圆与直线AB 有怎样的位置关系?为什么?r=2cm ;②r=3cm ;③r=2.4cm.(2)以C 为圆心,r 为半径的圆.①当r 满足 时,直线AB 与⊙O 相交; ②当r 满足 时,直线AB 与⊙O 相切;③当r 满足 时,直线AB 与⊙O 相离.(3)若⊙C 与斜边AB 有两个公共点,则r 的范围是 ;若⊙C 与斜边AB 有一个公共点,则r 的范围是 ;O AB l若⊙C 与斜边AB 有没有公共点,则r 的范围是 . 问题2、⊙O 的半径是4cm.点P 在直线上,若OP=4cm ,则直线l 和⊙O 位置关系是 ;若OP=3cm ,则直线l 和⊙O 位置关系是 ;若OP=5cm ,则直线l 和⊙O 位置关系是 .问题3、已知点A 的坐标为(-3,-4)①以A 为圆心,6为半径的圆与x 轴的位置关系是 ,与y 轴的位置关系是 ;②若①中⊙A 的半径为r ,当r= 时⊙A 与x 轴相切,当r= 时⊙A 与y 轴相切;③当r 时,⊙A 与坐标轴无公共点,当r 时,⊙A 与坐标轴有1个公共点,当r 时,⊙A 与坐标轴有2个公共点,当r 时,⊙A 与坐标轴有3个公共点,当r 时,⊙A 与坐标轴有4个公共点,三、拓展提升问题1任务1 自学课本P65 例1总结:小组合作讨论总结判断直线与圆的位置关系的基本步骤 ,并与判断点与圆的位置关系进行比较,找出它们的内在联系.1.完成课本P65练习1、2.四、当堂检测:1.如果圆的最大弦长是m ,直线与圆心的距离为d ,且直线与圆不相交,那么( ).A 、d>mB 、d>21m C 、d ≥21m D 、d ≤21m 2.已知⊙O 的直径为10cm ,点0到直线l 的距离为d :(1)若直线l 与⊙O 相切,则d=____;(2)若d=4cm ,则直线l 与⊙O 有_____个公共点;(3)若d=6cm ,则直线l 与⊙O 的位置关系是________。
新苏科版九年级上学期数学2-5直线与圆的位置关系 学案
新苏科版九年级数学上册2-5直线与圆的位置关系(1)学案 教学目标 经 1、历探索直线与圆的位置关系的过程; 2、感受类比、转化、数形结合等数学思想,学会数学地思考问题; 3、理解直线和圆的三种位置关系——相交,相离,相切。
教学重点 会正确判断直线和圆的位置关系教学难点 相切的运用教学方法 分析,讨论,探究教具 投影一、自主预习:1、复习:如果设⊙O 的半径为r ,点P 到圆心的距离为d ,请你用d 与r 之间的数量关系表示点P 与⊙O 的位置关系。
2、直线与圆有 种位置关系,分别是 、 、 。
二、合作探究:【新课导学】活动一:操作思考1、操作:请你画一个圆,上、下移动直尺。
思考:在移动过程中它们的位置关系发生了怎样的变化?请你描述这种变化。
讨论:①通过上述操作说出直线与圆有几种位置关系②直线与圆的公共点个数有何变化?2、直线与圆有____种位置关系:▲直线与圆有两个公共点时,叫做 。
▲直线与圆有惟一公共点时,叫做 ,这条直线叫做 这个公共点叫做 。
▲直线和圆没有公共点时,叫做 。
活动二:观察、思考1、下图是直线与圆的三种位置关系,请观察垂足D 与⊙O 的三种位置关系,说出这三种位置关系同直线与圆的三种位置关系的联系。
2、探索:若⊙O 半径为r , O 到直线l 的距离为d ,则d 与r 的数量关系和直线与圆的位置关系:①直线与圆 d r ,②直线与圆 d r ,③直线与圆 d r 。
直线与圆的位置关系 图形(草图) 公共点个数 公共点名称 直线名称 圆心到直线的距离d 与半径r 的关系例1:在Rt △ABC 中,∠C=90°,AC=3cm ,BC=4cm ,以C 为圆心,r 为半径的圆与直线AB 有怎样的位置关系?为什么? (1)r=2cm ; (2)r=2.4cm ; (3)r=3cm .例2 :已知点A 的坐标为(-3,-4),⊙A 的半径为3,,则⊙A 与x 轴的位置关系是_____, ⊙A 与y 轴的位置关系是 。
九年级数学上册 2.5 直线与圆的位置关系教案1 (新版)苏科版-(新版)苏科版初中九年级上册数学教
(2) 练习
师生共同完成例题和练习的求解.
本次活动,教师应重点关注:
(1) 学生能否利用直线和圆公共点的个数判断直线和圆的位置关系;
(2)学生能否利用圆心到直线的距离和半径间的数量关系判断直线和圆的位置关系.
例题和练习的安排是为了让学生掌握识别直线和圆的位置关系的方法.培养学生正确应用所学知识的应用能力,渗透分类讨论、数形结合等数学思想.
活动5
小结
这节课我们主要研究了直线和圆的三种位置关系和识别直线和圆的位置关系的方法,你有哪些收获?
学生自己总结,教师应重点关注:
(1)学生对直线和圆的位置关系的性质和判定总结是否全面;
(2)是否有学生能从这节课的学习中,体会到分类讨论的数学思想和数形结合的数学思想在研究问题中的重要性.
总结回顾学习内容,帮助学生学会归纳,反思.
直线与圆的位置关系
教学任务分析
教
学
目
标
知识技能
直线和圆的位置关系.
2.根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置关系.
3.能够利用公共点个数和数量关系来判断直线和圆的位置关系.
数学思考
1.学生经历操作、观察、发现、总结出直线和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力.
学生动手操作、观察、发现、归纳出直线和圆的公共点个数的变化情况.
教师演示直线和圆动态的变化过程,帮助学生用语言描述直线和圆的三种位置关系,明确概念.
本次活动,教师应重点关注学生能否根据操作,观察直线和圆的位置关系,作出相应的图形来.
通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力.
苏科版数学九年级上册《直线与圆的三种位置关系》教学设计
苏科版数学九年级上册《直线与圆的三种位置关系》教学设计一. 教材分析《直线与圆的三种位置关系》是苏科版数学九年级上册的教学内容。
本节课的主要内容是让学生了解直线与圆的位置关系,包括相离、相切、相交三种情况,并掌握判断直线与圆位置关系的方法。
教材通过实例和图形,引导学生观察、思考、探究,从而培养学生的空间想象能力和逻辑思维能力。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对图形的认识和观察能力有一定的基础。
但是,对于直线与圆的位置关系的理解和应用,还需要通过实例和实践活动来进一步巩固。
此外,学生的空间想象能力和逻辑思维能力有待提高,因此,教师需要通过多种教学手段,激发学生的学习兴趣,引导学生主动探究。
三. 教学目标1.理解直线与圆的位置关系,包括相离、相切、相交三种情况。
2.学会判断直线与圆位置关系的方法。
3.培养学生的空间想象能力和逻辑思维能力。
4.提高学生的观察、思考、探究能力。
四. 教学重难点1.直线与圆的位置关系的理解和判断方法。
2.学生的空间想象能力和逻辑思维能力的培养。
五. 教学方法1.实例教学:通过具体的实例,让学生观察、分析直线与圆的位置关系。
2.实践活动:让学生动手操作,实践直线与圆的位置关系的判断方法。
3.问题驱动:引导学生提出问题,思考问题,解决问题,培养学生的探究能力。
4.小组合作:学生进行小组讨论,共同探讨直线与圆的位置关系,提高学生的合作能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示直线与圆的位置关系的实例和图形。
2.教学素材:准备一些直线和圆的模型,方便学生观察和操作。
3.教学工具:准备黑板、粉笔、直尺、圆规等教学工具。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入新课:“在平面直角坐标系中,已知圆心坐标为(2,3),半径为5,求经过点(1,2)的直线与圆的位置关系。
”让学生思考并讨论,引导学生进入新课的学习。
2.呈现(10分钟)教师通过PPT展示直线与圆的位置关系的实例和图形,让学生观察并分析,引导学生总结出直线与圆的三种位置关系:相离、相切、相交。
苏科版数学九年级上册2.5 直线与圆的位置关系教学设计2
苏科版数学九年级上册2.5 直线与圆的位置关系教学设计2一. 教材分析苏科版数学九年级上册第2.5节“直线与圆的位置关系2”是本册教材中的重要内容,主要讲述了直线与圆的位置关系的应用。
通过本节课的学习,学生能够掌握直线与圆的位置关系的性质,并能运用其解决实际问题。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析九年级的学生已经学习了直线、圆的基本知识,对于直线与圆的位置关系有一定的了解。
但是,对于直线与圆的位置关系的应用,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的实际情况进行有针对性的教学。
三. 教学目标1.理解直线与圆的位置关系的性质。
2.能够运用直线与圆的位置关系解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.直线与圆的位置关系的性质。
2.直线与圆的位置关系在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究直线与圆的位置关系的性质。
2.通过实例分析,让学生了解直线与圆的位置关系在实际问题中的应用。
3.采用小组合作学习的方式,培养学生的团队合作精神。
4.通过练习题,巩固所学知识,提高解题能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题和思考题。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过复习直线和圆的基本知识,引出直线与圆的位置关系。
提问:直线和圆有什么关系?直线与圆的位置关系有哪些?2.呈现(15分钟)讲解直线与圆的位置关系的性质,通过实例分析,让学生了解直线与圆的位置关系在实际问题中的应用。
3.操练(15分钟)让学生分组讨论,每组选取一个实例,运用直线与圆的位置关系进行解决。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生完成练习题,巩固所学知识。
教师批改作业,及时反馈学生的学习情况。
5.拓展(10分钟)引导学生思考:直线与圆的位置关系在实际生活中有哪些应用?让学生举例说明。
苏科版数学九年级上册2.5《直线与圆的位置关系》教学设计
苏科版数学九年级上册2.5《直线与圆的位置关系》教学设计一. 教材分析《直线与圆的位置关系》是苏科版数学九年级上册第2.5节的内容,本节课的主要内容是让学生掌握直线与圆的位置关系,并了解相应的性质。
教材通过实例引入直线与圆的位置关系,引导学生探究并发现其中的规律,从而培养学生的抽象思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了直线、圆的基本概念和性质,具备了一定的几何图形观念。
但是,对于直线与圆的位置关系的理解和应用,还需要通过本节课的学习来进一步深化。
同时,学生对于实际问题的解决,还需要进一步培养其观察、分析和归纳的能力。
三. 教学目标1.知识与技能目标:让学生掌握直线与圆的位置关系,并了解相应的性质。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养其积极思考、合作探究的学习态度。
四. 教学重难点1.教学重点:直线与圆的位置关系,以及相应的性质。
2.教学难点:直线与圆的位置关系的判断,以及实际问题的解决。
五. 教学方法1.引导法:通过问题引导,让学生自主探究直线与圆的位置关系。
2.互动法:通过小组讨论,引导学生合作解决问题。
3.实例分析法:通过具体的实例,让学生理解并掌握直线与圆的位置关系。
六. 教学准备1.教学课件:制作相关的教学课件,以便于展示和讲解。
2.实例材料:准备一些相关的实例,以便于分析和讲解。
3.练习题:准备一些练习题,以便于巩固所学内容。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对直线与圆位置关系的思考。
例如,已知一个圆的直径为10cm,一条直线通过圆心,求直线与圆的位置关系。
2.呈现(10分钟)利用课件呈现直线与圆的位置关系的几种情况,引导学生观察并分析。
同时,讲解相应的性质。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,分析直线与圆的位置关系,并总结出相应的性质。
新苏科版九年级数学上册:2.5直线与圆的位置关系(2)导学案
新苏科版九年级数学上册:2.5直线与圆的位置关系(2)导学案学习目标:1.探索切线判定,能判定一条直线是否为圆的切线;2.理解“圆的切线垂直于过切点的半径”的性质;3.通过探索切线的判定和性质的过程,培养学生的逆向思维能力,渗透反证法思想.学习重点:直线与圆相切的判定方法与圆的切线的性质的应用.学习难点:对用“反证法”推理切线性质的理解.学习过程:情境引入复习引入1.已知圆的半径等于5厘米,圆心到直线l的距离是:(1)4厘米;(2)5厘米;(3)6厘米.直线l和圆分别有几个公共点?分别说出直线l与圆的位置关系.2.你有哪些方法可以判定直线与圆相切?【新知探究】师生互动、揭示通法问题1.操作交流:O1.过圆上一点画一条圆的切线,并与你的同学交流你的想法.2.请你将上面发现的结论进行归纳总结.3.请你总结一下:切线的判定有哪些方法?问题2.如图,△ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.拓展:如果AB不是直径,其余条件不变,上面的结论还成立吗?问题3.如图,直线l与⊙O相切于点A,OA是过切点的半径,直线l与半径OA是否一定垂直?你能说明理由吗?Ol请你将上面发现的结论进行归纳总结.问题4. 如图,AB是⊙O的直径,弦AD平分∠ABC,过点D的切线交AC于点E,DE与AC有怎样的位置关系?为什么?从中你有什么启发?拓展提升如图:在△ABC中AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.求证:直线DE是⊙O的切线.【回扣目标】学有所成、悟出方法1.这节课你有哪些收获和困惑?2.切线的判定有哪些方法?【课堂反馈】1.如图,O 是∠ABC 的平分线上的一点,OD ⊥BC 于D ,以O 为圆心、OD 为半径的圆与AB 相切吗?为什么?2. 如图,AB 是⊙O 的直径, ∠ABC =45°,AB =AC .判断直线AC 与⊙O 的位置关系,并说明理由.D O C B A B O A C。
苏科版数学九年级上册2.5《直线与圆的位置关系》说课稿4)
苏科版数学九年级上册2.5《直线与圆的位置关系》说课稿4)一. 教材分析《直线与圆的位置关系》是苏科版数学九年级上册第2.5节的内容。
本节内容是在学生已经掌握了直线、圆的基本性质和相互之间的位置关系的基础上进行讲解的。
本节主要介绍了直线与圆的相切、相离、相交三种位置关系,并通过实例说明了这些位置关系的应用。
本节内容是学生进一步学习圆的方程、圆的切线、圆的割线等知识的基础,具有重要的意义。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直线、圆的基本性质和相互之间的位置关系有一定的了解。
但是,对于直线与圆的相切、相离、相交三种位置关系的理解还不是很深入,需要通过实例进行进一步的讲解和巩固。
此外,学生对于数学知识在实际生活中的应用还不是很清楚,需要通过实例的展示来引导学生理解和掌握。
三. 说教学目标1.知识与技能:使学生掌握直线与圆的相切、相离、相交三种位置关系,并能够运用这些知识解决实际问题。
2.过程与方法:通过实例的讲解,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,引导学生感受数学在生活中的应用,培养学生的数学素养。
四. 说教学重难点1.教学重点:直线与圆的相切、相离、相交三种位置关系的理解和运用。
2.教学难点:直线与圆的位置关系的理解和运用,以及数学知识在实际生活中的应用。
五. 说教学方法与手段1.教学方法:采用讲解法、演示法、练习法、讨论法等,引导学生通过观察、思考、交流、总结来掌握直线与圆的位置关系。
2.教学手段:利用多媒体课件进行讲解和演示,使学生更直观地理解直线与圆的位置关系。
六. 说教学过程1.导入:通过展示生活中的实例,引导学生思考直线与圆的位置关系,激发学生的学习兴趣。
2.讲解:讲解直线与圆的相切、相离、相交三种位置关系的定义和性质,并通过多媒体课件进行演示。
3.实例分析:分析实际问题,引导学生运用直线与圆的位置关系来解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
3.已知: 如图③,直线BC与⊙O切于点C,PD是⊙O的直径∠A=28°,∠B=2 6°,∠PDC=
五、小结与反思:
六、作业
必做:课本第73页第5、6题;选做:课本第73页7题.
反
思
任务2:例2.如图PA、PB是⊙O的切线,切点分别为A、B、C 是⊙O上一点,若∠APB=40°,求∠ACB度数。
任务3.对学、群学,总结提升.
1、判断直 有哪些性质?
3、在已知切线时,常作什么样的辅助线?
对学中不能解决的问题,小组讨论交流解决.
三、拓展提升
问题1.
直线与圆的位置关系
学习
目标
1.理解并掌握切线的判定方法;
2.探索切线的判定定理,运用切线的判定方法解决有关问 题.;
3.会过圆上一点画圆的切线
3
重点难
点预测
重点
切线的判定方法、切线的性质的运用
难点
对用“反证法”推理切线性质的理解 .
学生活动过程
教师导学过程
一、自主预习(独学)
任务1:如图,⊙O中,直线l经过半径OA的外端,过点A作且直线l⊥OA,你能判断直线l与⊙O的位置关系吗?请说明理由.
结论:
练习:1.点P在⊙O上,过点P作⊙O的 切线.
任务2:如图,直线l与⊙O相切于点A,OA是过切点的半径,直线l与半径OA是否一定垂直?请说明 理由.
结论:
二、合作探究
1.对学:
一对一检查自学、检测情况,交流问题,及时更正,疑难问题,小组交流.
任务1:例1.如图,△ABC内接于⊙O,AB是⊙O的直径,∠CAD=∠AB C,判断直线AD与⊙O的位置关系,并说明理由。
1.如图在△ABC中AB= BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F求证:直线DE是⊙O的切线.
反馈练习
1 .完成课本P68练习1、2、3.
四、当堂检测:
1.如图①,AB为⊙O的直径,BC 为⊙O的切线,AC交⊙O于点D。图中互余的角有()
A 1对B 2对C 3对D 4对