圆柱体积教学设计方案
《圆柱的体积》教学设计6篇
《圆柱的体积》教学设计6篇《圆柱的体积》教学设计6篇《圆柱的体积》教学设计1 教材简析:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积,第十一册圆柱的体积公开课。
教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比拟找两个图形之间的关系,可推导出圆柱的体积计算公式。
教学目的:1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的才能4.借助实物演示,培养学生抽象、概括的思维才能。
教具:圆柱的体积公式演示教具,多媒体课件教学过程:一、情景引入1、出示圆柱形水杯。
〔1〕老师在杯子里面装满水,想一想,水杯里的水是什么形状的?〔2〕你能用以前学过的方法计算出这些水的体积吗?〔3〕讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
〔4〕说一说长方体体积的计算公式。
2、创设问题情景。
〔课件显示〕假如要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚刚那样的方法吗?刚刚的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。
〔出示课题:圆柱的体积〕〔设计意图:问题是思维的动力。
通过创设问题情景,可以引导学生运用已有的生活经历和旧知,积极考虑,去探究和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究气氛。
〕二、新课教学:设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,如今能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来讨论这个问题。
板书课题:圆柱的体积。
1.探究推导圆柱的体积计算公式。
圆柱的体积 教案【优秀3篇】
圆柱的体积教案【优秀3篇】圆柱的体积教案篇一课题圆柱的体积教学课时第5课时教学目标知识目标经历圆柱体积计算公式的推导过程,理解并掌握圆柱体积计算的方法,并能正确计算圆柱的体积。
技能目标能运用圆柱体积计算方法,解决有关的实际问题,发展学生的实践能力。
情感态度与价值观进一步丰富对圆柱的认识,提高空间观念。
教学重点圆柱体积计算教学难点1、圆柱体积计算方法的推导。
2、借助教具演示,弄清圆柱与长方体的关系。
课前准备圆柱体积公式推导教具教学过程与方法个性修改预习检测出示图片:师:同学们,你们知道什么叫物体的体积吗?这些图形中,哪些图形的体积你会计算呢?学生展开交流,明确体积的含义,复习有关长方体和正方体体积的计算公式。
自学探究1、探究例5:(1)猜一猜①圆柱的体积可能怎样计算?②计算圆柱的体积需要哪几个条件?在猜想交流活动中,学生很可能会借助长方体、正方体体积的计算方法,推断出圆柱的体积计算方法。
得出:圆柱的体积等于底面积乘高。
(2)演示教具①取出圆柱体模型②将圆柱切成两半③分别将两半均分成多个小块④将两半模型拼成一个近似的长方体(为什么是近似的长方体?怎样可以更接近长方体?)(3)归纳公式①拼成的长方体的体积与圆柱的体积有什么关系?②长方体的底面积与高分别与圆柱的底面积、高有什么关系?③长方体的体积等于什么?圆柱呢?学生回答,教师板书:圆柱的体积=长方体的体积=底面积高圆柱的体积=底面积高④如果用v表示圆柱的体积,s表示底面积,h表示高,那么圆柱的体积计算公司应该是怎样表示?板书:v=sh师生互动指导学生完成做一做1、先让学生说说题意,明确求圆柱的体积需要具备什么条件。
2、学生独立完成并反馈。
3、拓展延伸:如果知道圆柱底面的半径r和高h,圆柱的体积公式还可以怎样表示呢?①同桌互相交流,然后全班反馈。
②教师根据学生的回答,板书:v=pi;r2h双基练习指导学生完成练习三的第1~2题1、第1题:先让学生独立将表格填写完整,然后全班反馈。
圆柱的体积教案(优秀8篇)
圆柱的体积教案(优秀8篇)《圆柱的体积》教案篇一教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。
教学目标:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力3、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:圆柱体积的计算公式的推导。
教学过程:一、复习1、复习圆面积计算公式的推导方法及过程。
2、什么叫物体的体积?长方体、正方体的体积公式是什么?(长方体的体积=长×宽×高,正方体的体积=棱长3,长方体和正方体体积的统一公式=底面积×高)二、新课1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?(2)指名学生分别回答下面的问题:① 这道题已知什么?求什么?② 能不能根据公式直接计算?③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.①V=Sh50×2.1=105(立方厘米)答:它的体积是105立方厘米。
②2.1米=210厘米V=Sh50×210=10500(立方厘米)答:它的体积是10500立方厘米。
数学圆柱的体积教案优秀8篇
数学圆柱的体积教案优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!数学圆柱的体积教案优秀8篇作为一名老师,很有必要精心设计一份教案,教案是保证教学取得成功、提高教学质量的基本条件。
《圆柱的体积》教案(通用10篇)
《圆柱的体积》教案《圆柱的体积》教案(通用10篇)作为一无名无私奉献的教育工作者,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。
优秀的教案都具备一些什么特点呢?下面是小编整理的《圆柱的体积》教案,欢迎大家分享。
《圆柱的体积》教案篇1教学目标:1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:一、复习1、复习圆柱体积的推导过程长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。
也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。
利用这个底面积再求出另一个圆柱的体积。
三、布置作业完成一课三练的相关练习。
《圆柱的体积》教案篇2教学内容:人教版小学数学六年级下册《圆柱的体积》P25-26。
教学目标:1.经历探究和推导圆柱的体积公式的过程。
圆柱的体积教案优秀3篇
圆柱的体积教案优秀3篇《圆柱的体积》的教学设计篇一一、教学对象及学习内容特点分析:圆柱的体积是小学立体几何图形中的重要内容之一,是已学的长方体知识和将学的圆椎体知识的桥梁,其公式是长方体、正方体体积公式V=Sh的延续。
二、教学目的:学生能借助媒体提供的资源理解和掌握圆柱体积的计算公式。
学生能应用圆柱体积公式进行圆柱体积的计算。
学生能利用知识之间相互转化的思想探索解决新的问题。
三、教学基本指导思想、教学策略和方法:整个过程,充分利用计算机的优点,以小组学习的形式,发挥学生的主体作用,教师是学生学习过程的组织者和辅导者。
长方体的体积公式和平面图形的面积公式已学过,因此引导学生用转化的思想去学习,并创设情景,让学生自己发现问题,利用电脑、课本、实物提供的资源协商解决问题,使全体学生都成为学习的主人。
四、教学运用的主要手段、技术、材料:电脑网络、实物投影、圆柱体。
五、教学过程的设想和点评教师的教学行为学生的学习行为点评第一阶段:创设情景,设疑引趣。
教师故事引入:圆柱形状的转笔刀和浆糊笔迎着朝阳高高兴兴上学了,走着走着,它们就为哪个体积大而争论起来,转笔刀很自信地说:看我这么胖,肯定是我的体积大!浆糊笔很不服气地说:我比你高多了,一定是我的体积大!就这样你一言我一语,争论了很久还没个结果。
提问:小组讨论寻找解决这两个圆柱体积大小的方法。
1、学生小组讨论解决的方法。
2、小结归纳:解决圆柱的体积的方法:寻找一种方法,导出圆柱的体积公式,然后应用公式求圆柱的体积。
通过情景的创设,激发学生的学习热情,让他们发现问题,并通过讨论找出解决的方法,使学生从被动学习变为主动学习,学生对这节课的学习也从宏观上得到了解。
学生解决问题的方法有出人意料的回答,老师根据情况,给予恰当的鼓励性的评价,以激发学生的思维。
第二阶段:自主探究。
概括规律1、电脑提供学生探索资源:(1)平面图形(长方形、正方形、平行四边形、三角形、梯形、圆形)面积公式和立体图形(长方体、正方体)体积公式的导出过程。
《圆柱的体积》教案【优秀7篇】
《圆柱的体积》教案【优秀7篇】作为一名优秀的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。
来参考自己需要的教案吧!为您精心收集了7篇《《圆柱的体积》教案》,在大家参考的同时,也可以分享一下给您的好友哦。
《圆柱的体积》数学教案篇一教学目标:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:一、创设情境,生成问题1、什么是体积?(物体所占空间的大小叫做物体的体积。
)2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?二、探索交流,解决问题1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?(启发学生思考。
)2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:(1)圆柱切开后可以拼成一个什么形体?(长方体)(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方形的高就是圆柱的高,没有变化。
)4、推导圆柱体积公式小组讨论:怎样计算圆柱的体积?学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。
数学圆柱的体积教案(优秀9篇)
数学圆柱的体积教案(优秀9篇)《圆柱的体积》的教学设计篇一教学目标:1.结合实际,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式。
教学准点:掌握圆柱体积公式的推导过程。
教学设想:1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。
在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。
2.教学伊始我创设学具槽做圆柱学具这一睛境,让学生感知圆柱体积的概念,再通过让学生给这4个圆柱学具排序这一问题设疑,让学生明确学习目标。
3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。
所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。
第二步:体验转化的过程、第三步:验证转化的结果。
引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。
4.用字母表示公式已经是学生很熟知的几何知识,因此我为学生提供了与圆柱体积有关的字母,让他们写出相应的公式并在接下来的环节中引导学生发现公式与习题的联系,让他们对号入座。
学生根据不同的公式进行计算,给4个圆柱学具排序。
这样可以深入理解不同的条件、不同的方法,同样可以得到圆柱的体积,在对比算法中掌握新知。
5.体积和容积这两个概念在五年级已经学过,学生会说意义,但是通过了解,学生并不是真正理解圆柱的体积和容积。
所以我在第一次探究中安排了这样的环节,让学生在学习实践中区别圆柱的容积和体积。
从形象到抽象建立圆柱的体积概念,符合学生的认知规律。
第二次探究则是加入表面积这一刚刚学过的内容,让学生在为3道选择问题的练习中达到区别体积、容积、表面积的目的,从而实现学习运用的最佳状态。
《圆柱的体积》教案(15篇)
《圆柱的体积》教案(15篇)《圆柱的体积》教案1教学目标:1、使同学掌控圆柱体积公式,会用公式计算圆柱体积,能解决一些实际问题。
2、让同学经受观测、操作、争论等数学活动过程,理解圆柱体积公式的推导过程,引导同学探讨问题,体验转化和极限的思想。
3、在图形的变换中,培育同学的迁移技能、规律思维技能,并进一步进展其空间观念,领悟学习数学的方法,激发同学爱好,渗透事物是普遍联系的唯物辨证思想。
教学重点:圆柱体积计算公式的推导过程并能正确应用。
教学难点:借助教具演示,弄清圆柱与长方体的关系。
教具预备:多媒体课件、长方体、圆柱形容器假设干个;同学预备推导圆柱体积计算公式用学具。
教学设想:《圆柱的体积》是同学在有了圆柱、圆和长方体的相关的基础上进行教学的。
在知识与技能上,通过对圆柱的详细讨论,理解圆柱的体积公式的推导过程,会计算圆柱的体积,在方法的选择上,抓住新旧知识的联系,通过想象、课件演示、实践操作,从经受和体验中思索,培育同学科学的思维方法;贴近同学生活实际,创设情境,解决问题,表达数学知识从生活中来到生活去的理念,激发同学的学习爱好和对科学知识的求知欲,使同学乐于探究,擅长探究。
教学过程:一、创设情境,激疑引入水是生命之源!节省用水是我们每个公民应尽的义务。
前两天,老师家的水龙头出了问题,拧上阀门之后,还是不停的滴水,你们看,一刻钟就滴了这么多的水。
1、出示装了水的圆柱容器。
〔1〕启发思索:容器里面的水形成了什么外形?〔圆柱〕你能知道这些水的体积?〔2〕争论后汇报生1:用量筒或量杯径直量出它的体积;生2:用秤称出水的重量,然后进一步知道体积;生3:把它倒入长方体容器中,从里面量出长、宽和水面的高后再计算。
师:现在老师只有这些工具〔圆柱形容器,长方形容器,半圆形容器和其他不规章容器〕,你怎么办?生1:把水到入长方体容器中生2:我们学过了长方体的体积计算,只要量出长、宽、高就行[设计意图:通过本环节,给同学创设一个生活中的情境,提出问题,学习身边的数学,激起同学的学习爱好;依据需要渗透圆柱体〔新问题〕和长方体〔已知〕的知识联系为所学内容作了铺垫的预备]2、创设问题情境。
圆柱体积教案优秀6篇
圆柱体积教案优秀6篇《圆柱的体积》的教学设计篇一教学目标:1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历类比猜想――验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重、难点:掌握圆柱体积公式的推导过程。
教学流程:一、复习引入1、什么是体积?2、怎样计算长方体和正方体的体积?3、引入:这学期我们新学了两个立体图形,分别是?大家想不想知道圆柱的体积怎样计算?这就是我们今天这节课要研究的问题。
二、活动导学、精讲点拨1、观察比较,建立猜想引导学生观察例4的三个立体图形,提问:⑴ 三个立体图形的底面积和高都相等,它们的体积有什么关系?⑵ 长方体和正方体的体积一定相等吗?为什么?⑶ 猜一猜,圆柱的体积与长方体和正方体的体积相等吗?2、实验操作(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,那你能否再大胆猜一下,圆柱的体积计算公式会是什么呢?指名说。
(等于底面积乘高)。
大家都认为圆柱的体积=底面积×高,老师先写下来,这个公式对不对呢?(打上问号)这只是我们的猜想,我们还需要验证。
那用什么办法验证呢?请独立思考。
(手拿着圆柱,指着底面)老师提示一下:想一想圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成已经学过的立体图形呢?(2)出示底面被分成16等份的圆柱,谈话:老师这里有一个圆柱,底面被平均分成了16份,你能想办法把这个圆柱转化成已经学过的立体图形吗?(3)指名两位同学上台操作教具,让学生观察。
师:大家看,圆柱的底面被拼成了什么图形?(长方形);再看整个圆柱,它又被拼成了什么形状?(长方体)也就是说,把圆柱的底面平均分成16份,切开后能拼成一个近似的长方体。
(4)引导想像:如果把底面平均分的份数越来越多,结果会怎么样?(闭上眼睛,在头脑里想象。
圆柱体积教学设计优秀7篇
圆柱体积教学设计优秀7篇圆柱体积教学设计篇一教学目标:1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。
让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:圆柱的体积公式演示教具,圆柱的体积公式演示课件教学过程:一、教学回顾1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受1、猜测圆柱的体积和那些条件有关。
(电脑演示)2、.探究推导圆柱的体积计算公式。
小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
配合回答,演示课件,闪烁相应的部位,并板书相应的内容。
)③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的( )体。
这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。
《圆柱的体积》数学教学设计(优秀13篇)
《圆柱的体积》数学教学设计(优秀13篇)《圆柱的体积》教案篇一教学目标:1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
教学重点:理解和掌握圆柱的体积计算公式,会求圆柱的体积教学难点:理解圆柱体积计算公式的推导过程。
教学用具:圆柱体积演示教具。
教学过程:一、复述回顾,导入新课以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。
2题同桌互说。
说完后坐好。
)1、说一说:(1)什么叫体积?常用的体积单位有哪些?(2)长方体、正方体的体积怎样计算?如何用字母表示?长方体、正方体的体积=()×()用字母表示()2、求下面各圆的面积(只说出解题思路,不计算。
)(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
(二)揭示课题你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的`体积”。
(板书课题)二、设问导读请仔细阅读课本第8-9页的内容,完成下面问题(一)以小组合作完成1、2题。
1、猜一猜,圆柱的体积可能等于()×()2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。
这个长方形的面积就是圆的面积。
圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。
(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。
因为长方体的体积=()×(),所以圆柱的体积=()×()。
如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()[汇报交流,教师用教具演示讲解2题](二)独立完成3、4题。
圆柱体积教学设计(通用9篇)
圆柱体积教学设计(通用9篇)圆柱体积教学设计1一、教学目标【知识与技能】掌握圆柱的体积计算公式,能够正确计算圆柱的体积。
【过程与方法】通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。
【情感态度价值观】感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。
二、教学重难点【教学重点】圆柱的体积公式。
【教学难点】圆柱体积公式的推导过程。
三、教学过程(一)引入新课提问:长方体和正方体的体积公式是什么?预设:长方体的体积=长×宽×高,正方体体积=棱长×棱长×棱长,两者共有的体积公式:长方体(正方体)体积=底面积×高。
今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。
从而引出本节课题《圆柱的体积》。
(二)探索新知1.圆柱体积公式的猜想在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。
提问:长方体和正方体的体积相等吗?预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。
追问:类比之前学过的体积公式,圆柱的体积可能和哪些因素有关?圆柱的体积公式可能是什么?预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。
2.圆柱体积公式的推导回忆圆的面积是通过转化为长方形,从而推导出圆的面积公式。
提问:圆柱可以转化成已知体积公式的哪个图形呢?预设:可以把圆柱转换成长方体。
让学生根据提前下发的能自动等份分割的圆柱体学具,同桌之间相互交流:如何把圆柱转化为长方体呢?预设:学生分一分,拼一拼,组合成近似长方体的图形。
此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的情境,随着等份分割的份数越多,拼成的图形就越接近长方体。
组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。
预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。
3.圆柱体积公式的推出提问:圆柱的体积公式是什么?预设:圆柱的体积=底面积×高用大写字母V表示圆柱的体积,S表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。
《圆柱的体积》教案5篇
《圆柱的体积》教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《圆柱的体积》教案5篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
《圆柱的体积》教案八篇
《圆柱的体积》教案八篇《圆柱的体积》教案篇1最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。
现把它撷取下来与各位同行共赏。
……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。
(举起的手放下了一大半。
很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。
但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。
老师便顺水推舟,让他们来讲。
)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。
而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。
真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。
推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。
那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。
)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。
)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
生5:我还有一种想法:我们可以把圆柱体看成是无数个同样大小的圆片叠加而成的。
《圆柱体积》教案(精选4篇)
《圆柱体积》教案(精选4篇)《圆柱体积》篇1教学目标1.1知识与技能:(1)、运用迁移规律,引导学生借助面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
(2)、会用圆柱的体积公式计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
1.2过程与方法:引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
1.3情感态度与价值观:借助实物演示,培养学生抽象、概括的思维能力。
教学重难点2.1教学重点圆柱体积计算公式的推导过程及其应用。
2.2教学难点理解圆柱体积公式的推导过程。
教学工具多媒体教学过程一、复习提问1、怎样求长方体和正方体的体积?【生】长方体体积=长×宽×高正方体体积=棱长×棱长×棱长【师】谁来说说他们怎么可以用一个公式来表示?【生】直方体体积=底面积×高【师】真聪明,那我们接下来来看题目【生】解:长方体体积=底面积×高=0.06×5=0.3m32、一块正方体石料,一个面的面积是36dm2,这块石料的体积是多少立方分米?【生】二、探求新知【师】同学们现在会计算长方体和正方体的图形的体积。
圆柱的体积怎样计算呢?能不能将圆柱转化成我们学过的立体图形,计算出它的体积呢?【师】同学们想不出来没有关系,我们先来看一看圆面积是怎么推出来的呢?【师】现在同学们能想到了吗?请同学们以小组为单位讨论一下,并将你讨论的结果拿到实物投影仪上。
【生】(小组讨论,交流,老师总结)【师】把拼成的长方体与原来的圆柱比较,你能发现什么?【生】长方体的底面积等于圆柱的底面积。
长方体的高等于圆柱的高。
【生】长方体的体积与圆柱的体积相等。
【师】三、知识运用【师】同学们,你们现在知道了怎么样求圆柱的体积,那么让我们实际来求一下吧。
[例6]下图的杯子能不能装下这袋牛奶?(数据是从杯子里面测量得到的。
)【师】同学们做得非常好,下面请同学们做一做。
《圆柱的体积》数学教学设计(优秀4篇)
《圆柱的体积》数学教学设计(优秀4篇)《圆柱的体积》数学教案篇一教学目标:1、知识技能运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:圆柱体体积的计算公式的推导过程及其应用。
教学难点:理解圆柱体体积公式的推导过程。
教学准备:圆柱体积公式推导演示学具、多媒体课件。
教学过程:一、复习导入同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?二、图柱转化,自主探究,验证猜想。
(一)猜想。
1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。
)[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
教师由复习圆面积公式的推导过程入手,实现知识的迁移。
]2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。
(二)操作验证。
1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。
在操作时,学生分组边操作边讨论以下问题:①拼成的近似长方体的体积与原来的圆柱体积有什么关系?②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系??。
拼成的近似长方体的高与原来的圆柱的高有什么关系?2、小组代表汇报(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) 3、电脑演示操作(1)电脑演示圆柱体转化成长方体的过程:仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?(分的分数越多,拼成的图形就越接近长方体)(2)根据学生的观察、分析、推想,老师完成板书:长方体的体积=底面积某高圆柱的体积=底面积某高V=Sh(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。
《圆柱的体积》教案(优秀5篇)
《圆柱的体积》教案(优秀5篇)《圆柱的体积》教案篇一教学目标:1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。
让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:圆柱的体积公式演示教具,圆柱的体积公式演示课件教学过程:一、教学回顾1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受1、猜测圆柱的。
体积和那些条件有关。
(电脑演示)2、.探究推导圆柱的体积计算公式。
小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份?),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
配合回答,演示课件,闪烁相应的部位,并板书相应的内容。
)③圆柱的体积=底面积某高字母公式是V=Sh(板书公式)2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的()体。
这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。
《圆柱的体积》教学设计(通用8篇)
《圆柱的体积》教学设计《圆柱的体积》教学设计(通用8篇)教学设计是以系统方法为指导。
教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。
以下是小编整理的《圆柱的体积》教学设计,希望对大家有帮助!《圆柱的体积》教学设计篇1教学目标1.使学生初步理解和掌握圆柱的体积计算公式。
会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教法:启发点拨,归纳总结,直观演示学法:自学归纳法,小组交流法课前准备:课件教学过程:一、定向导学(5分)(一)导学1.什么叫体积?(指名回答)生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)根据学生的回答,板书:长方体体积=底面积×高2.圆面积公式是怎样推导出来的?生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。
)得到圆面积公式s=2πr。
3.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?4.导入我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。
(板书:圆柱的体积)(二)定向出示学习目标:1、理解和掌握圆柱的体积计算公式。
2、会用公式计算圆柱的体积,并能运用公式解答一些实际问题。
二、合作交流(15分)1、阅读书25页。
2、看书回答:(1)圆柱体是怎样变成近似长方体的?(2)切拼成的长方体的体积、底面积和高分别与圆柱体的体积、底面积、高有什么关系?(3)怎样计算切拼成的长方体体积?为什么?用字母怎样表示?3、小组展评交流结果。
(1)展评题(1)。
圆柱体是怎样变成长方体的?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱体积教学设计方案1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。
3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。
掌握和运用圆柱体积计算公式进行正确计算。
理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
1、用于演示把圆柱体积转化成长方体体积的教具。
2、多媒体课件。
谈话:前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。
同学们回忆一下,什么叫体积?我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。
根据学生的回答,板书:长方体的体积=底面积×高)1、呈现长方体、正方体和圆柱的直观图。
2、揭题:老师为大家准备了长方体、正方体、圆柱。
其中我们学过了长方体和正方体的体积计算方法。
大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。
3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?根据学生的叙述,教师课件演示。
1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?2、学生小组讨论、交流。
教师:同学们自己先在小组里讨论一下你准备把圆柱体转化成什么立体图形?你是怎样转化成这个立体图形的?转化以后的立体图形和圆柱体之间有什么关系?3、推导圆柱体积公式。
学生交流,教师动画演示。
把圆柱体转化成长方体。
怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形你会操作吗?教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。
教师:这个长方体与圆柱体比较一下,什么变了?什么没变?推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:圆柱的体积 = 底面积×高V = S h教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?①知道圆柱的底面积和高,可以求圆柱的体积。
练习七的第1题:填表。
②知道圆柱的底面半径和高,可以求圆柱的体积。
试一试。
③知道圆柱的底面积直径和高,可以求圆柱的体积。
练一练的第1题:计算下面各圆柱的体积。
④知道圆柱的底面周长和高,可以求圆柱的体积。
一根圆柱形零件,底面周长是厘米,长是10厘米,它的体积是多少?1、判断正误,对的画“√”,错误的画“×”。
2、计算下面各圆柱的体积。
3、智慧屋:已知一个圆柱的侧面积为平方厘米,底面半径为3厘米,求这个圆柱的体积。
这节课我们一起学习了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。
在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。
完成作业纸上的习题本节可的教学内容是九年义务教育苏教版六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。
对此,我作如下反思:学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。
所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。
学生动手实践、观察得出结论的过程,就是科学研究的过程。
传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。
学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。
而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
不足之处是:1、2、留给学生自由讨论、实践和思考的时间较少。
教学时教师语言过于平缓,没有调动起学生的积极性。
《义务教育课程标准实验教科书》 (人教版) 六年级数学下册。
1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。
2、探索某些实物体积的测量方法。
“圆柱的体积”是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。
在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。
教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。
学会学习方法,获得学习经验。
1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。
2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%。
3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。
4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。
5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。
圆柱的体积计算方法圆柱体积计算公式的推导。
1、师:圆柱体积计算公式推导教具,课件。
2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。
本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。
第二个环节自主合作、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。
学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。
学会学习方法,获得学习经验。
然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。
第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。
通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。
演示法、启发引导;实验、合作探究、尝试练习。
1、通过小组合作实验完成活动检测目标1、4、5的达成。
2、通过提问检测目标3、4、5的达成。
3、通过评价样题检测目标1、2、4的达成。
1、2、1、计算下面物体的体积长方体的长20厘米,宽10厘米,高8厘米。
正方体棱6分米2、回忆一下圆面积的计算公式是如何推导出来的?[学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。
这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它的面积。
]教师把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。
长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。
因为长方形的面积=长×宽,所以,用圆周长的一半×半径就可以求出圆的面积,周长一半就等于πR,半径是R,所以圆的面积是S=πR。
[设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。
]3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?[设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。
]板书:长方体的体积=底面积×高.[设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生长发展的。
这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。
]圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。
板书:圆柱体所占空间的大小叫做圆柱的体积。
师:这节课,我们就来学习圆柱的体积.1.求圆柱体容器中水的体积出示长方体容器:问,这是什么?[学情预设:学生可能说出长方体容器。
]问:怎么求长方体容器中水的体积呢?[学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。
]问:如果换成圆柱体容器又如何求其中水的体积呢?[学情预设:学生可能说出,把圆柱体容器中的水倒入长方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。
]2.橡皮泥圆柱体的体积问:这是一个什么样的立体图形?问:它是用橡皮泥做成的。
你能想办法求出它的体积吗?[学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。
]3.常用圆柱的体积.课件出示圆柱体压路机的滚筒的图片。
问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?[设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。
当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。
这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。
这样,对学生思想方法的铺垫也已水到渠成。
]小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。
4.探究规律问:圆我们可以通过分割、拼合转化成已学过的长方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:课件出示操作讨论提纲:圆柱体可以转化为什么样的立体图形?转化后的立体图形体积与圆柱的体积大小是否有变化?转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。