高分子药物缓释材料

合集下载

高分子材料对药物缓释的影响及其机理探究

高分子材料对药物缓释的影响及其机理探究

高分子材料对药物缓释的影响及其机理探究近年来,随着医学和化学科学的不断发展,高分子材料逐渐成为医药领域中的重要材料,被广泛应用于药物缓释系统中。

高分子材料对药物缓释的影响及其机理探究已成为研究的热点。

本文将从两个方面探讨高分子材料对药物缓释的影响及其机理。

一、高分子材料的类型对药物缓释的影响高分子材料的种类非常多,从化学结构上来讲,可以分为天然高分子和合成高分子两类。

天然高分子包括淀粉、纤维素、明胶等,合成高分子包括聚乙烯醇、聚乳酸、聚丙烯酸等。

这些高分子材料在药物缓释中,对药物释放的影响有所不同。

1. 天然高分子天然高分子对药物缓释影响较小,与药物的许多物理化学特性相似,如分子量、溶解度、酸碱度等。

但使用天然高分子作为缓释材料,能够带来一些优势,如天然高分子不具有毒性,可以避免毒性较强的合成高分子可能带来的安全隐患;此外,天然高分子可降解,可以降低药物在人体内停留的时间。

2. 合成高分子不同种类的合成高分子材料对药物缓释的影响也不同。

聚乙烯醇(PVA)和聚乳酸(PLA)是常用的药物缓释材料。

PVA的亲水性强,可以吸附水分,与PVA载药制剂中的活性成分结合形成水溶性复合物。

因此,PVA对水溶性药物的缓释效果较好。

而PLA在可逆热处理下可以制成具有可逆缓释效果的载药材料,可以根据不同药物的需要调节合成条件和制备方法,将药物缓慢释放。

二、高分子材料的机理高分子材料对药物缓释机理主要有三种情况:1. 静电力缓释有些高分子材料表面对带电药物具有亲和力,通过静电作用吸附药物分子,从而实现缓释。

这种方式适用于药物分子与高分子载体表面反应力较小的情况。

2. 包覆作用高分子材料能够包覆药物分子,使药物分子被高分子材料包裹起来,防止药物分子的流失和归巢。

这种方式的优点是能够对药物分子进行保护,不会被外界环境污染,药物也不会逸散。

3. 壳中核释放高分子材料的这种缓释方式是自由基引发重合,也叫作壳中核释。

该方式适用于具有亲水性、疏水性的药物分子,其缓释机制是药物分子逐渐渗透到壳层内部,被包裹在高分子材料壳内,形成囊泡状态,从而实现药物的缓释。

生物医用高分子材料

生物医用高分子材料

生物医用高分子材料生物医用高分子材料是一类应用于生物医学领域的高分子材料,具有优良的生物相容性、生物降解性和生物活性等特点。

这类材料旨在解决生物医学领域中的各种问题,如组织工程、药物缓释、生物传感等。

以下将介绍几种常见的生物医用高分子材料及其应用。

首先是生物可降解高分子材料,如聚乳酸(PLA)和聚乳酸-羟基磷灰石(PLGA)。

这类材料能够在体内逐渐降解,并最终被代谢排出体外,具有较好的生物相容性。

它们主要应用于组织修复与再生领域,如制作支架用于骨骼修复、软组织修复和脑部损伤修复等。

其次是生物活性高分子材料,如天然高分子材料胶原蛋白和壳聚糖。

这些材料本身具有一定的生物活性,能够促进细胞黏附、分化和增殖。

它们常用于组织工程中的细胞载体和生物传感器的制备,如用胶原蛋白包裹干细胞用于皮肤再生、用壳聚糖包裹药物用于药物缓释等。

另外一类是生物仿生高分子材料,如聚乙二醇(PEG)。

这类材料模拟生物体内的液体环境,具有良好的生物相容性和抗生物粘附能力。

它们主要应用于制备人工器官、药物控释系统和生物分离材料等,如用PEG涂层改善人工心脏瓣膜的生物相容性、用PEG修饰纳米材料用于靶向药物传递等。

此外,还有一种重要的生物医用高分子材料是羟基磷灰石(HA)。

羟基磷灰石具有良好的生物相容性和生物活性,能够与骨组织有很好的结合性。

它常用于骨修复和牙科领域,如制备骨替代材料、牙齿填充材料和人工牙齿的固定材料等。

总之,生物医用高分子材料在生物医学领域中具有广泛的应用前景。

它们的出现为治疗和修复各种组织和器官提供了新的手段,将对人类健康产生深远影响。

然而,随着研究的深入,还需要克服一些挑战,如材料的稳定性、生物相容性和生物降解速度等问题,以进一步提高材料的应用性能和安全性。

举例说明高分子材料在控释缓释制剂和靶向制剂中的应用

举例说明高分子材料在控释缓释制剂和靶向制剂中的应用

举例说明高分子材料在控释缓释制剂和靶向制剂中的应用高分子材料是一类具有高分子量、由重复单元组成的大分子化合物,具有较高的力学强度、化学稳定性和生物相容性。

高分子材料在控释缓释制剂和靶向制剂中有广泛的应用。

本文将从两个方面来举例说明高分子材料在这两种制剂中的应用。

控释缓释制剂是指能够延长药物在体内的滞留时间,并以持续的速率释放药物的制剂。

高分子材料在控释缓释制剂中起到了重要的作用。

一个典型的例子是聚乳酸-羟基乙酸共聚物(PLGA)微球制剂。

PLGA是一种可生物降解的高分子材料,在体内可以被分解为无害的二氧化碳和水,因此具有较高的生物相容性。

由于PLGA具有良好的可调控性和生物降解性,它被广泛用于制备控释缓释微球制剂。

将药物包裹在PLGA微球中,可以延缓药物的释放速率,达到控制药物释放的目的。

例如,伊维菌素是一种用于治疗结核病的抗生素,它在体内的半衰期较短,需要频繁的给药。

而将伊维菌素包裹在PLGA微球中,可以延长其释放时间,减少给药次数,提高疗效。

靶向制剂是指能够选择性地作用于特定的组织或细胞的制剂。

高分子材料在靶向制剂中的应用也有很多例子。

一个典型的例子是利用聚乙二醇(PEG)改善药物的靶向性。

PEG是一种具有良好生物相容性的高分子材料,可以改善药物的体外稳定性、溶解度和血管通透性。

将药物与PEG共价结合,可以增加药物在体内的半衰期,并且减少对正常细胞的毒性。

例如,靶向治疗肿瘤的制剂利用PEG修饰来提高溶解性,在体内药物释放后能够更容易进入肿瘤组织,减少对正常组织的损伤。

除了上述例子外,高分子材料在控释缓释制剂和靶向制剂中还有其他的应用。

例如,透明聚合物材料可以用于制备眼药物的角膜接触镜,实现长时间的缓慢释放。

还有一些专门用于药物递送的纳米粒子,例如聚丙烯酸纳米粒子可以用于改善口服药物的溶解性和生物利用度。

总之,高分子材料在控释缓释制剂和靶向制剂中有广泛的应用。

通过调控高分子材料的物理化学性质,可以实现药物的长时间释放和靶向性输送,提高药物的疗效并减少副作用。

药物缓释载体)

药物缓释载体)

结果:生物降解性合成高分子材料安全、可靠,有良好的生物相容性,成为药物缓释载体的首选材料;壳聚糖作为药物缓释载体在减少给药次数,降低药物毒副作用,提高药物疗效等方面具有重要作用;纳米纤维载体可明显增强药物缓释效果;纤维蛋白生物相容性好, 是良好的药物缓释载体。

壳聚糖:壳聚糖又称甲壳胺,化学名称为(1,4) -2-基-2-脱氧-β-D-葡萄糖,是自然界中存在的碱性多糖,它由蟹、虾壳中的甲壳素经脱乙酰化反应而得。

作为一种天然高分子多糖,壳聚糖由于其来源广泛,具有良好的生物降解性、生物相容性和无毒性等特性,而被广泛应用在医学、食品、化工、生物过程和环境监测等方面。

而且壳聚糖可与体内外各组织相互作用,自2000年以来,科学家已利用壳聚糖在药物缓释领域取得了积极进展,分别将其制成微球状、膜状、纤维状,使其成为药物缓释的一种重要载体,使之在酶学、细胞学、分子生物学、免疫学等方面有重大作用。

在免疫学方面,大家都知道喜树碱是一种良好的抗癌药物,能很好地抵抗乳腺癌、子宫癌、肺癌等,但由于喜树碱是一种不溶于水的药物,医学家们曾并不看好它作为抗癌药物的发展前景。

但科学家们将喜树碱制作成一种微滴却发挥了很好的抗作用。

如加拿大的Berrada等[11]将超纯的壳聚糖粉末加入到0.1 mol/的盐酸溶液中,然后将喜树碱粉末逐滴地滴入壳聚糖溶液中,辅之以其他方法,得到以壳聚糖为载体的喜树碱水凝胶,然后放入pH 7.4的磷酸缓冲溶液中,通过Hewlett Packard色析仪器分析得出结论,不到5%的喜树碱在第1天被释放出来,13%在前3 d被释放,而在30 d后80%的药物被释放到缓冲溶液中。

他们同时将该凝胶注射到小鼠的肿瘤中,也证明它能有效地抑制肿瘤的增长。

在抗氧化试剂中,儿茶酚虽是一种优良的药物,但当儿茶酚被暴露在人体小肠的碱性环境中时,它会迅速减少。

为了保护儿茶酚不在肠道的碱性环境中减少并提高其在人体血清中的浓度,Zhang等[12]利用壳聚糖作机体,与其他化学物质作用制成胶囊,儿茶酚在模拟的无酶作用的胃环境和肠环境中释放比例分别达到了15.19% 、25.51%、40.24%和37.97%。

缓释材料

缓释材料

三十六章缓释材料第一节缓释制剂与缓释材料缓释制剂义称延效制剂、长效制剂,足指用适当方法延长药物在人体中的吸收、分布、代谢、排泄过程,而达延长药效目的的制剂。

它足应临球治疗的要求,增加用药安全度和疗效,达到制剂应用方便的宗旨而提出的第二代剂型二延长吸收是药剂学采取的主要手段。

现今使用的大多数药物是以被动扩散机理而吸收的,药物吸收速度受控于药物在吸收部位的浓度。

若采用制剂学方法,在处方设计时加入影响药物从制剂中溶出和扩散的辅料,就可控制吸收部位的浓度而延缓吸收,能起这种作用的辅料均称作缓释材料(sustained releasc miatcrials)。

能起缓释作用的材料大多是高分子化台物:在处方中加入缓释材料,这是药剂学使制剂延效的重要手段之一。

其他的方法如控制药物粒了_大小、制成植入剂,制成微囊、包衣、乳化剂、制成与组织液不馄溶的分散系等制备工"艺和制备技术也可达到延效的目的。

第二节缓释材料延效的药剂学方法在进行延效制剂处方设计时,为达到理想的治疗效果,一般先据药物动力学原理,调整建释与缓释部分的剂量以及可能达到的血药浓度,从理论上解决给药次数与主药的剂量问题。

但要使药物按设计要求释效,还需以处方中缓释材料延效的药剂学原理为基础,以先进的制剂制备工艺为保证。

缓释材料延效的药剂学原理,主要足根据NogeseWhitney溶出速度方程和Fick第一扩散定律,借助缓释材料的特殊性质,改变影响溶出速度和扩散速度的因索,以达到延效的目的。

通常用缓释材料延效的药剂学方法有:一、作阻滞剂加入阻滞剂( retardanis)足一大类疏水性强的脂肪、蜡类高分子材料。

药物混悬或混溶在这类熔融材料中玲却后,被脂溶性材料包被,药物释放速度与脂肪的消化或水解难易有失,脂肪水解速度一般按单、双、三酯顺序而降低,因此,阻滞剂延滞了药物的扩散和溶出。

、这种延效制剂的制备较为简便,小加阻滞剂的作为速释部分,加阻滞剂的作为缓释部分,可做成缓释胶囊、缓释片剂。

缓释包衣材料及处方组成

缓释包衣材料及处方组成

一、缓释包衣材料用包衣技术制成的固体缓释和控释剂型是通过包衣膜来控制和调节剂型中药物在体内外的释放速率的,因此包衣材料的选择、包衣膜的组成在很大程度上决定了这种制剂的缓释和控释作用的成败。

虽然缓释包衣方面的研究报道很多,但最新美国药典(1995年23版)仅收载了3种具控释膜功能的包衣材料,即醋酸纤维素、乙基纤维素和甲基丙烯酸共聚物,由于这三种包衣膜材料最经受得住时间和气候规律变化的考验,几十年来一直受到普遍的关注和应用。

本节重点讨论这些包衣材料,同时也对其他有关材料及近年发展的新材料作简单介绍。

一、缓释包衣材料缓释包衣材料都是一些高分子聚合物,大多难溶于水或不溶于水,但水可穿透;无毒、不受胃肠道内液体的干扰,具有良好的成膜性能和机械性能。

(一)醋酸纤维素本品是用棉花或木纤维以少量硫酸为催化剂,与冰醋酸和醋酸混合液经部分或全部乙酰化而制得。

醋酸纤维素(Cellulose acetate,CA)结构式为:含乙酰基为29.0%~44.8%(g/g),每个结构单元约有1.5~3.0个羟基被乙酰化。

乙酰基含量下降,亲水性增加,水的渗透性增加。

因分子中所含结合酸量的不同,有一醋酸纤维素、二醋酸纤维素和三醋酸纤维素之分。

结合酸量的多少,会影响形成包衣膜的释药性能,例如用醋酸纤维素包衣制成的异烟肼控释片,当醋酸纤维素的结合酸为53%时,可制得理想恒速释药的控释片,当结合酸为57%时则释药速率大为降低。

一醋酸纤维素和二醋酸纤维素常供药用,缓释和控释包衣材料则多用后者。

二醋酸纤维素的分子式为[C6H7O2(OCOCH2)(OH)X-3]n,式中n为200~400;x为2.28~2.49。

缓释和控释制剂所用的二醋酸纤维素的平均相对分子质量(M av)约为50000,为白色疏松小粒、条状物或片状粉末,无毒,不溶于水、乙醇、酸、碱溶液;溶于丙酮、氯仿、醋酸甲酯和二氧六环等有机溶剂,溶液具好的成膜性能。

与用同样方法制成的乙基纤维素膜相比更牢固和坚韧。

释材料的种类及性能影响因素

释材料的种类及性能影响因素

缓释材料的种类按照包埋材料的类型,缓释材料可以分为无机和有机两大类,其中有机类缓释材料目前应用最多的缓释材料多为高分子缓释材料。

根据材料的来源不同,高分子缓释材料可分为天然高分子缓释材料和合成高分子缓释材料。

天然高分子材料主要包括纤维素类、多糖类(如壳聚糖、环糊精)、蛋白质类(如胶原蛋白、丝素蛋白等);合成高分子主要有聚乳酸、聚酯、聚酸酐及氨基酸类聚合物等。

无机缓释材料无机缓释材料主要包括硫、石蜡、松香等一些无机矿物质。

美国是最先研发以硫为包衣材料的国家,在上世纪60年代,由于其疏水性低,影响缓释效果,再次涂覆石蜡或沥青后,增强了其疏水性,改善缓释性能,经过多年的发展,己形成一定的规模。

中科院于19世纪70年代,研制出一种混合涂层材料,这种涂层材料主要由白蜡,沥青,磷酸钙镁混合而成,该材料具有良好的持续释放性能并形成生产规模。

郝世雄分别以碳酸氢钙-聚乙烯醇,石蜡-松香为包衣材料,制备了对土壤无污染且多营养的无机包衣肥料。

结果表明,石蜡-松香体系的包衣肥料综合性能优于碳酸氢钙-聚乙烯醇体系,石蜡和天然松香在包衣膜层中的用量配比对缓释性能有重要影响,当其配比为80:20时,包衣肥料缓释效果最好。

卢玉东等以松香为包膜原料,溶剂喷涂法制备了包衣肥料,当松香包衣量为5%以上时,缓释效果显著,工艺简便,可制得包覆量大的包衣肥料。

曹振恒等采用不同方法测试了以松香甘油酯,石蜡为原料制备的无机物包衣肥料,探索出了最佳包膜工艺技术,且包衣材料具有一定的生物降解性。

张雁等以凹凸棒石为原料,添加复合材料苯丙乳液、石蜡,获得了苯丙乳液-石蜡-凹凸棒石复合包衣肥料,同时发现,各个包衣材料的用量,工艺干燥温度,干燥时间都对缓释性能有影响。

当干燥温度为60℃,干燥时间为120min,苯丙乳液、石蜡、凹凸棒石用量分别为50-60ml、20g、20g,是最佳工艺条件和物料配比。

虽然这些无机包衣材料具有一定的缓释性能,但是与有机物包衣材料相比,仍然还有很大差距。

缓释包衣材料及处方组成

缓释包衣材料及处方组成

缓释包⾐材料及处⽅组成⼀、缓释包⾐材料⽤包⾐技术制成的固体缓释和控释剂型是通过包⾐膜来控制和调节剂型中药物在体内外的释放速率的,因此包⾐材料的选择、包⾐膜的组成在很⼤程度上决定了这种制剂的缓释和控释作⽤的成败。

虽然缓释包⾐⽅⾯的研究报道很多,但最新美国药典(1995年23版)仅收载了3种具控释膜功能的包⾐材料,即醋酸纤维素、⼄基纤维素和甲基丙烯酸共聚物,由于这三种包⾐膜材料最经受得住时间和⽓候规律变化的考验,⼏⼗年来⼀直受到普遍的关注和应⽤。

本节重点讨论这些包⾐材料,同时也对其他有关材料及近年发展的新材料作简单介绍。

⼀、缓释包⾐材料缓释包⾐材料都是⼀些⾼分⼦聚合物,⼤多难溶于⽔或不溶于⽔,但⽔可穿透;⽆毒、不受胃肠道内液体的⼲扰,具有良好的成膜性能和机械性能。

(⼀)醋酸纤维素本品是⽤棉花或⽊纤维以少量硫酸为催化剂,与冰醋酸和醋酸混合液经部分或全部⼄酰化⽽制得。

醋酸纤维素(Cellulose acetate,CA)结构式为:含⼄酰基为29.0%~44.8%(g/g),每个结构单元约有1.5~3.0个羟基被⼄酰化。

⼄酰基含量下降,亲⽔性增加,⽔的渗透性增加。

因分⼦中所含结合酸量的不同,有⼀醋酸纤维素、⼆醋酸纤维素和三醋酸纤维素之分。

结合酸量的多少,会影响形成包⾐膜的释药性能,例如⽤醋酸纤维素包⾐制成的异烟肼控释⽚,当醋酸纤维素的结合酸为53%时,可制得理想恒速释药的控释⽚,当结合酸为57%时则释药速率⼤为降低。

⼀醋酸纤维素和⼆醋酸纤维素常供药⽤,缓释和控释包⾐材料则多⽤后者。

⼆醋酸纤维素的分⼦式为[C6H7O2(OCOCH2)(OH)X-3]n,式中n为200~400;x为2.28~2.49。

缓释和控释制剂所⽤的⼆醋酸纤维素的平均相对分⼦质量(M av)约为50000,为⽩⾊疏松⼩粒、条状物或⽚状粉末,⽆毒,不溶于⽔、⼄醇、酸、碱溶液;溶于丙酮、氯仿、醋酸甲酯和⼆氧六环等有机溶剂,溶液具好的成膜性能。

药用高分子材料——纳米药物载体技术

药用高分子材料——纳米药物载体技术

纳米药物载体技术用纳米粒子作为药物载体可实现靶向输送、缓释给药的目的, 这是由于小粒子可以进入很多大粒子难以进入的人体器官组织, 如小于50nm 的粒子就能穿过肝脏内皮或通过淋巴传送到脾和骨髓, 也可能到达肿瘤组织。

另外纳米粒子能越过许多生物屏障到达病灶部位, 如透过血脑屏障( BBB) 把药物送到脑部, 通过口服给药可使药物在淋巴结中富集等。

具有生物活性的大分子药物( 如多肽、蛋白类药物) 很难越过生物屏障, 用纳米粒子作为载体可克服这一困难, 并提高其在体内输送过程中的稳定性。

用纳米粒子实现基因非病毒转染, 是输送基因药物的有效途径。

药物既可以通过物理包埋也可以通过化学键合的方式结合到聚合物纳米粒子中。

载有药物的聚合物纳米粒子通常以胶体分散体的形式通过口服、经皮、皮下及肌肉注射、动脉注射、静脉点滴和体腔黏膜吸附等给药方式进入人体。

制备聚合物纳米粒子的方法主要有以下几种: ( 1) 单体聚合形成聚合物纳米粒子; ( 2) 聚合物后分散形成纳米粒子; ( 3) 结构规整的两亲性聚合物在水介质中自组装形成纳米粒子。

1 单体聚合制备的聚合物纳米粒子聚氰基丙烯酸烷基酯( PACA) 在人体内极易生物降解, 且对许多组织具有生物相容性。

制备聚氰基丙烯酸烷基酯纳米粒子采用的是阴离子引发的乳液聚合方法, 通常以OH-为引发剂, 反应一般在酸性水介质中进行, 常用的乳化剂有葡聚糖、乙二醇与丙二醇的嵌段共聚物和聚山梨酸酯等, 具体制备过程见图1。

当反应介质pH 值偏高时, OH-浓度大, 反应速度快, 形成的PACA 分子量低, 以此作为给药载体材料进入人体后, 降解速度太快, 不利于药物缓释。

因此聚合反应介质的pH 值通常控制在1.0~ 3.5 范围内。

图1 聚氰基丙烯酸烷基酯纳米粒子的制备过程PACA 纳米粒子载药的方式有两种: 一是药物与单体一起加入, 药物在聚合反应过程中被包埋在粒子内; 二是聚合反应完成后, 药物通过吸附进入粒子内部。

药物缓释载体材料类型及其临床应用

药物缓释载体材料类型及其临床应用

药物缓释载体材料类型及其临床应用随着医学技术的发展,人们对于药物治疗的要求越来越高。

传统的药物治疗方式存在着一定的局限性,如药物的剂量难以精确控制、药物的代谢和排泄速度难以预测等。

为了解决这些问题,药物缓释技术应运而生。

药物缓释技术可以使药物在体内逐渐释放,从而达到更好的治疗效果。

药物缓释技术的核心就是药物缓释载体材料。

本文将介绍药物缓释载体材料的类型及其临床应用。

一、天然高分子材料天然高分子材料是一类来源于动植物的天然材料,如明胶、海藻酸、羟丙基甲基纤维素等。

这类材料具有良好的生物相容性和生物可降解性,能够有效地缓释药物。

例如,明胶作为一种天然高分子材料,可以制备成微球或凝胶形式,用于缓释肝素、阿霉素等药物,临床应用广泛。

二、合成高分子材料合成高分子材料是一类人工合成的高分子材料,如聚乳酸、聚己内酯、聚乙烯醇等。

这类材料具有良好的可控性和可调性,能够根据药物的特性进行设计和调整。

例如,聚乳酸是一种可生物降解的合成高分子材料,可以用于缓释阿霉素、奥美拉唑等药物。

三、无机材料无机材料是一类来源于矿物和人工合成的无机材料,如硅胶、氧化铝、羟基磷灰石等。

这类材料具有良好的生物相容性和生物可降解性,能够有效地缓释药物。

例如,硅胶是一种常用的无机材料,可以制备成微球或凝胶形式,用于缓释利福平、阿霉素等药物,临床应用广泛。

四、纳米材料纳米材料是一种尺寸在纳米级别的材料,如纳米金、纳米银、纳米氧化锌等。

这类材料具有良好的生物相容性和生物可降解性,能够有效地缓释药物。

例如,纳米氧化锌可以制备成纳米粒子形式,用于缓释阿霉素、多西环素等药物,临床应用广泛。

综上所述,药物缓释载体材料的类型多种多样,每种材料都具有其独特的优势和适用范围。

在临床应用中,医生可以根据药物的特性和患者的情况选择适合的药物缓释载体材料,以达到更好的治疗效果。

药物缓释用生物降解性高分子载体材料的研究

药物缓释用生物降解性高分子载体材料的研究

物及 昆 虫 中 的 甲壳 素 脱 乙酰 化 产 物 , 降解 产 物 其 无毒 , 能 被生 物 体 完全 吸 收 , 可 以抗 菌 、 且 还 抗酸 、 抗凝血 、 抗溃 疡 , 可阻 止或 减 弱药 物在 胃 中的刺 痛 作用 , 制 癌细 胞 转 移等 。 抑 Acru[首 次 以壳 聚糖 作 为 缓 释 载体 , 用 atr ] 。 利 直接 快 速压 片 法 和湿 颗粒 浸 润法 制备 了双氯 止 痛 缓 释 片 , 果 表 明 , 普 通 片 的药 物 溶 出速 度 相 结 与 比, 两 种壳 聚 糖 缓 释 片有 使 此 药物 缓 慢 溶 出 的 这 作 用 , 壳 聚糖 含 量越 高 , 释作 用越 显 著 。发 展 且 缓
忽低 , 易 引起 毒 副 作 用 , 且 利 用 率 低 , 了提 容 并 为 高用 药 的安 全性 和 高效性 , 免有 毒 药 物 ( 避 如许 多 抗肿 瘤药 物) 正常 细胞 的伤 害 , 物 的控 制 释放 对 药
成 了 目 国内外药剂领域的一个重要课题[ 。而 前 1 ]
药用 高分 子 材料 是 药 物 体 系 的 重 要 组 成 部 分 , 目
前 也 逐渐 被 应用 于药 物控 制 释放 体 系 。药 物缓 释
就 是将 小 分子 药物 与 高分子 载 体 以物 理 或化 学 方 法 结 合 , 体 内通 过 扩散 、 透 等控 制 方式 , 小 在 渗 将
分 子药 物 以适 当的 浓 度持 续 地 释 放 出来 , 而 达 从
到 充 分发 挥药 物功 效 的 目的 。 作 为药物 释放载体 的高 分子 材 料 , 需要 具 有生
行 了展 望 。
关 键 词 : 物 降解 性 ; 合 物 ; 释 材 料 ; 备 方 法 生 聚 缓 制 中 图分 类 号 : 6 . 4 TQ4 0 3 文献标识 码 : A 文 章 编 号 :0 53 7 ( 0 8 0 -0 30 1 0 —1 4 2 0 ) 40 6 -4

药用高分子材料

药用高分子材料

药用高分子材料药用高分子材料是一类应用于医药领域的特殊高分子材料。

它们具有良好的生物相容性、可控释放性和生物可降解性等特点,在医疗器械、药物传递系统和组织工程等方面有着广泛的应用。

以下将介绍一些常见的药用高分子材料及其应用。

1. 聚乳酸(PLA)和聚乳酸-羟基乙酸共聚物(PLGA):聚乳酸和PLGA是最常用的药用高分子材料之一。

它们具有良好的生物相容性和生物降解性,可用于制备缝合线、药物载体和组织工程支架等。

此外,由于它们的可良好可控释放性,它们也被广泛应用于药物缓释系统,如微球、纳米颗粒和纳米纤维等。

2.玻尿酸(HA)和聚乙二醇(PEG):玻尿酸是一种天然多糖,具有良好的生物相容性和生物活性。

它可用于制备软骨修复材料、皮肤填充剂和药物传递系统等。

聚乙二醇是一种具有良好生物相容性的合成高分子材料,可用于改善药物的稳定性、增加其溶解度,并延长药物的半衰期。

3.聚酯和聚酰胺:聚酯和聚酰胺是常用的生物降解高分子材料。

它们可用于制备缝线、填充剂和组织工程支架等,在骨科、牙科和整形外科等领域得到广泛应用。

此外,它们还可以通过改变化学结构和物理性质来调控材料的生物可降解性和机械性能,以适应不同的医疗需求。

4.明胶和胶原蛋白:明胶和胶原蛋白是一种具有良好生物相容性和生物活性的天然高分子材料。

它们可用于制备组织工程支架、药物载体和伤口愈合材料等。

此外,由于其结构与人体组织相似,它们在医学成像和细胞培养等方面也有着重要的应用。

除了以上几种常见的药用高分子材料外,还有许多其他类型的药用高分子材料被用于特定的医疗应用,如聚己内酯(PCL)、聚碳酸酯(PC)和聚乳酸-联谷氨酸共聚物(PLLA-Glu)等。

随着科技的不断发展,药用高分子材料还将有更广阔的应用前景,并为医学领域的进步做出贡献。

实验七缓释片的制备

实验七缓释片的制备

18目筛
湿颗粒 50~60℃干燥
干颗粒 过16目筛 整粒
+硬脂酸镁 压片
3、释放度实验 (1)制备标准曲线
P33 数据:
茶碱熔蚀性骨架片
浓度 (ug/ml)
0.852
1.704
3.408
8.520
12.780
17.040
吸光度
0.059
0.102
0.180
0.459
0.684
0.902
吸光度(A)
四、注意事项
1、本实验茶碱缓释片中HPMC用量增加时,可使片剂遇水后形 成凝胶层的速率加快、厚度增加,从而导致水份向片芯渗透速 率减小,以致片剂骨架溶蚀减缓、茶碱释放速率减慢;若片中 水溶性小分子乳糖用量增加,则在一定程度上可以促使水份渗 入片芯,从而使片剂溶蚀加快,进而加快释放速率。因而,茶 碱缓释片可通过HPMC、乳糖用量的改变来调节药物的释放速 率,直至达到要求为止。
三、实验药品和器材 略
四、实验内容及步骤:
1、茶碱溶蚀性骨架缓释片的制备
(1)处方及分析
茶碱
10 g
硬脂醇
1.0 g
羟丙甲纤维素 80%乙醇
0.1 g 约3 ml
硬脂酸镁
(2)制备方法
0.23 g
主药 骨架材料
制成胶浆作粘合剂 润滑剂
熔融硬脂醇 + 茶碱
冷却、混匀 + HPMC胶液 软材 过18目筛 湿颗粒
36-40 ℃干燥 干颗粒 过16目筛 整粒 +硬脂酸镁 压片
茶碱熔蚀性骨架片
2、茶碱亲水凝胶骨架缓释片的制备
(1)处方及分析
茶碱
10 g
乳糖
5.0 g
主药 骨架材料

缓释材料

缓释材料

三十六章缓释材料第一节缓释制剂与缓释材料缓释制剂义称延效制剂、长效制剂,足指用适当方法延长药物在人体中的吸收、分布、代谢、排泄过程,而达延长药效目的的制剂。

它足应临球治疗的要求,增加用药安全度和疗效,达到制剂应用方便的宗旨而提出的第二代剂型二延长吸收是药剂学采取的主要手段。

现今使用的大多数药物是以被动扩散机理而吸收的,药物吸收速度受控于药物在吸收部位的浓度。

若采用制剂学方法,在处方设计时加入影响药物从制剂中溶出和扩散的辅料,就可控制吸收部位的浓度而延缓吸收,能起这种作用的辅料均称作缓释材料(sustained releasc miatcrials)。

能起缓释作用的材料大多是高分子化台物:在处方中加入缓释材料,这是药剂学使制剂延效的重要手段之一。

其他的方法如控制药物粒了_大小、制成植入剂,制成微囊、包衣、乳化剂、制成与组织液不馄溶的分散系等制备工"艺和制备技术也可达到延效的目的。

第二节缓释材料延效的药剂学方法在进行延效制剂处方设计时,为达到理想的治疗效果,一般先据药物动力学原理,调整建释与缓释部分的剂量以及可能达到的血药浓度,从理论上解决给药次数与主药的剂量问题。

但要使药物按设计要求释效,还需以处方中缓释材料延效的药剂学原理为基础,以先进的制剂制备工艺为保证。

缓释材料延效的药剂学原理,主要足根据NogeseWhitney溶出速度方程和Fick第一扩散定律,借助缓释材料的特殊性质,改变影响溶出速度和扩散速度的因索,以达到延效的目的。

通常用缓释材料延效的药剂学方法有:一、作阻滞剂加入阻滞剂( retardanis)足一大类疏水性强的脂肪、蜡类高分子材料。

药物混悬或混溶在这类熔融材料中玲却后,被脂溶性材料包被,药物释放速度与脂肪的消化或水解难易有失,脂肪水解速度一般按单、双、三酯顺序而降低,因此,阻滞剂延滞了药物的扩散和溶出。

、这种延效制剂的制备较为简便,小加阻滞剂的作为速释部分,加阻滞剂的作为缓释部分,可做成缓释胶囊、缓释片剂。

凝胶骨架缓释法的原理

凝胶骨架缓释法的原理

凝胶骨架缓释法的原理
凝胶骨架缓释法是一种常见的药物缓释技术,其原理主要是利用凝胶骨架的特殊结构,将药物包含在凝胶骨架内部,通过控制凝胶骨架的溶解速度和药物的扩散速率来实现药物的缓慢释放。

具体来说,凝胶骨架通常由水溶性高分子材料制成,如明胶、羟丙基甲基纤维素等。

这些高分子材料可以形成网络结构,使药物分子被包裹在其中,形成类似于海绵的结构。

当药物被释放时,凝胶骨架会逐渐溶解,药物分子也会逐渐从凝胶骨架中扩散出来。

凝胶骨架缓释法的优点是可以控制药物的释放速率,使药物在一定时间内持续地释放,从而增强药效,减少剂量和频率,减轻药物不良反应。

此外,凝胶骨架缓释法适用于各种药物类型,包括小分子化合物、蛋白质、多肽等。

总之,凝胶骨架缓释法是一种有效的药物缓释技术,可以提高药物疗效和减少药物副作用。

其应用前景广阔,值得进一步研究和开发。

- 1 -。

药物缓释材料

药物缓释材料

又称药物控释体系。

以一定材料作载体,使药物按设计的剂量,在要求的时间范围内,以一定的速度在体内缓慢释放,达到对疾病更有效治疗目的的给药制剂。

用药物缓释系统施药的优点在于:①避免血浆中药物浓度随进药时间和病人摄入、吸收和排除药物的能力而受影响,可以恒定速率释放,或通过响应环境变化(磁场、电场、pH值、血糖等)以脉冲方式释药,保持血浆中药物浓度不变;②实现定位控释,尤其对毒性大的药物,利用生理活性、亲和或外部物理因素(如磁场等)导向,使药物集中于病变部位或器官释放,减少对正常组织和器官的损伤,又提高施药效率;③实现药物按需控释,如对糖尿病治疗的胰岛素控释,保证在血液中葡萄糖浓度超过一定阈值时释放胰岛素。

在葡萄糖浓度恢复正常时就停止释放; ④对生物大分子药物进行控释。

多肽等多种大分子药物是治疗疑难病症、健全机能和延长寿命的重要药物,但这类药物在体内的半衰期非常短(几秒至几小时),不宜口服、皮下注射和滴注,只能采用药物缓释系统。

Drug Controlled Release Material药物缓释材料关键词:药物缓释材料,药物载体材料,膨润土,聚合物Key word:Drug Controlled Release Material,drug delivery matierial,Bentonite,polymer文献综述:1.高分子药物缓释材料:近年来在生物医用高分子领域的研究中,高分子药物缓释材料是最热门的研究课题之一, 同时它也是生物医学工程发展的一个新领域。

药物的缓释是将药物活性分子与高分子载体结合(或复合、包囊) 后, 投施到生物活性体内通过扩散、渗透等控制方式, 药物活性分子再以适当的浓度和持续时间释放出来, 从而达到充分发挥药物疗效的目的[1]。

药物缓释的特点是通过对药物医疗剂量的有效控制, 能够降低药物的毒副作用, 减少抗药性, 提高药物的稳定性和有效利用率[2]。

还可以实现药物的靶向输送, 减少服药次数, 减轻患者的痛苦, 并能节省人力、物力和财力等。

微球,微囊,缓释,控释资料.

微球,微囊,缓释,控释资料.
药物控释的概念
高分子药物控制释放体系不 仅能提高药效,简化给药方式 ,大大降低药物的毒副作用, 而且使药物在预定的部位,按 设计的剂量,在需要的时间范 围内,以一定的速度在体内缓 慢释放,从而达到治疗某种疾 病的目的。
控释制剂材料
1.在天然高分子材料 如:胶原、海藻酸钠以及淀粉与纤维素衍生物等
2.人工合成高分子材料 如:主要有聚酯、聚醚、聚酰胺等
缓释、控释、微型包囊、微球载体
目录
缓释制剂及材料 控释制剂及材料 微球制剂及材料 微囊制剂及材料
1
缓释制剂及材料
缓释材料的要求
就是将小分子药物与高分子载体以物理或化学方法结 合,在体内通过扩散、渗透等控制方式,将小分子药 物以适当的浓度持续地释放出来,从而达到充分发挥 药物功效的目的。
生物相容性和生物降解性,也就是能在体内降解为小分子 化合物,从而被机体代谢、吸收或排泄,对人体无毒副作 用,并且降解过程发生的时机要合适。
3
微球制剂及材料
聚合物微球
20世纪80年代初,Okubo提出 “粒子设计”的概念。
聚合物微球是指具有圆球形状 且粒径在数十纳米到数百微米 尺度范围内的聚合物粒子。
中空型微球
中空型聚合物微球是内部含有一个或多个 空腔的特殊微球材料。
(1) 其外部的聚合物壳层与内部的空腔折光 指数有所差异,因此具备良好的光散射性 能,可用作优质的聚合物系遮盖剂。 (2) 微球内部的空腔可以封装水、有机溶剂 等多种小分子化合物,以及其他功能性化 合物,因而可以对药物、香料等实现包埋 和控制性释放作用,达到缓释的效果。 (3) 另外,相比于完全实心的聚合物微球, 中空结构的微球密度低,可使材料实现轻 量化目的。
制剂分类:
1、骨架型控释制剂 2、膜控型 3、渗透泵型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档