最新2019中考模拟数学试卷

合集下载

2019年中考数学模拟试卷含答案解析4

2019年中考数学模拟试卷含答案解析4

2019年中考数学模拟试卷一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.(3分)﹣2的绝对值是()A.2 B.﹣ C.D.﹣22.(3分)下列运算结果正确的是()A.a2•a3=a6B.﹣(a﹣b)=﹣a+b C.a2+a2=2a4D.a8÷a4=a23.(3分)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y24.(3分)如图是某圆锥的主视图和左视图,该圆锥的侧面积是()A.25π B.24π C.20π D.15π5.(3分)已知5x=3,5y=2,则52x﹣3y=()A.B.1 C.D.6.(3分)如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x ﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.(3分)一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.8.(3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣19.(3分)抛物线y=ax2+bx+c(a≠0)图象如图所示,下列结论错误的是()A.abc<0 B.a+c<b C.b2+8a>4ac D.2a+b>010.(3分)如图,⊙O的半径为5,AB为弦,点C为的中点,若∠ABC=30°,则弦AB的长为()A.B.5 C.D.511.(3分)矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.12.(3分)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π二、填空题(本题包括6小题,每小题3分,共18分)13.(3分)分解因式:﹣a2+2a﹣2= .14.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是.15.(3分)如图,直线AB与双曲线y=(k<0)交于点A,B,点P是直线AB上一动点,且点P在第二象限.连接PO并延长交双曲线于点C.过点P作PD⊥y轴,垂足为点D.过点C作CE⊥x轴,垂足为E.若点A的坐标为(﹣2,3),点B的坐标为(m,1),设△POD的面积为S1,△COE的面积为S2,当S1>S2时,点P的横坐标x的取值范围为.16.(3分)如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为.17.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.18.(3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为.三、填空题(本题包括7小题,共66分)19.(7分)解不等式组,并将解集在数轴上表示出来.20.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?21.(8分)如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.22.(9分)为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.23.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y (万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?24.(12分)如图①,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.(1)如图②,当BC=4,DE=5,tan∠FMN=1时,求的值;(2)若tan∠FMN=,BC=4,则可求出图中哪些线段的长?写出解答过程;(3)连接CM,DN,CF,DF.试证明△FMC与△DNF全等;(4)在(3)的条件下,图中还有哪些其它的全等三角形?请直接写出.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y 轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M.N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题只有一个选项符合题意.共12小题,每小题3分,共36分)1.【解答】解:﹣2的绝对值是2,故选:A.2.【解答】解:A、a2•a3=a5,故此选项错误;B、﹣(a﹣b)=﹣a+b,正确;C、a2+a2=2a2,故此选项错误;D、a8÷a4=a4,故此选项错误;故选:B.3.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.4.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,故选:C.5.【解答】解:∵5x=3,5y=2,∴52x=32=9,53y=23=8,∴52x﹣3y==.故选:D.6.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.7.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为=,故选:B.8.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.9.【解答】解:(A)由图象开口可知:a<0 由对称轴可知:>0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;(B)由图象可知:x=﹣1,y<0,∴y=a﹣b+c<0,∴a+c<b,故B正确;(C)由图象可知:顶点的纵坐标大于2,∴>2,a<0,∴4ac﹣b2<8a,∴b2+8a>4ac,故C正确;(D)对称轴x=<1,a<0,∴2a+b<0,故D错误;故选:D.10.【解答】解:连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为的中点,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故选:D.11.【解答】解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.12.【解答】解:作FH⊥BC于H,连接FH,如图,∵点E为BC的中点,点F为半圆的中点,∴BE=CE=CH=FH=6,AE==6,易得Rt△ABE≌△EHF,∴∠AEB=∠EFH,而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE﹣S△AEF =12×12+•π•62﹣×12×6﹣•6×6=18+18π.故选:C.二、填空题(本题包括6小题,每小题3分,共18分)13.【解答】解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)214.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)>0,且m﹣5≠0,解得m<5.5,且m≠5,则m的最大整数解是m=4.故答案为:m=4.15.【解答】解:∵A(﹣2,3)在y=上,∴k=﹣6.∵点B(m,1)在y=上,∴m=﹣6,观察图象可知:当S1>S2时,点P在线段AB上,∴点P的横坐标x的取值范围为﹣6<x<﹣2.故答案为﹣6<x<﹣2.16.【解答】解:如图,连接EC.∵E是△ADC的内心,∴∠AEC=90°+∠ADC=135°,在△AEC和△AEB中,,∴△EAC≌△EAB,∴∠AEB=∠AEC=135°,故答案为135°.17.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,故答案为:44﹣16.18.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a,a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).三、填空题(本题包括7小题,共66分)19.【解答】解:解不等式①,得x>﹣4,解不等式②,得x≤2,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤2.20.【解答】解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.21.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF=FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.22.【解答】解:(1)本次调查的学生有:20÷=120(名),背诵4首的有:120﹣15﹣20﹣16﹣13﹣11=45(人),∵15+45=60,∴这组数据的中位数是:(4+5)÷2=4.5(首),故答案为:4.5首;(2)大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有:1200×=850(人),答:大赛后一个月该校学生一周诗词诵背6首(含6首)以上的有850人;(3)活动启动之初的中位数是4.5首,众数是4首,大赛比赛后一个月时的中位数是6首,众数是6首,由比赛年前后的中位数和众数看,比赛后学生名背诵诗词的积极性明显提高,这次举办后的效果比较理想.23.【解答】解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,(2分)同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,(8分)当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,(9分)∴==6,即最快在第7个月可还清10万元的无息贷款.(10分)24.【解答】解:(1)∵点M,N,F分别为AB,AE,BE的中点,∴MF,NF都是△ABE的中位线,∴MF=AE=AN,NF=AB=AM,∴四边形ANFM是平行四边形,又∵AB⊥AE,∴四边形ANFM是矩形,又∵tan∠FMN=1,∴FN=FM,∴矩形ANFM是正方形,AB=AE,又∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴=;(2)可求线段AD的长.由(1)可得,四边形MANF为矩形,MF=AE,NF=AB,∵tan∠FMN=,即=,∴=,∵∠1=∠3,∠C=∠D=90°,∴△ABC∽△EAD,∴==,∵BC=4,∴AD=8;(3)∵BC⊥CD,DE⊥CD,∴△ABC和△ADE都是直角三角形,∵M,N分别是AB,AE的中点,∴BM=CM,NA=ND,∴∠4=2∠1,∠5=2∠3,∵∠1=∠3,∴∠4=∠5,∵∠FMC=90°+∠4,∠FND=90°+∠5,∴∠FMC=∠FND,∵FM=DN,CM=NF,∴△FMC≌△DNF(SAS);(4)在(3)的条件下,BM=AM=FN,MF=AN=NE,∠FMB=∠MFN=∠MAN=∠ENF=90°,∴图中有:△BMF≌△NFM≌△MAN≌△FNE.25.【解答】解:(1)∵抛物线过点A(﹣4,0),B(2,0)∴设抛物线表达式为:y=a(x+4)(x﹣2)把C(0,4)带入得4=a(0+4)(0﹣2)∴a=﹣∴抛物线表达式为:y=﹣(x+4)(x﹣2)=﹣x2﹣x+4 (2)由(1)抛物线对称轴为直线x=﹣=﹣1∵线段BC的中垂线与对称轴l交于点D∴点D在对称轴上设点D坐标为(﹣1,m)过点C做CG⊥l于G,连DC,DB∴DC=DB在Rt△DCG和Rt△DBH中∵DC2=12+(4﹣m)2,DB2=m2+(2+1)2∴12+(4﹣m)2=m2+(2+1)2解得:m=1∴点D坐标为(﹣1,1)(3)∵点B坐标为(2,0),C点坐标为(0,4)∴BC=∵EF为BC中垂线∴BE=在Rt△BEF和Rt△BOC中,cos∠CBF=∴∴BF=5,EF=,OF=3设⊙P的半径为r,⊙P与直线BC和EF都相切如图:①当圆心P1在直线BC左侧时,连P1Q1,P1R1,则P1Q1=P1R1=r1∴∠P1Q1E=∠P1R1E=∠R1EQ1=90°∴四边形P1Q1ER1是正方形∴ER1=P1Q1=r1在Rt△BEF和Rt△FR1P1中tan∠1=∴∴r1=∵sin∠1=∴FP1=,OP1=∴点P1坐标为(,0)②同理,当圆心P2在直线BC右侧时,可求r2=,OP2=7∴P2坐标为(7,0)∴点P坐标为(,0)或(7,0)(4)存在当点P坐标为(,0)时,①若DN和MP为平行四边形对边,则有DN=MP当x=时,y=﹣∴DN=MP=∴点N坐标为(﹣1,)②若MN、DP为平行四边形对边时,M、P点到ND距离相等则点M横坐标为﹣则M纵坐标为﹣由平行四边形中心对称性可知,点M到N的垂直距离等于点P到点D的垂直距离当点N在D点上方时,点N纵坐标为此时点N坐标为(﹣1,)当点N在x轴下方时,点N坐标为(﹣1,﹣)当点P坐标为(7,0)时,所求N点不存在.故答案为:(﹣1,)、(﹣1,)、(﹣1,﹣)。

2019年度初中数学中考模拟试卷02128

2019年度初中数学中考模拟试卷02128

2019年度初中数学中考模拟试卷
数学科目模拟测试
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是()
A.y=1
2(x+2 )
2 -2 B y=1
2(x-2 )
2 -2. C y=2(x+2 )2 -2. D.y=2(x-2 )2 -2
2.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于()A.50,1 B. 50,50 C.1,50 D.1,1
3.将直角三角形的三边都扩大3倍后,得到的三角形是()
A.直角三角形B.锐角三角形C.钝角三角形D.无法确定
4.如图,△A8C≌△BAD,A和B,C和D是对应点,若AB=4 cm,BD=3 cm,AD=2 cm,则BC的长度为()
A.4 cm B.3 cm C.2 cm D.不能确定
二、填空题
5.如图,△ABC是等边三角形,P是三角形内任一点,PD∥AB,PE∥BC,PF∥AC,若△ABC周长为12,PD+PE+PF= .
6.从围棋盒中抓出一大把棋子,所抓出棋子的个数是奇数的概率为.
7.如图,在△ABC中,AB=AC,AD、CE 分别平分∠BAC 与∠ACB,AD 与 CE相交于点 F .若∠B =62° , 则∠AFC = .。

2019中考数学模拟试题含答案(精选5套)

2019中考数学模拟试题含答案(精选5套)

2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E 处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2019中考模拟数学试卷(最新整理)

2019中考模拟数学试卷(最新整理)
抛物线的顶点为 D. (1)求此二次函数解析式; (2)连接 DC、BC、DB,求证:△BCD 是直角三角形; (3)在对称轴右侧的抛物线上是否存在点 P,使得△PDC 为等腰三角形? 若存在,求出符合条件的点 P 的坐标;若不存在,请说明理由.
24.如图,AB 是⊙O 的直径,点 C 在 AB 的延长线上,CD 与⊙O 相切于点 D,CE⊥AD,交 AD 的 延长线于点 E.
上的点 G 处,连接 EG. (1)△GEF 是等腰三角形吗?请说明理由; (2)若 CD=4,GD=8,求 HF 的长度.
21. 某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学
生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图
(部分信息未给出). (1)求本次被调查的学生人数; (2)补全条形统计图; (3)该校共有 3000 名学生,请估计全校最喜爱 篮球的人数比最喜爱足球的人数多多少?.
科学记数法表示为( )
A.2.56×107
B.2.56×108
C.2.56×l09
D.2.56×l010
3.如图是由几个相同的小正方体堆砌成的几何体,它的左视图是( )
A.
Байду номын сангаасB.
C.
D.
4.下列变形属于因式分解的是( ) A.4x+x=5x C.x2+x+1=x(x+1)+1
B.(x+2)2=x2+4x+4 D.x2﹣3x=x(x﹣3)
第 4 页(共 5 页)
第 5 页(共 5 页)
第 3 页(共 5 页)
(1)求该文具店购进 A、B 两种钢笔每支各多少元? (2)经统计,B 种钢笔售价为 30 元时,每月可卖 64 支;每涨价 3 元,每 月将少卖 12 支,求该文具店 B 种钢笔销售单价定为多少元时,每月获利 最大?最大利润是多少元?

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。

2019年中考数学模拟试卷含答案解析

2019年中考数学模拟试卷含答案解析

2019年初中毕业生数学考试模拟试卷及答案解析一、选择题(共10小题,每小题3分,共30分) 1.温度由-4℃上升7℃是( ) A .3℃B .-3℃C .11℃D .-11℃2.若分式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-2B .x <-2C .x =-2D .x ≠-23.计算3x 2-x 2的结果是( ) A .2B .2x2C .2xD .4x 24.五名女生的体重(单位:kg )分别为:37、40、38、42、42,这组数据的众数和中位数分别是( ) A .2、40B .42、38C .40、42D .42、405.计算(a -2)(a +3)的结果是( ) A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +66.点A(2,-5)关于x 轴对称的点的坐标是( ) A .(2,5)B .(-2,5)C .(-2,-5)D .(-5,2)7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是( ) A .3 B .4 C .5D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .41B .21 C .43 D .659.将正整数1至2018按一定规律排列如下表:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ……平移表中带阴影的方框,方框中三个数的和可能是( ) A .2019B .2018C .2016D .201310.如图,在⊙O 中,点C 在优弧AB ⌒ 上,将弧BC ⌒ 沿BC 折叠后刚好经过AB 的中点D .若⊙O 的半径为5,AB =4,则BC 的长是( ) A .32 B .23C .235D .265 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算3)23(-+的结果是___________ 12.下表记录了某种幼树在一定条件下移植成活情况移植总数n 400 1500 3500 7000 9000 14000 成活数m 3251336320363358073 12628成活的频率(精确到0.01)0.813 0.891 0.915 0.905 0.897 0.902由此估计这种幼树在此条件下移植成活的概率约是___________(精确到0.1) 13.计算22111mm m---的结果是___________14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是___________15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=.在飞机着陆滑行中,最后4 s 滑行的距离是___________m16.如图,在△ABC 中,∠ACB =60°,AC =1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=+16210y x y x18.(本题8分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF19.(本题8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图 学生读书数量统计表 学生读书数量扇形图 阅读量/本 学生人数1 152 a3 b 45 (1) 直接写出m 、a 、b 的值(2) 估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本题8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数)(1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案21.(本题8分)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB (1) 求证:PB 是⊙O 的切线 (2) 若∠APC =3∠BPC ,求CEPE的值22.(本题10分)已知点A(a ,m)在双曲线xy 8=上且m <0,过点A 作x 轴的垂线,垂足为B(1) 如图1,当a =-2时,P(t ,0)是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C ① 若t =1,直接写出点C 的坐标 ② 若双曲线xy 8=经过点C ,求t 的值 (2) 如图2,将图1中的双曲线x y 8=(x >0)沿y 轴折叠得到双曲线xy 8-=(x <0),将线段OA 绕点O 旋转,点A 刚好落在双曲线xy 8-=(x <0)上的点D(d ,n)处,求m 和n 的数量关系23.(本题10分)在△ABC 中,∠ABC =90°、(1) 如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM ∽△BCN(2) 如图2,P 是边BC 上一点,∠BAP =∠C ,tan ∠PAC =552,求tanC 的值 (3) 如图3,D 是边CA 延长线上一点,AE =AB ,∠DEB =90°,sin ∠BAC =53,52AC AD ,直接写出tan ∠CEB 的值24.(本题12分)抛物线L:y=-x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B(1) 直接写出抛物线L的解析式(2) 如图1,过定点的直线y=kx-k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值(3) 如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标参考答案与解析一、选择题1 2 3 4 5 6 7 8 9 10 ADBDBACCDB提示:9.设中间的数为x ,则这三个数分别为x-1,x ,x+1∴这三个数的和为3x ,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013, 故选答案D.10.连AC 、DC 、OD ,过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ,∵BC 沿BC 折叠,∴∠CDB=∠H ,∵∠H+∠A=180°,∴∠CDA+∠CDB=180°,∴∠A=∠CDA ,∴CA=CD ,∵CE ⊥AD ,∴AE=ED=1,∵5OA =,AD=2,∴OD=1,∵OD ⊥AB ,∴OFED 为正方形,∴OF=1,5OC =,∴CF=2,CE=3,∴32CB =.OHFEDCBAOFEDCBA法一图 法二图法二 第10题 作D 关于BC 的对称点E ,连AC 、CE ,∵AB=4,225AE AO ==,∴BE=2,由对称性知,∠ABC=∠CBE=45°,∴AC=CE ,延长BA 至F ,使FA=BE ,连FC ,易证△FCA ≌△BCE ,∴∠FCB=90°,∴()223222BC FB AB BE ==+=.二、填空题11.2 12.0.9 13.11m - 14.30°或150° 15.24 16.32揭示:第15题 ()23206002y t =--+ 当t=20时,滑行到最大距离600m 时停止;当t=16时,y=576,所以最后4s 滑行24m. 第16题 延长BC 至点F ,使CF=AC ,∵DE 平分△ABC 的周长,AD=BC ,∴AC+CE=BE ,∴BE=CF+CE=EF ,∴DE ∥AF ,DE=12AF ,又∵∠ACF=120°,AC=CF ,∴33AF AC ==,∴32DE =. FEDCB AGABCDEF第16题法一答图 第16题法二答图法二 第16题 解析 作BC 的中点F ,连接DF ,过点F 作FG ⊥DE 于G ,设CE=x ,则BE=1+x ,∴BE=1+x ,∴BC=1+2x ,∴12CF x =+,∴12EF CF CE =-=,而1122DF AC ==,且∠C=60°,∴∠DFE=120°,∴∠FEG=30°,∴1124GF EF ==,∴34EG =,∴322DE EG ==. 三、解答题17、解析:原方程组的解为64x y =⎧⎨=⎩18.证明:∵BE=CF ,∴BE+EF=CF+EF ,∴BF=CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCE (SASA ),∴∠DEC=∠AFB ,∴GE=GF. 19.解析 (1)m=50,a=10,b=20 (2)11521032045500115050⨯+⨯+⨯+⨯⨯=(本)答:该年级全体学生在这次活动中课外阅读书箱的总量大约是1150本. 20.解析:(1)设A 型钢板x 块,则B 型钢板有(100-x )块.()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得2025x ≤≤.X=20或21或22或23或24或25,购买方案共有6种. (2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦X=20时,max 140204600043200W =-⨯+=元. 获利最大的方案为购买A 型20块,B 型80块.21.(1)证明:如图①,连接OB ,OP ,在△OAP 和△OBP 中,OA OBOP OP AP BP =⎧⎪=⎨⎪=⎩,∴△OAP ≌△OBP(SSS ),∴∠OBP=∠OAP ,∵PA 是⊙O 的切线,∴∠OBP=∠OAP=90°,∴PB 是⊙O 的切线.H 图②图①ECBECBOOA PAP⑵如图②,连接BC ,AB 与OP 交于点H∵∠APC =3∠BPC ,设∠BPC =x ,则∠APC =3x ,∠APB =x +3x =4x 由⑴知 ∠APO =∠BPO =2x ,∴∠OPC =∠CPB =x ∵AC 是⊙O 的直径,∴∠ABC =90°∵易证OP ⊥AB ,∴∠AHO =∠ABC =90°,即OP ∥BC∴∠OPC =∠PCB =∠CPB =x ,∴CB =BP易证△OAH ∽△CAB ,∴OH CB =OA AC =12,设OH =a ,∴CB =BP =2a 易证△HPB ∽△BPO ,∴HP BP =BP OP ,∴设HP =ya ,∴2yaa=2a a ya +解得 11172y --=(舍)或21172y -+= ∵OP ∥CB ,易证△HPE ∽△BCE ,∴PE CE =HP CB =2yaa=1174-+22、解:⑴将x A =-2代入y =8x 中得:y A =82-=-4 ∴A(-2,-4),B(-2,0)①∵t =1 ∴P(1,0),BP =1-(-2)=3∵将点B 绕点P 顺时针旋转90°至点C ∴x C =x P =t PC =BP =3 ∴C(1,3)②∵B(-2,0),P(t ,0)第一种情况:当B 在P 的右边时,BP =-2-t ∴x C =x P =t PC 1=BP =-2-t ∴C 1(t ,t +2) 第二种情况:当B 在P 的左边时,BP =2+t ∴x C =x P =t PC 2=BP =2+t ∴C 2(t ,t +2) 综上:C 的坐标为(t ,t +2) ∵C 在y =8x上 ∴t(t +2)=8 解得 t =2或-4 xyxyxyD 2D 1E 1E 2P BOCPBAOCBAOA⑵作DE ⊥y 轴交y 轴于点E ,将y A =m 代入y =8x 得:x A =8m ,∴A(8m ,m) ∴AO 2=OB 2+AB 2=228m +m 2,将y D =n 代入y =8x 得:x D =8n ,∴D(-8n ,n) ∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2, (64-m 2n 2)(n 2-m 2)=0321CM NA BMCNBAP①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0 ∴m +n =0 ②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0 ∴mn =-8 综合得:m +n =0,或 mn =-823、证明: ⑴∵∠ABC =90°∴∠3+∠2=180°-∠ABC =180°-90°=90° 又∵AM ⊥MN ,CN ⊥MN∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2 ∴△ABM ∽△BCN⑵方法一:过P 点作PN ⊥AP 交AC 于N 点, 过N 作NM ⊥BC 于M 点∵∠BAP +∠APB =90°,∠APB +∠NPC =90° ∴∠BAP =∠NPC ,△BAP ∽△MP ∴AP BA BPPN MP MN== 又∵25tan 5PN PAC PA ∠== 设25MN a =,25PM b =,则5BP a =,5AB b =又∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,245PC PM b == 又△BAP ∽△BCA ,BA BC BP BA=,∴2BA BP BC =⋅, ()()255545b a a b =⋅+,解得:55a b =, ∴255tan 525MN a a C MC b b ∠==== 方法二:过点C 作CE AP ⊥的延长线交于E 点,过P 作PF AC ⊥交AC 于点F ∵90ABC CEP ∠=∠=︒,BPA EPC ∠=∠,∴BAP ECP ACB ∠=∠=∠ ∵25tan 5PAC ∠=,∴设25CE m =,则5AE m = 由勾股定理得:35AC m =,∵ACP ECP ∠=∠, ∴PF PE =∴32APC CPE S AC AP S CE PE ∆∆=== ∵5AE m =,∴2PE m = ∴25tan tan 525PE ECP ACB EC ∠=∠===方法三:作AP 的垂直平分线交AB 于D 点,连DP 设C BAP x ∠=∠=,PAC y ∠=,∴290x y +=︒2BDP BAP DPA x ∠=∠+∠=902DPB x y PAC ∠=︒-==∠∵25tan 5PAC ∠=,令2BD a =,5BP a = 由勾股定理得:3DP a AD == ∴5tan tan 5BP C BAP AB ∠=∠== (3)过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC == 设3CK x =,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴4HB EH x == ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==24. 解析:(1)221y x x =-++(2)∵直线()40y kx k k =-+<,则()14y k x =-+ ∴直线MN 过定点P (1,4) 联立2421y kx k y x x =-+⎧⎨=-++⎩, 得()2230x k x k +--+= ∴2M N x x k +=-,3M N x x k ⋅=- ∴BMN EBN EBM S S S ∆∆∆=-()()()1111121222N M N M EB x EB x x x =---=⨯-= ∵()()()22242438N M M N M N x x x x x x k k k -=+-=---=-∴281k -= ∴3k =± ∵0k < ∴3k =-(3)设1L 为:22y x x t =-++ ∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a )①△PCD ∽△POF 时, ∴CD CP OF OP =, ∴21t aa -=, ∴3t a =,此时必有一点P 满足条件②△DCP ∽△POF 时, ∴CD CP OP OF =, ∴21t a a -=, ∴220a at -+= ∵符合条件的点P 恰有两个, ∴第一种情况:220a at -+=有两个相等的实数根0∆=,∴22t =± ∵0t > ∴22t =, ∴1221m =-将22t =代入3t a =得:1223a =∴1P (0,223) 将22t =代入220a at -+=得:22a = ∴2P (0,2)第二种情况:220a at -+=有两个不相等的实数根,且其中一根为3t a =的解∴0∆>, 将3t a =代入220a at -+=得:22320a a -+= ∴1a =± ∵0a > ∴1a =, ∴3t =, 22m =将3t =代入220a at -+=得:31a =, ∴3P (0,1); 42a =, ∴4P (0,2) 综上所述:当1221m =-时,P (0,223)或P (0,2), 当22m =时,P (0,1)或P (0,2)。

2019年最新广东省中考数学模拟试卷及答案解析

2019年最新广东省中考数学模拟试卷及答案解析

2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。

A。

-2.B。

2.C。

1.D。

-12.下列图案中既是中心对称图形,又是轴对称图形的是()。

A。

B。

C。

D。

3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。

A。

44×10^8.B。

4.4×10^9.C。

4.4×10^8.D。

4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。

A。

32,31.B。

31,32.C。

31,31.D。

32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。

A。

35°。

B。

45°。

C。

50°。

D。

55°6.下列运算正确的是()。

A。

2a+3b=5ab。

B。

a^2·a^3=a^5.C。

(2a)^3=6a^3.D。

a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。

A。

有两个不相等的实数根。

B。

有两个相等的实数根C。

只有一个实数根。

D。

没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。

A。

10.B。

13.C。

17.D。

13或179.不等式组的解集在数轴上表示正确的是()。

A。

B。

C。

D。

10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。

2019年最新中考数学模拟试卷及答案126362

2019年最新中考数学模拟试卷及答案126362

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,直线1l 、2l 、3l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A .一处B .两处C .三处D .四处2.已知数据13、、0.618、125、34-,任意抽取一个数是负数的概率为( ) A .20% B .40% C .60% D .80%3.如图,在边长为 a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=- 4.某种商品在降价x %后,单价为a 元,则降价前它的单价为( )A .%a xB .%a x ⋅C .1%a x -D .(1%)a x -5. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =6. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( )A .一个篮球场的周长B .一张乒乓球台台面的周长C .《中国日报》的一个版面的周长D .《数学》课本封面的周长7. 如图,AD=BC ,AC=BD ,AC ,BD 交于点E ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对8.用一个 5倍的放大镜去观察一个三角形,对此,四位同学有如下说法. 甲说:三角形的每个内角都扩大到原来的5倍;乙说:三角形每条边都扩大到原来的5倍;丙说:三角形的面积扩大到原来的5倍;丁说:三角形的周长扩大到原来的5倍.上述说法中,正确的个数是( )A .1B .2C .3D . 39.如图所示的一些交通标志中,是轴对称图形的有( ).A . 1个B . 2个C .3个D .4个10.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( )A .1个B .2个C .3个D .4个11.如图,下列推理中,错误的是( )A . 因为 AB ∥CD ,所以∠ABC +∠LC = 180°B . 因为∠1=∠2,所以AD ∥BCC . 因为 AD ∥BC ,所以∠3 =∠4D . 因为 ∠A +∠ADC = l80°,所以 AB ∥CD12.如图,已知∠1 =∠2 = ∠3 =55°,则∠4的度数为( )A .110°B . 115°C . 120°D .125°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初中毕业生学业考试(模拟)
1
数学科试题
2
3
一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项4
中,只有一个是正确的,请将答题卡上对应题目所选的选项涂黑.
5
1.﹣2019的倒数是()
6
A.2019 B .C .﹣ D.﹣2019
7
2.据民政部网站消息截至2018年底,我国60岁以上老年人口巳经达到2.56 8
亿人.其中2.56亿用科学记数法表示为()
9
A.2.56×107B.2.56×108C.2.56×l09D.2.56×l010
10
3.如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()
11
A .
B .
C .
D .
12
4.下列变形属于因式分解的是()
13
A.4x+x=5x B.(x+2)2=x2+4x+4
14
C.x2+x+1=x(x+1)+1 D.x2﹣3x=x(x﹣3)
15
5.下列图形中,是轴对称图形但不是中心对称图形的是()
16
A.等边三角形B.正六边形C.正方形D.圆
17
6.不等式组的解为()
1
18
A.x≥5 B.x≤﹣1 C.﹣1≤x≤5 D.x≥5或x≤﹣1
19
7.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=35°,则20
∠2等于()
21
22
A.25° B.35° C.40°
23
D.45°
24
25
8.关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则()A.m=4 B.m=2
26
27
C.m=2或m=﹣2 D.m=﹣2
9.在△ABC中,DE∥BC,AE:EC=2:3,则S△ADE:S四边形BCED的值为()
28
29
30
A.4:9 B.4:21 C.4:25 D.4:5
10.如图,在△ABC中,∠C=90°,AC=BC=3cm,动点P从点A 出发,以cm/s
31
32
的速度沿AB方向运动到点B,动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB 33
方向运动到点B.设△APQ的面积为y(cm2),运动时间为x(s),则下列图象能反映y 34
与x之间关系的是()
35
A .
B .
C .
2
3
D .
36 二、填空题(本大题共6小题,每小题4分,共24分)请把下列各题正确答案填写37 在答卷对应横线上.
38 11.若
2
1-+x x 有意义,则x 的取值范围为 .
39
12.同时抛掷两枚硬币,恰好均为正面向上的概率是 . 40 13.如图,⊙O 的弦AC 与半径OB 交于点D ,BC ∥OA ,AO =
41 AD ,
42 则∠C 的度数为 °.
43 14.已知22(2)0x y y -+-=,则y x = .
44 15.如图,Rt △ABC 中,∠ACB =90°,AC =BC =2,45 在以AB 的中点O 为坐标原点、AB 所在直线为x 轴建立的46 平面直角坐标系中,将△ABC 绕点B 顺时针旋转,使点A
47 旋转至y 轴正半轴上的A ′处,则图中阴影部分面积为__________ .
48 16.将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第10个图形49 有 个五角星.
50
51
52
三、解答题(本大题共3小题,每小题6分,共18分)解答须写出文字说明、证明
53
过程和演算步骤.
54
17.计算:+(π﹣2019)0﹣(﹣)﹣2﹣4cos30°.
55
56
18.先化简,再求值:÷(﹣),其中a =+2.
57
58
59
19.如图,△ABC中,AB=AC=10,BC=16.点D
60
在边BC上,且点D到边AB和边AC的距离相等.(1)用
61
直尺和圆规作出点D(不写作法,保留作图痕迹,
62
在图上标注出点D);
63
(2)求点D到边AB的距离.
64
65
66
四、解答题(本大题共3小题,每小题7分,共21分)解答须作出文字说明、证明过程
和演算步骤.
67
68
20.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C 69
恰好落在边AD上的点G处,连接EG.
70
(1)△GEF是等腰三角形吗?请说明理由;
71
(2)若CD=4,GD=8,求HF的长度.
4
5
72 73
74 21. 某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动75 项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的76
77 (1)求本次被调查的学生人数; 78 (2)补全条形统计图;
79 (3)该校共有3000名学生,请估计全校最喜爱 80 篮球的人数比最喜爱足球的人数多多少?.
81 82 83 22.某文具店购进A ,B 两种钢笔,若购进A 种钢笔2支,B 种钢笔3支,共需9084 元;购进A 种钢笔3支,B 种钢笔5支,共需145元. 85 (1)求该文具店购进A 、B 两种钢笔每支各多少元?
86 (2)经统计,B 种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将87 少卖12支,求该文具店B 种钢笔销售单价定为多少元时,每月获利最大?最大利润88 是多少元?
89 90 91 92 93 94
某校各校运动项目最喜爱
的人数扇形统计图
某校各校运动项目最喜爱
的人数条形统计图
跑步
篮球
跳绳25%足球
30%
95
五、解答题(本大题共有3小题,每小题9分,共27分) 解答须作出文字说明、证明
96
过程和演算步骤.
97
23.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),
98
C(0,3),与x轴交于另一点B,抛物线的顶点为D.
99
(1)求此二次函数解析式;
100
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
101
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?
102
若存在,求出符合条件的点P的坐标;若不存在,请说明理由.
103
104
105
24.如图,AB是⊙O的直径,点C在AB的延长线上,
CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
106
107
(1)求证:∠BDC=∠A;
108
(2)若CE=2,DE=2,求AD的长.
109
(3)在(2)的条件下,求弧BD的长.
110
25.如图①,在矩形ABCD中,AB =,BC=3,在BC边上取两点E、F(点E在点111
F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PE、PF分别交直线112
AC于点G、H.
113
114
(1)求△PEF的边长;
6
(2)若△PEF的边EF在线段CB上移动,试猜想:PH与BE有何数量关系?并115
116
证明你猜想的结论;
117
(3)若△PEF的边EF在射线CB上移动(分别如图②和图③所示,CF>1,P不118
与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.
119
120
7。

相关文档
最新文档