八年级数学上册_全等三角形(常见辅助线)
人教版八年级上册第十二章全等三角形经典题型辅助线作法
全等三角形常见辅助线作法【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.【例2】、如图,已知BC > AB ,AD=DC 。
BD 平分∠ABC 。
求证:∠A+∠C=180°.一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
1、倍长中线法【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D . 求证:2BD CD =证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60°∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°DCBADCB EA【例4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDABE =DE∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。
苏科版八年级数学上册1.2《全等三角形》中常见辅助线
全等三角形⑴----常见辅助线一.已知中点D1.线段倍长(或作平行线)A模型:如图,已知OA=OC,再倍长DO,使OB=OD,则△AOB≌△COD(SAS) C⑴.如图,在△ABC中,D是BC边的中点. BB A①.求证:AB+AC>2AD;②.若AB=5,AC=7,AD的取值范围为.CD1⑵如图,CE是△ACD中线,点B在AD的延长线上,BD=AC,∠ACD=∠ADC,求证:CE= BC.2CA BDEE⑶.如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为BC的中点,求证:DE=2AM.DAB CME⑷.如图,四边形BEFC中,D为BC中点,∠EDF=90 ,求证:BE+FC>EF.FB CD2.作垂线(知中点作垂线;证中点作垂线)C模型:如图,OA=OB,BC⊥CD,AD⊥CD,则△AOD ≌△BOC(AAS) A⑴.如图,△ABC 中,D 为 BC 的中点.BO①在图中作出 CM⊥AD,BN⊥AD,垂足分别为点 M,N; D②⑵求证:DM=DN; ③若 AD=3,求 AM+AN 的值.A DBC⑵.如图,CD 为△ABC 的角平分线,E,F 分别在 CD,BD 上,且 DA=DF,EF=AC.求证:EF ∥BC.C EBADFE⑶.如图,BC⊥CE,BC=CE,AC⊥CD,AC=CD,DE 交 AC 的延长线于点 M,M 是 DE 的中点. ①求证:AB⊥AC;②若 AB=8,求 CM 的长.BAC MD⑷.如图,已知 A(-2,1),C(0,2),且 C 为线段 AB 的中点,求点 B 的坐标.y BCAxO3.证中点【方法技巧】证线段的中点,常过线段的端点构造一组平行线,或过线段的两端点向过中点的线段作垂线,根据AAS或ASA构造全等三角形,证题关键往往是证明一组对应边相等.【作平行证中点】⑴.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC.求证:D是AC的中点.ADCBE⑵.如图,AB⊥AE,AB=AE,AC⊥AD,AC=AD,AH⊥DE于点H,延长AH交BC于点M.求证:M是BC的中点.ADHCB ME【作垂线证中点】⑶.如图,AB⊥AC,AB=AC,D是AB上一点,CE⊥CD,CE=CD,连接BE交AC于点F,求证:F是BE的中点.EAFDB C⑷如图,A,B,C三点共线,D,C,E三点共线,∠A=∠DBC,EF⊥AC于点F,AE=BD.①求证:C是DE的中点;②求证:AB=2CF. ABFD E二、线段的和差处理1.等线段代换法C⑴如图,CD为△ABC的中线,M,N分别为直线CD上的点,且BM∥AN.①求证:AN=BM;②求证:CM+CN=2CDMA BDN⑵如图,△ABC中,∠BAC=90︒,AB=AC,AN是过点A的一条直线,且BM⊥AN于点M,CN⊥AN于点N.①求证:AM=CN;②求证:MN=BM-CN.AMCBN⑶如图,在△ABC中,AD⊥BC于D,且AD平分∠BAC,CE⊥AB于点E,交AD于点F.①求证:BD=CD; A②若AF=BC,求证:AC-CE=EF.E FB CD⑷.如图,△ABC中,AC=BC,∠ACB=90︒,D为BC延长线上一点,BF⊥AD于点F,交AC于点E. A①求证:BE=AD;②过C点作CM∥AB交AD于点M,连接EM,求证:BE=AM+EM. FEMB DC2.截长补短法(直接和间接)如图,△ABC 中,∠CAB=∠CBA=45 ,CA=CB,点 E 为 BC 的中点,CN ⊥AE 交 AB 于点 N. ①求证:∠1=∠2;②求证:AE=CN+EN. (用多种方法) 方法 1:直接截长BN E12CA方法 2:间接载长BN E12CA方法 3:直接补短BN E12C AAB方法 4:间接补短N E12C三、角平分线模型 A1.作垂线1 P模型:如图,∠1=∠2,PA⊥OA,PB⊥OB,则PA=PB. 2O B⑴如图,△ABC中,CD是角平分线,AC=3,BC=5,求S△ACD∶S△BCD的值.CBA D⑵.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180︒,求证:AE=AD+BE.CDBA E⑶.如图,△ABC中,AC>AB,F为BC的中点,FD⊥BC,交∠BAC的平分线于点D,DE⊥AC于点E.A C-A B①求证:BD=CD;②求证:AB+AC=2AE;③直接写出的值C EA是.EFB CD⑷如图,△ABC中,AB=AC,D为△ABC外一点,且∠1=∠2,AB⊥BD于点M.①求证:AD平分△BDC的B D-CD A外角;②求的值.D M B 1M2C D2.截长补短 A模型:如图,若∠AOP=∠BOP,OA=OB,则△OAP≌△OBP P ⑴.如图,四边形ABCD中,AC平分∠DAB,∠B+∠D=180 ,求证:CD=CB. O BCD12B B⑵.△ABC中,AB>AC,AD平分∠BAC,AE=AC,连DE.①求证:∠C>∠B;②若AB-AC=2,BC=3,求△BED的周长.AB CD⑶.如图,AD∥BC,E是CD上一点,且∠1=∠2,∠3=∠4,求证:AB=AD+BCCED12 43A B⑷.如图,BC>AB,AD=CD,∠1=∠2,探究∠BAD与∠C之间的数量关系.(多种方法)D DA A1 12 2B C CB3.角平分线+垂线:延长法 AC 模型:如图,若∠1=∠2,AC⊥OC,延长AC交OB于点B,则△OCA≌△OCB.⑴.如图,在△ABC中,AD平分∠BAC,CE⊥AD于点E,探究∠ACE,∠B,O B∠ECD之间的数量关系.AEB CD⑵.如图,在△ABC中,AB<BC,BP平分∠ABC,AP⊥BP于P点,连接PC,若△ABC的面积为4,求△BPC 的面积.APB C⑶.如图,在△AOB中,AO=OB,∠AOB=90 ,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E,求证:BD=2AE.AEDBO⑷.如图,四边形ABCD中,AD∥BC,AE,BE分别平分∠DAB,∠CBA.①求证:AE⊥BE;②求证:DE=CE;③若AE=4,BE=6,求四边形ABCD的面积.DAEBC四、半角与倍角模型⑴如图,已知 AB=AC,∠BAC=90°,∠MAN=45°,过点 C 作 NC⊥AC 交 AN 于点 N,过点 B 作 BM⊥AB 交 AM 于点 M ,连接 MN.①当∠MAN 在∠BAC 内部时,求证:BM+CN=MN.MBNCA②如图,在①的条件下,当 AM 和 AN 在 AB 同侧时,①的结论是否成立?请说明理由.NCMBA⑵如图,在△ABC 中,CA=CB,∠ACB=120°,E 为 AB 上一点,∠DCE=60°,∠DAE=120°,求证: DE-AD=BE.CABED⑶如图,在△ABC 中,CA=CB,∠ACB=120°,点 E 为 AB 上一点,∠DCE=∠DAE=60°,求证:AD+DE=BE.DCBAE1 ⑷.①如图 1,在四边形 ABCD 中,AB=AD,∠B+∠D=180°,E,F 分别是 BC,CD 上的点,且∠EAF= ∠2 DBAD,求证:EF=BE+DF;AFCBE②如图 2,在①条件下,若将△AEF 绕点 A 逆时针旋转,当点 E,F 分别 FD运动到 BC,CD 延长线上时,则 EF,BE,DF 之间的数量关系是.A。
八年级上-常见全等辅助线
常见全等辅助线知识集结知识元倍长中线型知识讲解倍长中线型辅助线一般跟中点相关,在初中阶段与中点相关的辅助线大体分成三大类:倍长中线(这里的中线指的是过中点的任意线段)、直角三角形斜边中线、中位线.其中后两种辅助线会在初二下学期的四边形章节中讲到,在此不做过多讲解,本节所讲的中点相关的辅助线主要是倍长中线型辅助线(这里的中线指的是过中点的任意线段),此种模型的本质都是构造“8字型”全等,主要分成三类处理方法:(1)倍长中线型——这里的中线指的是标准的三角形的中线,具体模型如下:已知:点D为AC边的中点作法:延长BD至E,使得DE=BD,连结AE.2.倍长过中点的任意线段型——这里只需要出现中点即可构造,具体模型如下:已知:点D为AC边的中点作法:延长FD至E,使得DE=DF,连结AE.3.平行线构造“8字型”——中点不是三角形的边的中点,具体模型如下:已知:点E为DF的中点作法:过点D作DM//AF,交AC于点M.另外,平行线构造“8字型”的模型还可以有以下两种类型:例题精讲倍长中线型例1.已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是.例2.'如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.'例3.'【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.'倍长过中点的任意线段型知识讲解当题目中出现中点,而没有合适的中线可以倍长时,也可以考虑倍长过中点的任意一条线段,构造“8字型”全等.例题精讲倍长过中点的任意线段型例1.'如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=AC+AF.'例2.'如图,△ABC中,E,F分别在AB,AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.'平行线构造“8字型”知识讲解当题目中出现中点,但此中点不是三角形的某条边的中点,只是与三角形某条边有交点时,则可以考虑利用作平行线的方法构造“8字型”的全等.例题精讲平行线构造“8字型”例1.'如图,△ABC中,AB=AC,D在AB上,F在AC的延长线上,且BD=CF,连接DE交BC于E.求证:DE=EF.'例2.'如图,AC∥BD,E为CD的中点,AE⊥BE(1)求证:AE平分∠BAC,BE平分∠ABD;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.'例3.'阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.'截长法添加辅助线知识讲解在已知条件中、证明的结论中出现某三条线段,甚至是四条线段的关系时(或者猜想某三条线段的关系时),优先考虑的就是方法就是截长、补短法.截长和补短是两种方法:截长是把长线段截成两条短线段;补短是把两条短线段之一补成一条长线段,两种方法有时候可以通用,但是由于证明方法和已知条件的局限性,有时候会需要学生辨别一下具体使用截长还是补短,所以分析已知条件非常重要.举例说明:1.当三线关系出现在已知条件中,如:已知AC=AB+BD,则(1)截长法具体操作:在线段AC上截取AM=AB条件转化:已知条件“AC=AB+BD”就变成了“AM=AB和CM=BD”【注】当然也可以在线段AC上截取AM=BD,具体截取的方法选择,由题中的其他已知条件决定.(2)补短法具体操作:延长AB至N,使得AN=AC条件转化:已知条件“AC=AB+BD”就变成了“AN=AC和BN=BD”【注】当然也可以延长BA、BD、DB,具体延长哪条线段、向哪个方向延长,由题中的其他已知条件决定.2.当三线关系出现在待证明的结论中,如:证明AC=AB+BD,则(1)截长法具体操作:在线段AC上截取AM=AB条件转化:待证明的结论“AC=AB+BD”就变成了“CM=BD”,而多出了一个已知条件“AM=AB”【注】当然也可以在线段AC上截取AM=BD,具体截取的方法选择,由题中的其他已知条件决定.(2)补短法具体操作:延长AB至N,使得AN=AC条件转化:待证明的结论“AC=AB+BD”就变成了“BN=BD”,而多出了一个已知条件“AN=AC”【注】当然也可以延长BA、BD、DB,具体延长哪条线段、向哪个方向延长,由题中的其他已知条件决定.例题精讲截长法添加辅助线例1.'如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.'例2.'如图,△ABC中,∠B=60°,∠BAC,∠ACB的平分线AD,CE交于点O,说明AE+CD=AC的理由.'例3.'如图1,△ABC中,∠BAC=90°,∠ABC=45°,点P为△ABC三条平分线的交点,连PA,PB,PC.(1)求证:BC=AB+AP;(2)如图2,若将“∠ABC=45°”变为“∠ABC=60°”,其余条件不变,求证:AC=AB+BP.'补短法添加辅助线知识讲解当题目中出现两条以上的线段的关系时,常会优先考虑截长补短法,其补短法是将某一条短线段补成长线段,再分别证明线段相等.例题精讲补短法添加辅助线例1.'如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的平分线,求证:BQ+AQ=AB+BP.'例2.'(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.'当堂练习填空题已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是.解答题练习1.'如图,△ABC中,E,F分别在AB,AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.'练习2.'如图:在△ABC中,点D在AB边上,点E在AC边的延长线上,CE=BD,DG=GE.求证:AB=AC.'如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF.'练习4.'如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的平分线,求证:BQ+AQ=AB+BP.'练习5.'如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.'练习6.'如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=AC+AF.'练习7.'如图,△ABC中,AB=AC,D在AB上,F在AC的延长线上,且BD=CF,连接DE交BC于E.求证:DE=EF.'练习8.'如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.'练习9.'如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.'练习10.'ABCD是正方形,P为BC上任意一点,∠PAD的平分线交CD于Q,求证:DQ=AP-BP.'练习11.'如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.'练习12.'已知,如图:AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF的关系,并证明.'。
全等三角形中常用辅助线(经典)
三角形中的常用辅助线课程解读一、学习目标:归纳、掌握三角形中的常见辅助线二、重点、难点:1、全等三角形的常见辅助线的添加方法。
2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。
三、考点分析:全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。
判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。
一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。
典型例题人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。
例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。
求证:BD=2CE。
思路分析:1)题意分析:本题考查等腰三角形的三线合一定理的应用2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。
解答过程:证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。
八年级数学上册第12章三角形中常见辅助线的作法(人教版)
三角形中常见辅助线的作法
1、延长中线构造全等三角形
例1 如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD 的取值范围.
提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△ACD,得AC=A'B.这样将AC转移到△A'BA中,根据三角形三边关系定理可解.
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC,D在AB上,E是AC延长线上一点,且BD=CE,DE与BC交于点F.
求证:DF=EF.
提示:此题辅助线作法较多,如:
①作DG∥AE交BC于G;
②作EH∥BA交BC的延长线于H;
再通过证三角形全等得DF=EF.
3、作连线构造等腰三角形
例3 如图3,已知RT△ACB中,∠C=90°,AC=BC,AD=AC,DE⊥AB,垂足为D,交BC于E.
求证:BD=DE=CE.
提示:连结DC,证△ECD是等腰三角形.
4、利用翻折,构造全等三角形.
例4 如图4,已知△ABC中,∠B=2∠C,AD平分∠BAC交BC于D.求证:AC=AB+BD.
提示:将△ADB沿AD翻折,使B点落在AC上点B'处,再证BD=B'D =B'C,易得△ADB≌△ADB',△B'DC是等腰三角形,于是结论可证.
5、作三角形的中位线
例5 如图5,已知四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线交EF的延长线于点M、N.求证:∠BME=∠CNE.提示:连结AC并取中点O,再连结OE、OF.则OE∥AB,OF∥CD,故∠1=∠BME,∠2=∠CNE.且OE=OF,故∠1=∠2,可得证.。
初中几何全等三角形常见辅助线作法
全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。
求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。
平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。
是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。
求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。
人教版八年级数学上册 全等三角形中常用辅助线
全等三角形中常用辅助线一、知识要点关于全等的辅助线有以下常见的作法(1) 有角平分线时,常在角两边截取相等的线段,构造全等三角形(2) 在三角形中有中线时,常采取延长中线变为原来的两倍,构造全等三角形来解决(3) 截长补短法:当已知或求证中涉及到线段a、b、c、d有下列情况:①a>b;②a±b=c;③a±b=c±d中的其中一种情况时采用二、例题解析【例1】如图,△ABC中,BD是AC边上的中线,BD⊥BC于点B,∠ABC=120°,求证:AB =2BC【例2】如图,在△ABC中,点D、E在BC上,且BD=DE,AE平分∠DAC,AC=2AD,试猜想AB与EC之间有怎样的大小关系?并证明你的猜想【练】如图,已知∠CAD=∠CDA,AC=BD,E在BC上,DE=EC,求证:AD平分∠BAE【例3】在△ABC中,AC=BC,AD平分∠BAC交BC于D,点E为AB上一点,且∠EDB=∠B.现有下列两个结论:①AB=AD+CD②AB=AC+CD(1) 如图1,若∠C=90°,则结论成立,并证明你的结论(2) 如图2,若∠C=100°,则结论成立,并证明你的结论【例4】如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,求证:PB+PC>AB+AC【例5】如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,连接AD,求证:AD平分∠CDE【例6】如图,正方形ABGE(四边相等,四个角都等于90°)中,点D在EG上,点C在BG 上,且∠DAC=45°,求证:CD=DE+CB【例7】如图,在上题中,若点D 在EG 的延长线上,点C 在GB 的延长线上,其余条件不变,求证:DE =BC +CD【例8】如图,△ABC 为等边三角形,且AD =BE ,连接DE 、DC ,试判断DE 与DC 间的关系,并加以证明三、课堂练习如图,在△ABC 中,AD 平分∠BAC ,AD =AB ,CM ⊥AD 于M ,求证:AM =21(AB +AC )四、本讲精题整理五、反馈练习1.(1) 如图1,若OP 是∠AOB 的平分线(点P 不与点O 重合),点C 、D 分别在OA 、OB 上,且OC =OD ,则可以证明△OPC ≌△OPD ,从而得到PC =PD(2) 如图2,B ′、C ′分别为△ABC 外角平分线BM 、CN 上任意两点,连接AB ′、AC ′、B ′C ′,求证:△AB ′C ′周长大于△ABC 周长2.如图,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D(1) 若∠MON=90°,如图1,则∠BDC=_________(2) 若∠MON=60°,如图1,则∠BDC=_________(3) 若∠MON=α,如图1,则∠BDC=_________,请给予证明3.如图,正方形ABGE(四边相等,四个角都等于90°)中,点D在EG上,点C在BG上,且∠ADC=ADE,求证:CD=DE+CB4.如图,在等腰△ABC中,AB=AC,且∠A=30°,点D为△ABC外一点,且DB⊥AB于B,DC⊥AC于C,以D为顶点作∠MDN=75°,分别交AB、AC于点M、N,连MN,求证:MN=BM+CN5.如图,在△ABC中,AD是∠BAC的平分线,BP⊥AD,垂足是P,已知AC-AB=2BP,求证:∠ABC=3∠C。
人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)
人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)本文介绍了全等三角形中的常见辅助线,包括角分线上点向角两边作垂线和截取法构全等两种方法。
第一种方法是过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。
举例来说,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,要求证∠BFP+∠BEP=180°。
另外,还有一些变式题,例如已知∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,要求解出PC和PD之间的数量关系。
第二种方法是利用对称性,在角的两边截取相等的线段,构造全等三角形。
例如,在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,要求证BC=AB+DC。
还有一些变式题,例如已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,要求判断BE,CD,BC的数量关系。
本文还提到了一些其他问题,例如在△ABC中,∠XXX是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,要求判断FE与FD之间的数量关系。
此外,还有一些类似的变式题,需要读者自行思考和解答。
需要注意的是,本文中有一些格式错误和明显有问题的段落需要删除,同时每段话也需要进行小幅度的改写,以使其更加准确、清晰和易于理解。
在△ABC中,通过截取AE=AC的方式,连接DE,得到△ADE≌△ADC。
因此,我们可以证明XXX。
对于图②,我们知道AD是△ABC的外角∠CAE的平分线,交BC的延长线于点D,且∠D=25°。
我们需要求解∠B的度数。
对于△XXX,我们可以通过以下方式求解∠B的度数:∠B+∠C+∠A=180°。
因为∠C=2∠B,所以∠A=180°-3∠B。
(完整版)全等三角形问题中常见的8种辅助线的作法(有答案解析)
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
人教版数学八年级上册 综合专题1——全等三角形的辅助线和动态问题
C
2
A
ED B
∴∠F =∠3,EF = EB.
∵∠3 =∠4,∴∠F =∠4.
∵ AC∥BD,∴∠FCE =∠D. 在△EFC 和△EBD 中,
∠FCE =∠D ∠F =∠4 EF = EB ∴△EFC≌△EBD(AAS). ∴ FC = BD. ∵ AF = AC + FC, ∴ AB = AC + BD.
∴AB-AC>BD-DC.
3. 如图,已知 AC∥BD,AE、BE 分别平分∠CAB 和∠DBA,CD 过点 E,求证:AB = AC + BD.
解:如图,延长 AC 至点 F,使 AF = AB,连接 EF.
∵ AE,BE 分别平分∠CAB 和∠DBA, ∴∠1 =∠2,∠3 =∠4.
F
在△AEF 和△AEB 中,
∴∠BAC =∠DCE.
在△ABC 和△CDE 中,
B
CD
∴△ABC≌△CDE(AAS).
练一练
4. (福建阶段练习)如图,在△ABC 中,∠ACB = 90°,
AC = BC,点 C 的坐标为(-2,0),点 A 的坐标为
(-6,3),求点 B 的坐标 ( D )
A. (3,4)
B. (2,3)
A
F
E
∴△FDE≌△FDG(SAS). ∴ FE=FG .
B
D
C
G
∵ D 是 BC 中点,∴ BD=CD. 在△EDB 与△GDC 中
∴△EDB≌△GDC(SAS). ∴ BE=CG. ∵ CG+FC>FG, ∴ BE+CF>EF.
A
F E
八年级数学上册专题(四) 全等三角形的基本辅助线—倍长中线
线,∴BD=CD.∴DF=CD.∴△ADF≌△ADC(SAS).∴AC=AF=2AE, 即AE= 1 AC 2
3 . 如图 , AB = AE , AB⊥AE , AD = AC , AD⊥AC , 点 M 为 BC 的中 点.求证:DE=2AM.
解:延长AM至N,使MN=AM,连接BN,∵点M为BC的中点,∴BM = CM. 又∵∠ BMN =∠ CMA , ∴△ AMC≌△NMB(SAS) .∴ AC = BN , ∠ C = ∠ NBM , ∠ ABN = ∠ ABC + ∠ C = 180° - ∠ BAC = ∠ EAD. 又
八年级上册人教版数学 第十二章 全等三角形
专题(四) 全等三角形的基本辅助线——倍长中线
几何题中含有中点,条件无法运用时,常将中点处的线段加倍延长,构 造SAS全等三角形.其实质是旋转变换构造全等三角形. 1.已知△ABC中,AB=4 cm,BC=6 cm,BD是AC边上的中线E,连接DF.∵AE是△ABD的中线,∴BE= DE.∵∠AEB=∠FED,∴△ABE≌△FDE(SAS).∴∠B=∠BDF,AB=
DF.∵BA = BD , ∠ BAD = ∠ BDA , ∴ BD = DF.∵∠ADF = ∠ BDA +
∠BDF,∠ADC=∠BAD+∠B,∴∠ADF=∠ADC.∵AD是△ABC的中
∵ BN = AC = AD , AB = EA , ∴△ ABN≌△EAD(SAS) .∴ DE = NA. 又
AM=MN,∴DE=2AM
4.(阿凡题
1070219)(习题变式)证明:如果两个三角形有两边
和第三边上的中线对应相等,那么这两个三角形全等. 已知:如图 , 在△ ABC 与△ A1B1C1 中 , AB = A1B1 , AC = A1C1 , AM和A1M1分别为中线,AM=A1M.求证:△ABC≌△A1B1C1.
八年级全等三角形辅助线专题(经典)
D
A
C
B
E
如图,若 DA = DB ,则 D 在线段 AB 的垂直平分线上.
第五部分:等腰三角形
一、等腰三角形
1、等腰三角形的定义: 有两条边相等的三角形叫做等腰三角形
6
2、等腰三角形的性质: ⑴ 两腰相等. ⑵ 两底角相等. ⑶ “三线合一”,即顶角平分线、底边上的中线、底边上的高重合.
⑷ 是轴对称图形,底边的垂直平分线是它的对称轴.
是∠BAC、∠BCA 的平分线,AD、CE 相交于点 F,请你判断 FD 与 FE 的数量关系 (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中条件不 变,则(1)中结论是否成立
25
18 如图,点 C 为线段 AB 上一点, ACM 、 CBN 都是等边三角形,AN 、 BM 交于点 O ,连结 OC , 求证: (1) AN = BM (2) AOB = 120 (3) OC 平分 AOB (4)连结 EF 后,则 CEF 是等边三角形 (5) EF / / AB 思考:当 AC、BC 不共线时,上述结论是否仍成立?
3、化繁为简原则:对一类几何命题,其题设条件与结论之间
在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,
4
把复杂图形分解成简单图形,从而达到化繁为简、化难为易的目的.
4、发挥特殊点、线的作用:在题设条件所给的图形中,对
尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点、 特殊线、特殊图形性质恰当揭示出来,并充分发挥这些特殊点、线的 作用,达到化难为易、导出结论的目的.
A
E
C
D
O
F
B
如图,若射线 OC 是 AOB 的角平分线,则 DE = DF .
(完整版)初二数学辅助线常用做法及例题(含答案)
DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
全等三角形常见辅助线
全等三角形常见辅助线作法知识结构图一.中点类辅助线作法见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如下图(是底边的中线).二.角平分线类辅助线作法有下列三种作辅助线的方式:1.由角平分线上的一点向角的两边作垂线;2.过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;3.,这种对称的图形应用得也较为普遍.三.截长补短类辅助线作法截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.四.型图(一线三等角)型图是最重要的几何模型之一,在证明三角形全等、相似,求点的坐标时有着重要的应用.(1)如图,已知,,,;则,,.(2)型图变化:将向右移动会出现下面两种情况:①如图,已知,,,,,则,;②如图,已知,,,,,则,.题模一中点类全等问题例1.1、如图,已知在中,是边上的中线,是上一点,延长交于,,求证:.例1.2、在中,,点为的中点,点、分别为、上的点,且.以线段、、为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?例1.3、八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.【探究与发现】(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形______ 【理解与应用】(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是______.(3)已知:如图3,AD是△ABC的中线,∠BAC=∠ACB,点Q在BC的延长线上,QC=BC,求证:AQ=2AD.例1.4、在△ABC中,D为BC边的中点,在三角形内部取一点P,使得.过点P作PE⊥AC于点E,PF⊥AB于点F.(1)如图1,当时,判断的DE与DF的数量关系,直接写出你的结论;(2)如图2,当,其它条件不变时,(1)中的结论是否发生改变?请说明理由.题模二角平分线类全等问题例2.1、中,AD是的平分线,且.若,则的大小为()A、40°B、60°C、80°D、100°例2.2、如图所示,在△ABC中,,AD是∠BAC的平分线,BE⊥AD于F.求证:.例2.3、已知,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.题模三截长补短类全等问题例3.1、如图所示,是边长为的正三角形,是顶角为的等腰三角形,以为顶点作一个的,点、分别在、上,求的周长.例3.2、(2013初二上期中人民大学附属中学)如图,△ABC中,,AD是BC边上的高,如果,我们就称△ABC为“高和三角形”.请你依据这一定义回答问题:(1)若,,则△ABC____ “高和三角形”(填“是”或“不是”);(2)一般地,如果△ABC是“高和三角形”,则与之间的关系是____,并证明你的结论例3.3、(1)如图,四边形ABPC中,,,,求证:.(2)如图,四边形ABCD中,,,P为四边形ABCD内一点,且,求证:.题模四K型图例4.1、如图,在等腰中,,为的中点,,垂足为,过点作交的延长线于点,连接.(1)求证:;(2)连接,求证:.例4.2、如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是线段BC上一点,以AE为边在直线MN的上方作正方形AEFG(1)连接GD,求证:;(2)连接FC,求证:,并说明理由;(3)当E点在CB的延长线上时,如图(2),连接FC,则等于多少度?请说明理由.例4.3、如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD ⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由.随堂练习随练1.1、如图所示,是等腰直角三角形,,是边上的中线,过作的垂线,交于点,交于点,求证:.随练1.2、如图,在△ABC中,AD是△ABC的角平分线,AB=4,BD=3,∠B=2∠C,则AC的长为()A、 6B、 7C、 8D、9随练1.3、如图所示,在中,,延长到,使,为的中点,连接、,求证:.随练1.4、如图,在中,D为BC边上的中点,AE平分交BC于E,交AC于F,,,求CF的长.随练1.5、(2013初二上期末怀柔区)(1)已知:如图1,在△ABC中,∠A=90°,D为BC中点,E为AB上一点,F为AC上一点,ED⊥DF,连接EF,求证:线段BE、FC、EF总能构成一个直角三角形;(2)已知:如图2,∠A=120°,D为BC中点,E为AB上一点,F为AC上一点,ED⊥DF,连接EF,请你找出一个条件,使线段BE、FC、EF能构成一个等边三角形,给出证明.随练1.6、已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.随练1.7、如图,在△ABC中,,D是三角形外一点,且,.求证:随练1.8、如图,△ABC中,,点P是三角形右外一点,且.(1)如图1,若,点P恰巧在∠ABC的平分线上,,求PB的长;(2)如图2,若,探究PA,PB,PC的数量关系,并证明;(3)如图3,若,请直接写出PA,PB,PC的数量关系.随练1.9、在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.(1)当点C在线段BD上时,①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为;②如图2,若点C不与点D重合,请证明AE=BF+CD;(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系(直接写出结果,不需要证明).随练1.10、直角三角形有一个非常重要的性质:直角三角形斜边上的中线等于斜边的一半,比如:如图1,Rt△ABC 中,∠C=90°,D为斜边AB中点,则CD=AD=BD=AB.请你利用该定理和以前学过的知识解决下列问题:如图2,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;(1)求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明:若不成立,请说明理由;(3)如图4,∠BAC=90°,a旋转到与BC垂直的位置,E为BC上一点且AE=AC,EN⊥a于N,连接EC,取EC中点P,连接PM,PN,求证:PM⊥PN.随练1.11、【问题情境】如图,在正方形ABCD中,点E是线段BG上的动点,AE⊥EF,EF交正方形外角∠DCG的平分线CF于点F.【探究展示】(1)如图1,若点E是BC的中点,证明:∠BAE+∠EFC=∠DCF.(2)如图2,若点E是BC的上的任意一点(B、C除外),∠BAE+∠EFC=∠DCF是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【拓展延伸】(3)如图3,若点E是BC延长线(C除外)上的任意一点,求证:AE=EF.随练1.12、直线过的顶点,.分别是直线上两点,且.(1)若直线经过的内部,且在射线上,请解决下面两个问题:①如图1,若则_______(填“”,“”或“”);②如图②,若,若使①中的结论任然成立,则与应满足的关系式_______________;(2)如图3,若直线经过的外部,,请探究与三条线段的数量关系,并给予证明.能力拓展拓展1、已知:如图,在中,AD平分,于点D,,若,,求AB的长.拓展2、如图所示,,是的中点,,,求证.拓展3、如图,点为正三角形的边所在直线上的任意一点(点除外),作,射线与外角的平分线交于点,与有怎样的数量关系?拓展4、已知的顶点C在的平分线OP上,CD交OA于F,CE交OB于G.(1)如图1,若,,则图中有哪些相等的线段,请直接写出你的结论:__________;(2)如图2,若,,试判断线段CF与线段CG的数量关系并加以证明;(3)若,当满足什么条件时,你在(2)中得到的结论仍然成立,请直接写出满足的条件.拓展5、如图1,在△ABC中,,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H 作直线l⊥AO于H,分别交直线AB、AC、BC于点N、E、M.(1)当直线l经过点C时(如图2),证明:;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.拓展6、如图,在△ABC中,,,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证:(1);(2).拓展7、已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是__,QE与QF的数量关系是__;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.拓展8、在△ABC,∠BAC为锐角,,AD平分∠BAC交BC于点D.(1)如图1,若△ABC是等腰直角三角形,直接写出线段AC,CD,AB之间的数量关系;(2)BC的垂直平分线交AD延长线于点E,交BC于点F.①如图2,若,判断AC,CE,AB之间有怎样的数量关系并加以证明②如图3,若,求∠BAC的度数.拓展9、在平行四边形ABCD中,E是AD上一点,,过点E作直线EF,在EF上取一点G,使得,连接AG.(1)如图1,当EF与AB相交时,若,求证:;(2)如图2,当EF与AB相交时,若,请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);(3)如图3,当EF与CD相交时,且,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.拓展10、在□ABCD中,,过点D作,且,连接EF、EC,N、P分别为EC、BC的中点,连接NP.(1)如图1,若点E在DP上,EF与DC交于点M,试探究线段NP与线段NM的数量关系及∠ABD与∠MNP 满足的等量关系,请直接写出你的结论;(2)如图2,若点M在线段EF上,当点M在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M的位置,并证明(1)中的结论.拓展11、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请你判断并写出FE与FD之间的数量关系(不需证明);(2)如图③,在△ABC中,,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.拓展12、如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.(不需要证明)拓展13、已知△ABC中,M为BC的中点,直线m 绕点A旋转,过B,M,C 分别作BD⊥m于点D,ME⊥m于点E,CF⊥m于点F.当直线m经过点B时,如图1,可以得到.(1)当直线m不经过B点,旋转到如图2,图3 的位置时,线段BD,ME,CF之间有怎样的数量关系,请直接写出你的猜想.图2,猜想:;图3,猜想:.(2)选择第(1)问中任意一种猜想加以证明.拓展14、(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线L经过点A,BD⊥直线L,CE⊥直线L,垂足分别为点D、E.证明:①△ABD≌△CAE;②DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线L上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图③,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
----几何证明中常见的 “添辅助线”方法 ----“周长问题”的转化
Ⅰ.连结
目的:构造全等三角形或等腰三角形 典例1:如图,AB=AD,BC=DC,求证:∠B=∠D.
B A C
D
1.连结AC
构造全等三角形
2.连结BD 构造两个等腰三角形
Ⅰ.连结
典例2:如图,AB=AE,BC=ED, ∠B=∠E,AM⊥CD, 求证:点M是CD的中点. A 连结AC、AD
Ⅴ.“周长问题”的转化 借助“角平分线性质”
1.如图,△ABC中,∠C=90o,AC=BC,AD平分∠ACB, DE⊥AB.若AB=6cm,则△DBE的周长是多少?
BE+BD+DE BE+BD+CD BE+BC BE+AC BE+AE AB
A E B C D
Ⅴ.“周长问题”的转化 借助“垂直平分线性质”
B A N
M
C
Ⅴ.“周长问题”的转化 借助“等腰三角形性质”
5.如图, △ABC中,BP、CP是△ABC的角平分线,MN//BC. 若BC=6cm, △AMN周长为13cm,求△ABC的周长.
AB+AC+BC AM+ BM+AN+NC+6 AM+ MP+AN+NP+6 AM+AN+MN+6 13+6
过点D作DE⊥AB 构造了: 全等的直角三角形且距离相等
B E D C A
思考: 若AB=15cm,则△BED的周长是多少
?
Ⅱ.角平分线上点向两边作垂线段
典例3:如图,梯形中, ∠A= ∠D =90o, BE、CE均是角平分线, 求证:BC=AB+CD.
过点E作EF⊥BC 构造了: 全等的直角三角形且距离相等
B M P N C A
线段与角求相等,先找全等试试看。 图中有角平分线,可向两边作垂线。 线段垂直平分线,常向两端把线连。 线段计算和与差,巧用截长补短法。 三角形里有中线,延长中线=中线。 想作图形辅助线,切莫忘记要双添。
AB+AC+BC
A1
B A O N C A2 M
A1 B+ A2 C+BC
A1 A2
Ⅴ.“周长问题”的转化 借助“垂直平分线性质”
4.如图, △ABC中,MN是AC的垂直平分线. 若AN=3cm, △ABM周长为13cm,求△ABC的周长.
AB+BC+AC AB+ BM+MC+6 AB+ BM+AM+6 13+6
C B F E
A
D
思考: 你从本题中还能得到哪些结论?
Ⅱ.角平分线上点向两边作垂线段
2.如图,梯形中, ∠A= ∠D =90o, BE、CE均是角平分线, 求证:BC=AB+CD.
延长BE和CD交于点F 构造了: 全等的直角三角形
C B
A
E
D
F
思考: 你从本题中还能得到哪些结论?
Ⅱ.角平分线上点向两边作垂线段
2.如图,△ABC中, D在AB的垂直平分线上, E在AC的垂直平分线上.若BC=6cm,求△ADE的周长.
AD+AE+DE BD+CE+DE BC
B D E C A
Ⅴ.“周长问题”的转化 借助“垂直平分线性质”
3.如图,A、A1关于OM对称, A、A2关于ON对称. 若A1 A2 =6cm,求△ABC的周长.
O
D
B
Ⅱ.角平分线上点向两边作垂线段
目的:构造直角三角形,得到距离相等 典例1:如图,△ABC中, ∠C =90o,BC=10,BD=6, AD平分∠BAC,求点D到AB的距离.
E A
过点D作DE⊥AB
B D C
构造了: 全等的直角三角形且距离相等
Ⅱ.角平分线上点向两边作垂线段
典例2:如图,△ABC中, ∠C =90o,AC=BC, AD平分∠BAC,求证:AB=AC+DC.
构造全等三角形
B E
C
M
D
Ⅰ.连结
典例3:如图,AB=AC,BD=CD, M、N分别是BD、CD 的中点,求证:∠AMB= ∠ANC A 连结AD
构造全等三角形
B M D N C
Ⅰ.连结
典例4:如图,AB与CD交于O, 且AB=CD,AD=BC, OB=5cm,求OD的长. C A 连结BD
构造全等三角形
E B
1 2
D
C F
在AB上取点E使得AE=AC,连接DE
在AC的延长线上取点F使得CF=CD,连接DF
如图所示,已知AD∥BC,∠1=∠2, ∠3=∠4,直线DC经过点E交AD于点D, 交BC于点C。求证:AD+BC=AB
D E
4 3
C
1 2
A
F
B
截 长 补 短
在AB上取点F使得AF=AD,连接EF
连接DB,DC
B
E
C
M
F
D
垂直平分线上点向两端连线段
Ⅳ.中线延长一倍
1 1.AD是△ABC的中线, 求证: AD ( AB AC ) 2
延长AD到点E,使DE=AD, 连结CE.
A
目的 补短
已知在△ABC中,∠C=2∠B, ∠1=∠2 A 求证:AB=AC+CD
典例4:如图,OC 平分∠AOB, ∠DOE +∠DPE =180o, A 求证: PD=PE.
过点P作PF⊥OA,PG ⊥OB 构造了: 全等的直角三角形且距离相等
D O G E B F C P
思考: 你从本题中还能得到哪些结论?
Ⅲ.垂直平分线上点向两端连线段
目的:构造直角三角形,得到斜边相等
△ABC中,AB>AC ,∠A的平分线与 BC的垂直平分线DM相交于D,过D作 DE ⊥AB于E,作DF⊥AC于F。 A 求证:BE=CF