高中物理磁场部分难题专练(计算题)(学生用)

合集下载

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。

y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。

现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。

【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB m R=解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析

高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,一匀强磁场磁感应强度为B;方向向里,其边界是半径为R的圆,AB为圆的一直径.在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.2.如图所示,在长度足够长、宽度d=5cm的区域MNPQ内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T.水平边界MN上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C.现有大量质量m=6.6×10﹣27kg、电荷量q=3.2×10﹣19C的带负电的粒子,同时从边界PQ上的O点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.1,0.1R m m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.120R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).4.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷q m=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;68m m44【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈68m m446.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α=== 由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,平面直角坐标系xoy 的第二、三象限内有方向沿y 轴正向的匀强电场,第一、四象限内有圆形有界磁场,有界磁场的半径为当22L ,磁扬场的方向垂直于坐标平面向里,磁场边界与y 轴相切于O 点,在x 轴上坐标为(-L ,0)的P 点沿与x 轴正向成θ=45°方向射出一个速度大小为v 0的带电粒子,粒子的质量为m ,电荷量为q ,粒子经电场偏转垂直y 轴射出电场,粒子进人磁场后经磁场偏转以沿y 轴负方向的速度射出磁场,不计粒子的重力.求(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到出磁场运动的时间为多少?【答案】(1)(0,12L)(2)22mvEqL=022mvBqL=(3)002(1)L Ltvπ+=【解析】【分析】(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.【详解】(1)粒子在电场中的运动为类平抛运动的逆运动,水平方向:L=v0cosθ•t1,竖直方向:y=12v0sinθ•t1,解得:y=12 L,粒子从y轴上射出电场的位置为:(0,12 L);(2)粒子在电场中的加速度:a=qEm,竖直分位移:y=12a t12,解得:22mvEqL =;粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,由几何知识得:AC 与竖直方向夹角为45°, 2y=22L , 因此AAC 刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L ,粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m 2v r,其中,粒子的速度:v=v 0cosθ,解得:02mv B =; (3)粒子在电场中的运动时间:1002L Lt v cos v θ==, 粒子离开电场进入磁场前做匀速直线运动,位移:2122x L L =-, 粒子做运动直线运动的时间:20(22)2x L t v v ==, 粒子在磁场中做圆周运动的时间:301122442m Lt T qB v ππ==⨯=, 粒子总的运动时间:t=t 1+t 2+t 3=)00212L Lv v π++; 【点睛】本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.9.如图所示,x 轴的上方存在方向与x 轴成45角的匀强电场,电场强度为E ,x 轴的下方存在垂直纸面向里的匀强磁场,磁感应强度0.5.B T =有一个质量1110m kg -=,电荷量710q C -=的带正电粒子,该粒子的初速度30210/v m s =⨯,从坐标原点O 沿与x 轴成45角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O 点出发后第四次经过x 轴时刚好又回到O 点处,设电场和磁场的区域足够宽,不计粒子重力,求:①带电粒子第一次经过x 轴时的横坐标是多少?②电场强度E 的大小及带电粒子从O 点出发到再次回到O 点所用的时间.【答案】①带电粒子第一次经过x 轴时的横坐标是0.57m ;②电场强度E 的大小为3110/V m ⨯,带电粒子从O 点出发到再次回到O 点所用的时间为32.110.s -⨯【解析】 【分析】(1)粒子在磁场中受洛伦兹力作用下做一段圆弧后第一次经过x 轴,根据洛伦兹力提供向心力公式求出半径,再根据几何关系求出坐标;(2)然后进入电场中,恰好做匀减速运动直到速度为零后又返回,以相同速率再次进入磁场仍在洛伦兹力作用下又做一段圆弧后,再次进入电场正好做类平抛运动.粒子在磁场中两次运动刚好完成一个周期,由粒子在电场中的类平抛运动,根据垂直电场方向位移与速度关系,沿电场方向位移与时间关系,结合牛顿第二定律求出E ,三个过程的总时间即为总时间. 【详解】①粒子在磁场中受磁场力的作用沿圆弧运动,洛仑兹力提供向心力,2v qvB m R=,半径0.4mvR m Bq==, 根据圆的对称性可得粒子在磁场中第一次偏转所对的圆心角为90, 则第一次经过x 轴时的横坐标为120.420.57x R m m =≈②第一次进入电场,运动方向与电场方向相反,做匀减速直线运动,速度减为零后又反向加速返回磁场,在磁场中沿圆周运动,再次进入电场时速度方向刚好垂直电场方向,在电场力的作用下偏转,打在坐标原点O 处,其运动轨迹如图所示.由几何关系可得,第二次进入电场中的位移为22R , 在垂直电场方向的位移11s vt =, 运动时间4112410s R t s v v-===⨯ 在沿电场方向上的位移22112s at =, 又因22s R = 得722212110/s a m s t ==⨯ 根据牛顿第二定律Eq a m= 所以电场强度3110/maE V m q==⨯ 粒子从第一次进入电场到再返回磁场的时间422410vt s a-==⨯, 粒子在磁场中两段运动的时间之和刚好是做一个完整圆周运动的周期42410mT s Bqππ-==⨯ 所以粒子从出发到再回到原点的时间为312 2.110t t t T s -=++≈⨯【点睛】本题考查带电粒子在电场、磁场中两运动模型:匀速圆周运动与类平抛运动,及相关的综合分析能力,以及空间想像的能力,应用数学知识解决物理问题的能力.10.如图(a)所示,在空间有一坐标系xoy ,直线OP 与x 轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP 是它们的边界,OP 上方区域Ⅰ中磁场的磁感应强度为B ,一质量为m ,电荷量为+q 的质子(不计重力及质子对磁场的影响)以速度v 从O 点沿与OP 成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直于x 轴进入第四象限,第四象限存在沿-x 轴方向的特殊电场,电场强度E的大小与横坐标x的关系如图(b)所示,试求:(1)区域Ⅱ中磁场的磁感应强度大小;(2)质子再次到达y轴时的速度大小和方向。

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析

高中物理带电粒子在磁场中的运动常见题型及答题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy平面内有圆形区域,圆心在x轴负半轴上,P、Q是圆上的两点,坐标分别为P(-8L,0),Q(-3L,0)。

y轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy平面向外,磁感应强度的大小为B,y轴的右侧空间有一磁感应强度大小为2B的匀强磁场,方向垂直于xoy平面向外。

现从P点沿与x轴正方向成37°角射出一质量为m、电荷量为q的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。

求:(1)带电粒子的初速度;(2)粒子从P点射出到再次回到P点所用的时间。

【答案】(1)8qBLvm=;(2)41(1)45mtqBπ=+【解析】【详解】(1)带电粒子以初速度v沿与x轴正向成37o角方向射出,经过圆周C点进入磁场,做匀速圆周运动,经过y轴左侧磁场后,从y轴上D点垂直于y轴射入右侧磁场,如图所示,由几何关系得:5sin37oQC L=15 sin37O OQO Q L==在y轴左侧磁场中做匀速圆周运动,半径为1R,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oot T =带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。

高考物理带电粒子在磁场中的运动题20套(带答案)

高考物理带电粒子在磁场中的运动题20套(带答案)

高考物理带电粒子在磁场中的运动题20套(带答案)一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB间射出如图,由几何关系可得临界时要不从AB边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m,电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B的大小;(2)挡板端点P的坐标;(3)挡板上被粒子打中的区域长度.【答案】(1)mvqR(2)(21),0R⎡⎤⎣⎦21042R+-【解析】【分析】【详解】(1)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,由2v qvB m r=得:mv B qR=(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =+P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(122OG R R =⋅=+②225-22=2FG OF OG R=-③22EG R =④ 挡板上被粒子打中的区域长度l =FE =22R +5-222R =2+10-422R ⑤3.如图所示,MN 为绝缘板,CD 为板上两个小孔,AO 为CD 的中垂线,在MN 的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m 电荷量为q 的粒子(不计重力)以某一速度从A 点平行于MN 的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O 点),已知图中虚线圆弧的半径为R ,其所在处场强大小为E ,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1EqRm(2)212R ;11n +;(3)2πmR Eq【解析】 【分析】 【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mv Eq R= 解得:EqRv m=(2)粒子从D 到A 匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=4.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。

高中物理选修2磁场对通电导线的作用力计算题专项训练

高中物理选修2磁场对通电导线的作用力计算题专项训练

高中物理选修2磁场对通电导线的作用力计算题专项训练高中物理选修2磁场对通电导线的作用力计算题专项训练姓名:__________班级:__________考号:__________一、计算题(共11题)1、如图所示,在与水平方向成60°角的光滑金属导轨间连一电源,在相距1m的平行导轨上放一重为3N的金属棒ab,棒上通以3A的电流,磁场方向竖直向上,这时棒恰好静止,求:(1)匀强磁场的磁感应强度;(2)ab棒对导轨的压力.2、如图,金属杆ab的质量为m,长为L,通过的电流为I,处在磁感应强度为B的匀强磁场中,结果ab静止且紧压于水平导轨上。

若磁场方向与导轨平面成θ角,求:(1)棒ab受到的摩擦力;(2)棒对导轨的压力。

3、(8分)如图所示,质量为m=50g,长l=10cm的铜棒,用长度相等的两根轻软导线悬吊在竖直向上的匀强磁场中,导线跟铜棒的接触良好,磁感应强度B=0.5T。

当导线中通入某恒定电流后,铜棒恰好偏离竖直方向37°而静止。

求:铜棒中所通恒定电流的大小和方向。

(g=10m/s2)4、(10分)在B=2T的匀强磁场中放一根与磁场方向垂直、长度为0.8m的通电直导线,若导线中的电流为5A,求:(1)导线受到的安培力(2)若将导线沿磁场方向移动了0.5m,求安培力对导线所做的功。

5、在倾角为α的光滑斜面上,置一通有电流I,长L,质量为m 的导体棒,如图所示,求:(1)欲使棒静止在斜面上,外加匀强磁场的磁感应强度B的最小值和方向。

(2)欲使棒静止在斜面上且对斜面无压力,外加匀强磁场的磁感应强度B的大小和方向。

(3)分析棒有可能静止在斜面上且要求B垂直L,应加外磁场的方向范围。

6、图为一电流表的原理示意图。

质量为m的均质细金属棒MN 的中点处通过一绝缘挂钩与一竖直悬挂的弹簧相连,弹簧劲度系数为k。

在矩形区域abcd内有匀强磁场,磁感应强度大小为B,方向垂直纸面向外。

与MN的右端N连接的一绝缘轻指针可指示标尺上的读数,MN的长度大于ab。

磁场难题集锦(含答案).

磁场难题集锦(含答案).

磁场难题集锦一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).磁场难题集锦参考答案与试题解析一.解答题(共9小题)1.(2009?浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.考点:带电粒子在匀强磁场中的运动.专题:压轴题.分析:带电粒子沿半径方向射入匀强磁场中,做匀速圆周运动后,沿半径的方向射出.当没有沿半径方向射入时仍做匀速圆周运动,则圆心必经过入射点与出射点连线的中垂线.解答:解:本题考查带电粒子在复合场中的运动.带电粒子平行于x轴从C点进入磁场,说明带电微粒所受重力和电场力平衡.设电场强度大小为E,由mg=qE可得方向沿y轴正方向.带电微粒进入磁场后,将做圆周运动.且r=R如图(a)所示,设磁感应强度大小为B.由得方向垂直于纸面向外(2)一:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动,其圆心位于其正下方的Q点,如图b所示,这束带电微粒进入磁场后的圆心轨迹是如图b的虚线半圆,此圆的圆心是坐标原点.二:从任一点P水平进入磁场的带电微粒在磁场中做半径为R的匀速圆周运动.如图b示,高P点与O′点的连线与y轴的夹角为θ,其圆心Q的坐标为(﹣Rsinθ,Rcosθ),圆周运动轨迹方程为(x+Rsinθ)2+(y﹣Rcosθ)2=R2得x=0 或x=﹣Rsinθ,y=0 或y=R(1+cosθ)可得带电微粒做圆周运动的轨迹与磁场边界的交点为,求,坐标为后者的点就是P点,须舍去,可见,这束带电微粒都是通过坐标原点离开磁场的.(3)带电微粒初速度大小变为2v,则从任一点P水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r′为带电微粒在磁场中经过一段半径为r′的圆弧运动后,将在y轴的右方(x>0)的区域离开磁场并做匀速直线运动,如图c所示.靠近圆磁场上边发射出来的带电微粒在恰好没有磁场力,则会射向x轴正方向的无穷远处,靠近圆磁场下边发射出来的带电微粒会在靠近原点之处穿出磁场.所以,这束带电微粒与x轴相交的区域范围是x>0.答案:(1);方向垂直于纸面向外;(2)通过坐标原点离开磁场的;(3)与x同相交的区域范围是x>0.点评:带电粒子以相同的速度方向,沿不同位置进入匀强磁场时,轨迹的圆弧长度不同,则运动的时间不同,但半径仍相同.2.(2011?江苏)某种加速器的理想模型如图1所示:两块相距很近的平行小极板中间各开有一小孔a、b,两极板间电压u ab的变化图象如图2所示,电压的最大值为U0、周期为T0,在两极板外有垂直纸面向里的匀强磁场.若将一质量为m0、电荷量为q的带正电的粒子从板内a孔处静止释放,经电场加速后进入磁场,在磁场中运动时间T0后恰能再次从 a 孔进入电场加速.现该粒子的质量增加了.(粒子在两极板间的运动时间不计,两极板外无电场,不考虑粒子所受的重力)(1)若在t=0时刻将该粒子从板内a孔处静止释放,求其第二次加速后从b孔射出时的动能;(2)现在利用一根长为L的磁屏蔽管(磁屏蔽管置于磁场中时管内无磁场,忽略其对管外磁场的影响),使图1中实线轨迹(圆心为O)上运动的粒子从a孔正下方相距L处的c孔水平射出,请在答题卡图上的相应位置处画出磁屏蔽管;(3)若将电压u ab的频率提高为原来的2倍,该粒子应何时由板内a孔处静止开始加速,才能经多次加速后获得最大动能?最大动能是多少?分析:(1)求第二次加速后从b孔射出时的动能只需知道加速时所对应的电压,故图2求电压即可.(2)加入屏蔽管后粒子在屏蔽管中做匀速直线运动,离开屏蔽管后运动轨迹与原来的运动轨迹相似,只是向下平移了l.(3)从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.解答:解:(1)质量为m0的粒子在磁场中作匀速圆周运动Bqv=,则当粒子的质量增加了m0,其周期增加△T=T0根据题图2可知,粒子第一次的加速电压u1=U0经过第二次加速,第2次加速电压u2,如图 2在三角形中,,所以粒子第二次的加速电压粒子射出时的动能E k2=qu1+qu2解得(2)因为磁屏蔽管使粒子匀速运动至以下L处,出管后仍然做圆周运动,可到C点水平射出.磁屏蔽管的位置如图1所示.粒子运动的轨迹如图3.(3)如图4(用Excel作图)设T0=100,U0=50,得到在四分之一周期内的电压随时间变化的图象从图象可以看出,时间每改变(图象中为1),电压改变为(图象中为4),所以图象中电压分别为50,46,42,38,…10,6,2,共13个,设某时刻t,u=U0时被加速,此时刻可表示为,静止开始加速的时刻t1为,其中n=12,将n=12代入得,因为,在u>0时,粒子被加速,则最多连续被加速的次数:N=,得N=25.所以只能取N=25,解得,由于电压的周期为,所以(n=0,1,2,3…)故粒子由静止开始被加速的时刻(n=0,1,2,…)故加速时的电压分别,,…,,,加速电压做的总功,即动能的最大值,故粒子的最大动能解得.3.如图,在区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上点离开磁场.求:(1)粒子在磁场中做圆周运动的半径R及粒子的比荷;(2)此时刻仍在磁场中的粒子的初速度方向与y轴正方向夹角的取值范围;(3)从粒子发射到全部粒子离开磁场所用的时间.解答:解:(1)初速度与y轴方向平行的粒子在磁场中的运动轨迹如图1中的弧OP所示,其圆心为C.由几何关系可知,∠POC=30°;△OCP为等腰三角形故∠OCP=①此粒子飞出磁场所用的时间为t0=②式中T为粒子做圆周运动的周期.设粒子运动速度的大小为v,半径为R,由几何关系可得R= a ③由洛仑兹力公式和牛顿第二定律有qvB=m④T=⑤联立②③④⑤解得⑥(2)仍在磁场中的粒子其圆心角一定大于120°,这样粒子角度最小时从磁场右边界穿出;角度最大时从磁场左边界穿出.依题意,同一时刻仍在磁场内的粒子到O点距离相同.在t0时刻仍在磁场中的粒子应位于以O点为圆心、OP为半径的弧上.如图所示.设此时位于P、M、N三点的粒子的初速度分别为v P、v M、v N.由对称性可知v P与OP、v M与OM、v N与ON的夹角均为.设v M、v N与y轴正向的夹角分别为θM、θN,由几何关系有⑦⑧对于所有此时仍在磁场中的粒子,其初速度与y轴正方向所成的夹角θ应满足≤θ≤(3)在磁场中飞行时间最长的粒子的运动轨迹应与磁场右边界相切,其轨迹如图2所示.由几何关系可知:OM=OP由对称性可知ME=OP由图可知,圆的圆心角为240°,从粒子发射到全部粒子飞出磁场所用的时间2t0;4.图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向平行于板面并垂直于纸面朝里.图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里.假设一系列电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域.不计重力.(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量.(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为.求离子乙的质量.(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达.解答:解:(1)粒子进入正交的电磁场做匀速直线运动,设粒子的速度为v,电场的场强为E0,根据平衡条件得E0q=B0qv①②由①②化简得③粒子甲垂直边界EF进入磁场,又垂直边界EF穿出磁场,则轨迹圆心在EF上.粒子运动中经过EG,说明圆轨迹与EG相切,在如图的三角形中半径为R=acos30°tan15°④⑤连立④⑤化简得⑥在磁场中粒子所需向心力由洛仑兹力提供,根据牛顿第二定律得⑦连立③⑦化简得⑧(2)由于I点将EG边按1比3等分,根据三角形的性质说明此轨迹的弦与EG垂直,在如图的三角形中,有⑨同理⑩(3)最轻离子的质量是甲的一半,根据半径公式离子的轨迹半径与离子质量成正比,所以质量在甲和最轻离子之间的所有离子都垂直边界EF穿出磁场,甲最远离H的距离为,最轻离子最近离H的距离为,所以在离H的距离为到之间的 E F边界上有离子穿出磁场.比甲质量大的离子都从EG穿出磁场,其中甲运动中经过EG上的点最近,质量最大的乙穿出磁场的1位置是最远点,所以在EG上穿出磁场的离子都在这两点之间.5.(2006?甘肃)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向均垂直于纸面向里,且B1>B2.一个带负电荷的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件.解答:解:根据牛顿第二定律得化简得①②如右图是粒子在一个周期的运动,则粒子在一个周期内经过y负半轴的点在y负半轴下移2(R2﹣R1),在第n次经过y负半轴时应下移2R1,则有2n(R2﹣R1)=2R1③连立①②③化简得,n=1,2,3,…6.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向,磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x轴正方向入射.这时若只有磁场,粒子将做半径为R0的圆周运动:若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点,不计重力.已知h=6cm,R0=10cm,求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2)M点的横坐标x M.解答:解:(1)做直线运动有:qE=qBv0①做圆周运动有:qBv0=m②只有电场时,粒子做类平抛运动,有:qE=ma ③R0=v0t ④v y=at ⑤从③④⑤解得⑥,从①得E=Bv0⑦,从②式得⑧,将⑦、⑧代入⑥得:v y=v0粒子速度大小为:v==v0速度方向与x轴夹角为:θ=粒子与x轴的距离为:H=h+at2=h+代入数据得H=11cm.(2)撤电场加上磁场后,有:qBv=m解得:R=R0,代入数据得R=14cm.粒子运动轨迹如图所示,圆心C位于与速度v方向垂直的直线上,该直线与x轴和y轴的夹角均为,由几何关系得C点坐标为:x c=2R0,代入数据得x C=20cmy c=H﹣R0=h﹣,代入数据得y C=1cm过C作x轴的垂线,在△CDM中:=R=R0=y c=h﹣解得:==M点横坐标为:x M=2R0+代入数据得x M=34cm答:(1)粒子到达x=R0平面时速度方向与x轴的夹角为,粒子到x轴的距离为11cm;(2)M点的横坐标x M为34cm.7.(2007?江苏)磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源S发出质量为m、电量为q的α粒子沿垂直磁场方向进入磁感应强度为B的匀强磁场,被限束光栏Q限制在2φ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P上.(重力影响不计)(1)若能量在E~E+△E(△E>0,且△E?E)范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围△x1.(2)实际上,限束光栏有一定的宽度,α粒子将在2φ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围△x2.解答:解析:设α粒子以速度v进入磁场,打在胶片上的位置距S的距离为x圆周运动α粒子的动能且x=2R解得:.△x1=﹣当x<<1时,(1+x)n≈1+x n由上式可得:.(2)动能为E的α粒子沿±φ角入射,轨道半径相同,设为R圆周运动α粒子的动能由几何关系得答:(1)(2)8.如图,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于x y平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带点粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m,电荷量为q(q >0)的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.解答:解:设粒子的入射速度为v,第一次射出磁场的点为N′0,与板碰撞后再次进入磁场的位置为N1,子在磁场中运动的轨道半径为R,有 (1)粒子速率不变,每次进入磁场与射出磁场位置间距离x1保持不变有x1=N0′N0=2Rsinθ (2)粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N0相等.由图可以看出x2=a (3)设粒子最终离开磁场时,与档板相碰n次(n=0、1、2、3…).若粒子能回到P点,由对称性,出射点的x坐标应为﹣a,即(n+1)x1﹣nx2=2a (4)由(3)(4)两式得 (5)若粒子与挡板发生碰撞,有 (6)联立(3)(4)(6)得:n<3 (7)联立(1)(2)(5)得: (8)把代入(8)中得;;;答:粒子入射速度的所有可能值为;;.9.(2007?浙江)两屏幕荧光屏互相垂直放置,在两屏内分别去垂直于两屏交线的直线为x和y轴,交点O为原点,如图所示.在y>0,0<x<a的区域有垂直于纸面向内的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B.在O点出有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x 周经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮.入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期.试求两个荧光屏上亮线的范围(不计重力的影响).解答:解:对于y轴上的光屏亮线范围的临界条件如图1所示:带电粒子的轨迹和x=a相切,此时r=a,y轴上的最高点为y=2r=2a;对于x轴上光屏亮线范围的临界条件如图2所示:左边界的极限情况还是和x=a相切,此刻,带电粒子在右边的轨迹是个圆,由几何知识得到在x轴上的坐标为x=2a;速度最大的粒子是如图2中的实线,又两段圆弧组成,圆心分别是c和c′由对称性得到c′在x轴上,设在左右两部分磁场中运动时间分别为t1和t2,满足解得由数学关系得到:OP=2a+R代入数据得到:所以在x 轴上的范围是.。

高中物理带电粒子在磁场中的运动题20套(带答案)含解析

高中物理带电粒子在磁场中的运动题20套(带答案)含解析

高中物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=2.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=;(2)12m B L q ϕ=;(3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m= 222mL mt L qE q ϕ== 22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos x v v α=1cos 2α=060α∴=3.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

高中物理磁场习题200题(带答案解析)之欧阳歌谷创编

高中物理磁场习题200题(带答案解析)之欧阳歌谷创编

评卷人欧阳歌谷(2021.02.01)得分一、选择题1.如图所示,一电荷量为q的负电荷以速度v射入匀强磁场中.其中电荷不受洛仑兹力的是()A. B. C. D.【答案】C【解析】由图可知,ABD图中带电粒子运动的方向都与粗糙度方向垂直,所以受到的洛伦兹力都等于qvB,而图C中,带电粒子运动的方向与磁场的方向平行,所以带电粒子不受洛伦兹力的作用.故C 正确,ABD错误.故选C.2.如图所示为电流产生磁场的分布图,其中正确的是()A. B. C. D.【答案】D【解析】A中电流方向向上,由右手螺旋定则可得磁场为逆时针(从上向下看),故A错误;B图电流方向向下,由右手螺旋定则可得磁场为顺时针(从上向下看),故B错误;C图中电流为环形电流,由由右手螺旋定则可知,内部磁场应向右,故C错误;D图根据图示电流方向,由右手螺旋定则可知,内部磁感线方向向右,故D正确;故选D.点睛:因磁场一般为立体分布,故在判断时要注意区分是立体图还是平面图,并且要能根据立体图画出平面图,由平面图还原到立体图.3.下列图中分别标出了一根放置在匀强磁场中的通电直导线的电流I、磁场的磁感应强度B和所受磁场力F的方向,其中图示正确的是()A. B. C. D.【答案】C【解析】根据左手定则的内容:伸开左手,使大拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向,可得:A、电流与磁场方向平行,没有安培力,故A错误;B、安培力的方向是垂直导体棒向下的,故B错误;C、安培力的方向是垂直导体棒向上的,故C正确;D、电流方向与磁场方向在同一直线上,不受安培力作用,故D 错误.故选C.点睛:根据左手定则直接判断即可,凡是判断力的方向都是用左手,要熟练掌握,是一道考查基础的好题目.4.如图所示,水平地面上固定着光滑平行导轨,导轨与电阻R 连接,放在竖直向上的匀强磁场中,杆的初速度为v0,不计导轨及杆的电阻,则下列关于杆的速度与其运动位移之间的关系图像正确的是()A. B. C. D.【答案】C【解析】导体棒受重力、支持力和向后的安培力;感应电动势为:E=BLv 感应电流为:安培力为:故:求和,有:故:故v与x是线性关系;故C正确,ABD错误;故选:C.5.如图所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向射入磁场,粒子仅受磁场力作用,分别从AC 边上的P、Q两点射出,则()A. 从P射出的粒子速度大B. 从Q射出的粒子速度大C. 从P射出的粒子,在磁场中运动的时间长D. 两粒子在磁场中运动的时间一样长【答案】BD【解析】试题分析:粒子在磁场中做圆周运动,根据题设条件作出粒子在磁场中运动的轨迹,根据轨迹分析粒子运动半径和周期的关系,从而分析得出结论.粒子在磁场中做匀速圆周运动,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间:,又因为粒子在磁场中圆周运动的周期,可知粒子在磁场中运动的时间相等,故D正确,C错误;如图,粒子在磁场中做圆周运动,分别从P点和Q点射出,由图知,粒子运动的半径,又粒子在磁场中做圆周运动的半径知粒子运动速度,故A错误B正确;【点睛】带电粒子在匀强磁场中运动时,洛伦兹力充当向心力,从而得出半径公式,周期公式,运动时间公式,知道粒子在磁场中运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题,6.在等边三角形的三个顶点a、b、c处,各有一条长直导线垂直纸面放置,导线中通有大小相等的恒定电流,方向如图所示.过c点的导线所受安培力的方向()A. 与ab边平行,竖直向上B. 与ab边垂直,指向右边C. 与ab边平行,竖直向下D. 与ab边垂直,指向左边【答案】D【解析】试题分析:先根据右手定则判断各个导线在c点的磁场方向,然后根据平行四边形定则,判断和磁场方向,最后根据左手定则判断安培力方向导线a在c处的磁场方向垂直ac斜向下,b在c处的磁场方向垂直bc斜向上,两者的和磁场方向为竖直向下,根据左手定则可得c点所受安培力方向为与ab边垂直,指向左边,D正确;7.下列说法中正确的是()A. 电场线和磁感线都是一系列闭合曲线B. 在医疗手术中,为防止麻醉剂乙醚爆炸,医生和护士要穿由导电材料制成的鞋子和外套,这样做是为了消除静电C. 奥斯特提出了分子电流假说D. 首先发现通电导线周围存在磁场的科学家是安培【答案】B【解析】电场线是从正电荷开始,终止于负电荷,不是封闭曲线,A错误;麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,良好接地,目的是为了消除静电,这些要求与消毒无关,B正确;安培发现了分子电流假说,奥斯特发现了电流的磁效应,CD错误;8.在如图所示的平行板电容器中,电场强度E和磁感应强度B 相互垂直,一带正电的粒子q以速度v沿着图中所示的虚线穿过两板间的空间而不偏转(忽略重力影响)。

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。

高考物理带电粒子在磁场中的运动真题汇编(含答案)及解析 (1)精选全文完整版

高考物理带电粒子在磁场中的运动真题汇编(含答案)及解析 (1)精选全文完整版

可编辑修改精选全文完整版高考物理带电粒子在磁场中的运动真题汇编(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。

【答案】(1)2U E L =,M eUv m=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==,3348M R L m t v eUππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】(1)在加速电场中,从P 点到Q 点由动能定理得:2012eU mv = 可得02eUv m=电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU==y 轴方向做匀加速直线运动,2122L eE t m=⨯ 由以上各式可得:2U E L=电子运动至M 点时:220()M Ee v v t m=+ 即:2M eUv m= 设v M 的方向与x 轴的夹角为θ,02cos 2M v v θ== 解得:θ=45°。

高中物理磁场练习题

高中物理磁场练习题

高中物理磁场经典计算题训练(一1.弹性挡板围成边长为L=100cm的正方形abcd,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B=0.5T,如图所示.质量为m=2×10-4kg、带电量为q=4×10-3C的小球,从cd边中点的小孔P处以某一速度v垂直于cd边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失.(1为使小球在最短的时间内从P点垂直于dc射出来,小球入射的速度v 1是多少?(2若小球以v 2=1 m/s的速度入射,则需经过多少时间才能由P点出来?2.如图所示,在区域足够大空间中充满磁感应强度大小为B的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L的等边三角形框架DEF,DE中点S处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE边向下,如图(a所示.发射粒子的电量为+q,质量为m,但速度v有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求:(1带电粒子的速度v为多大时,能够打到E点?(2为使S点发出的粒子最终又回到S点,且运动时间最短,v应为多大?最短时间为多少?(3若磁场是半径为a的圆柱形区域,如图(b所示(图中圆为其横截面,圆柱的轴线通过等边三角形的中心O,且a=1013(L.要使S点发出的粒子最终又回到S点,带电粒子速度v的大小应取哪些数值?3.在直径为d的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q,质量为m的粒子,从磁场区域的一条直径AC上的A点射入磁场,其速度大小为v 0,方向与AC成α.若此粒子恰好能打在磁场区域圆周上D点,AD与AC的夹角为β,如图所示.求该匀强磁场的磁感强度B的大小.a b cdAC(a(b4.如图所示,真空中有一半径为R的圆形磁场区域,圆心为O,磁场的方向垂直纸面向内,磁感强度为B,距离O为2R处有一光屏MN,MN垂直于纸面放置,AO过半径垂直于屏,延长线交于C.一个带负电粒子以初速度v 0沿AC方向进入圆形磁场区域,最后打在屏上D点,DC相距23R,不计粒子的重力.若该粒子仍以初速v 0从A点进入圆形磁场区域,但方向与AC成600角向右上方,粒子最后打在屏上E点,求粒子从A到E所用时间.5.如图所示,3条足够长的平行虚线a、b、c,ab间和bc间相距分别为2L和L,ab 间和bc间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B和2B。

高中物理 磁场计算专题(附答案详解)

高中物理  磁场计算专题(附答案详解)

专题:磁场计算题(附答案详解)1、如图所示,从离子源产生的甲、乙两种离子,由静止经加速电压U加速后在纸面内水平向右运动,自M点垂直于磁场边界射入匀强磁场,磁场方向垂直于纸面向里,磁场左边界竖直.已知甲种离子射入磁场的速度大小为v1,并在磁场边界的N点射出;乙种离子在MN的中点射出;MN长为l.不计重力影响和离子间的相互作用.求:(1)磁场的磁感应强度大小;(2)甲、乙两种离子的比荷之比.2、如图所示,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核11H和一个氘21H先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知11H进入磁场时,速度方向与x轴正方向的夹角为60°,并从坐标原点O处第一次射出磁场.11H的质量为m,电荷量为q.不计重力.求:(1)11H第一次进入磁场的位置到原点O的距离;(2)磁场的磁感应强大小;(3)21H第一次离开磁场的位置到原点O的距离.3、一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.4、如图所示,竖直放置的平行金属板板间电压为U,质量为m、电荷量为+q的带电粒子在靠近左板的P点,由静止开始经电场加速,从小孔Q射出,从a点进入磁场区域,abde是边长为2L的正方形区域,ab边与竖直方向夹角为45°,cf与ab平行且将正方形区域等分成两部分,abcf中有方向垂直纸面向外的匀强磁场B1,defc中有方向垂直纸面向里的匀强磁场B2,粒子进入磁场B1后又从cf 上的M点垂直cf射入磁场B2中(图中M点未画出),不计粒子重力,求:(1)粒子从小孔Q射出时的速度;(2)磁感应强度B1的大小;(3)磁感应强度B2的取值在什么范围内,粒子能从边界cd间射出.5、如图所示,在真空中xOy平面的第一象限内,分布有沿x轴负方向的匀强电场,场强E=4×104 N/C,第二、三象限内分布有垂直于纸面向里且磁感应强度为B2的匀强磁场,第四象限内分布有垂直纸面向里且磁感应强度为B1=0.2 T的匀强磁场.在x轴上有一个垂直于y轴的平板OM,平板上开有一个小孔P,在y轴负方向上距O点为 3 cm的粒子源S可以向第四象限平面内各个方向发射α粒子,且OS>OP.设发射的α粒子速度大小v均为2×105 m/s,除了垂直于x轴通过P点的α粒子可以进入电场,其余打到平板上的α粒子均被吸收.已知α粒子的比荷为qm=5×107 C/kg,重力不计,试问:(1)P点距O点的距离;(2)α粒子经过P点第一次进入电场,运动后到达y轴的位置与O点的距离;(3)要使离开电场的α粒子能回到粒子源S处,磁感应强度B2应为多大?6、如图25所示,在xOy平面的0≤x≤23a范围内有沿y轴正方向的匀强电场,在x>23a范围内某矩形区域内有一个垂直于xOy平面向里的匀强磁场,磁感应强度大小为B.一质量为m、电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向射入电场,从M点离开电场,M点坐标为(23a,a).再经时间t=3mqB进入匀强磁场,又从M点正上方的N点沿x轴负方向再次进入匀强电场.不计粒子重力,已知sin 15°=6-24,cos 15°=6+24.求:(1)匀强电场的电场强度;(2)N点的纵坐标;(3)矩形匀强磁场的最小面积.7、如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面的匀强磁场,电场和磁场的范围足够大,电场强度E=40 N/C,磁感应强度B随时间t变化的关系图象如图乙所示,选定磁场垂直于纸面向里为正方向.t=0时刻,一质量m=8×10-4 kg、电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,g取10m/s2.求:(1)微粒再次经过直线OO′时与O点的距离;(2)微粒在运动过程中离开直线OO′的最大高度.(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.8、如图所示,在竖直平面内,水平x轴的上方和下方分别存在方向垂直纸面向外和方向垂直纸面向里的匀强磁场,其中x轴上方的匀强磁场磁感应强度大小为B1,并且在第一象限和第二象限有方向相反、强弱相同的平行于x轴的匀强电场,电场强度大小为E1,已知一质量为m的带电小球从y轴上的A(0,L)位置斜向下与y轴负半轴成60°角射入第一象限,恰能做匀速直线运动。

高中物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)

高中物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)
2.如图纸面内的矩形ABCD区域存在相互垂直的匀强电场和匀强磁场,对边AB∥CD、AD∥BC,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为B.一带电粒子从AB上的P点平行于纸面射入该区域,入射方向与AB的夹角为θ(θ<90°),粒子恰好做匀速直线运动并从CD射出.若撤去电场,粒子以同样的速度从P点射入该区域,恰垂直CD射出.已知边长AD=BC=d,带电粒子的质量为m,带电量为q,不计粒子的重力.求:
【答案】(1) (2) (3)3B2d2b<U<
【解析】
【详解】
(1)正电子匀速直线通过平行金属极板AB,需满足
Bev=
因为正电子的比荷是b,有
E=
联立解得:
(2)当正电子越过分界线ef时恰好与分界线ef相切,正电子在匀强磁场区域I、II运动的时间最长。
=2t
T=
联立解得:
(3)临界态1:正电子恰好越过分界线ef,需满足
高中物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)
一、带电粒子在磁场中的运动专项训练
1.如图所示,在两块水平金属极板间加有电压U构成偏转电场,一束比荷为 的带正电的粒子流(重力不计),以速度vo=104m/s沿水平方向从金属极板正中间射入两板.粒子经电场偏转后进入一具有理想边界的半圆形变化磁场区域,O为圆心,区域直径AB长度为L=1m, AB与水平方向成45°角.区域内有按如图所示规律作周期性变化的磁场,已知B0=0. 5T,磁场方向以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O点与水平方向成45°斜向下射入磁场.求:
【解析】
试题分析:(1)粒子在电场中做类平抛运动,从O点射出使速度
代入数据得U=100V
(2)
粒子在磁场中经过半周从OB中穿出,粒子在磁场中运动时间

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案)

高中物理磁场经典计算题训练(有答案)1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失.(1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来?2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点?(2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10133( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值?3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q ,质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小.a b cdACFD(a )(b )4.如图所示,真空中有一半径为R 的圆形磁场区域,圆心为O ,磁场的方向垂直纸面向内,磁感强度为B ,距离O 为2R 处有一光屏MN ,MN 垂直于纸面放置,AO 过半径垂直于屏,延长线交于C .一个带负电粒子以初速度v 0沿AC 方向进入圆形磁场区域,最后打在屏上D 点,DC 相距23R ,不计粒子的重力.若该粒子仍以初速v 0从A 点进入圆形磁场区域,但方向与AC 成600角向右上方,粒子最后打在屏上E 点,求粒子从A 到E 所用时间.5.如图所示,3条足够长的平行虚线a 、b 、c ,ab 间和bc 间相距分别为2L 和L ,ab 间和 bc 间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B 和2B 。

word完整版本高中物理磁场经典练习习题题型分类含答案,文档

word完整版本高中物理磁场经典练习习题题型分类含答案,文档

寒假磁场题组练习题组一1.如下图,在xOy平面内,y≥0的地区有垂直于xOy平面向里的匀强磁场,磁感觉强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子走开磁场时的地点。

2.如下图,abcd是一个正方形的盒子,在cd边的中点有一小孔e,盒子中存在着沿ad方向的匀强电场,场强盛小为E,一粒子源不停地从a处的小孔沿ab方向向盒内发射同样的带电粒子,粒子的初速度为v0,经电场作用后恰巧从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感觉强度大小为B(图中未画出),粒子仍恰巧从e孔射出。

(带电粒子的重力和粒子之间的互相作用均可忽视不计)1)所加的磁场的方向怎样?2)电场强度E与磁感觉强度B的比值为多大?题组二a bv0E d e c4.如下图的坐标平面内,在y轴的左边存在垂直纸面向外、磁感觉强度大小B1=T的匀强磁场,在y轴的右边存在垂直纸面向里、宽度d=2m=10×-8kg、电量q=10×-4m的匀强磁场B。

某时辰一质量C的带电微粒(重力可忽视不计),从x轴上坐标为(m,0)的P点以速度v=×103m/s沿y轴正方向运动。

试求:1)微粒在y轴的左边磁场中运动的轨道半径;2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;3)要使微粒不可以从右边磁场界限飞出,B2应知足的条件。

5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。

图中右边有一边长为a的正三角形地区EFG(EF边与金属板垂直),在此地区内及其界限上也有匀强磁场,磁感觉强度大小为B,方向垂直于纸面朝里。

假定一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的地区,并经EF边中点H射入磁场地区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.(2014•江油市模拟)如图(甲)所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m,带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为30°.此时在圆形区域加如图(乙)所示周期性变化的磁场,以垂直于纸面向外为磁场正方向),最后电子运动一段时间后从N飞出,速度方向与进入磁场时的速度方向相同(与x轴夹角也为30°).求:(1)电子进入圆形磁场区域时的速度大小;(2)0≤x≤L区域内匀强电场场强E的大小;(3)写出圆形磁场区域磁感应强度B0的大小、磁场变化周期T各应满足的表达式.16.(2014•东城区一模)如图所示为一种获得高能粒子的装置.环形区域内存在垂直纸面向外、大小可调的匀强磁场.M、N为两块中心开有小孔的距离很近的极板,板间距离为d,每当带电粒子经过M、N板时,都会被加速,加速电压均为U;每当粒子飞离电场后,M、N板间的电势差立即变为零.粒子在电场中一次次被加速,动能不断增大,而绕行半径R不变.当t=0时,质量为m、电荷量为+q的粒子静止在M板小孔处.(1)求粒子绕行n圈回到M板时的速度大小v n;(2)为使粒子始终保持在圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时磁感应强度B n的大小;(3)求粒子绕行n圈所需总时间t.总17.(2014•锦州一模)如图所示,圆心为坐标原点、半径为R的圆将xoy平面分为两个区域,即圆内区域Ⅰ和圆外区域Ⅱ.区域Ⅰ内有方向垂直于xoy平面的匀强磁场B1.平行于x轴的荧光屏垂直于xoy平面,放置在坐标y=﹣2.2R的位置.一束质量为m电荷量为q动能为E0的带正电粒子从坐标为(﹣R,0)的A点沿x轴正方向射入区域Ⅰ,当区域Ⅱ内无磁场时,粒子全部打在荧光屏上坐标为(0,﹣2.2R)的M点,且此时,若将荧光屏沿y轴负方向平移,粒子打在荧光屏上的位置不变.若在区域Ⅱ内加上方向垂直于xoy平面的匀强磁场B2,上述粒子仍从A点沿x轴正方向射入区域Ⅰ,则粒子全部打在荧光屏上坐标为(0.4R,﹣2.2R)的N点.求(1)打在M点和N点的粒子运动速度v1、v2的大小.(2)在区域Ⅰ和Ⅱ中磁感应强度B1、B2的大小和方向.(3)若将区域Ⅱ中的磁场撤去,换成平行于x轴的匀强电场,仍从A点沿x轴正方向射入区域Ⅰ的粒子恰好也打在荧光屏上的N点,则电场的场强为多大?18.(2013•吉林二模)如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计.(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ;(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;(3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值.19.(2011•福建)如图甲,在x>0的空间中存在沿y轴负方向的匀强电场和垂直于xoy平面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B.一质量为m,带电量为q(q>0)的粒子从坐标原点O处,以初速度v0沿x轴正方向射入,粒子的运动轨迹见图甲,不计粒子的重力.(1)求该粒子运动到y=h时的速度大小v;(2)现只改变入射粒子初速度的大小,发现初速度大小不同的粒子虽然运动轨迹(y﹣x曲线)不同,但具有相同的空间周期性,如图乙所示;同时,这些粒子在y轴方向上的运动(y﹣t关系)是简谐运动,且都有相同的周期.Ⅰ.求粒子在一个周期T内,沿x轴方向前进的距离S;Ⅱ.当入射粒子的初速度大小为v0时,其y﹣t图象如图丙所示,求该粒子在y轴方向上做简谐运动的振幅A,并写出y﹣t的函数表达式.20.(2011•金华二模)如图甲所示,直角坐标系中直线AB与横轴x夹角∠BAO=30°,AO长为a.假设在点A处有一放射源可沿∠BAO所夹范围内的各个方向放射出质量为m、速度大小均为v、带电量为e的电子,电子重力忽略不计.在三角形ABO内有垂直纸面向里的匀强磁场,当电子从顶点A沿AB方向射入磁场时,电子恰好从O点射出.试求:①从顶点A沿AB方向射入的电子在磁场中的运动时间t;②磁场大小、方向保持不变,改变匀强磁场分布区域,使磁场存在于三角形ABO内的左侧,要使放射出的电子穿过磁场后都垂直穿过y轴后向右运动,试求匀强磁场区域分布的最小面积S.③磁场大小、方向保持不变,现改变匀强磁场分布区域,使磁场存在于y轴与虚线之间,示意图见图乙所示,仍使放射出的电子最后都垂直穿过y轴后向右运动,试确定匀强磁场左侧边界虚线的曲线方程.21.(2011•浙江模拟)如图,在直角坐标系xoy中,点M(0,1)处不断向+y方向发射出大量质量为m、带电量为﹣q的粒子,粒子的初速度大小广泛分布于零到v0之间.已知这些粒子此后所经磁场的磁感应强度大小为B,方向垂直于纸面向里,所有粒子都沿+x方向经过b区域,都沿﹣y的方向通过点N(3,0).(1)通过计算,求出符合要求的磁场范围的最小面积;(2)若其中速度为k1v0和k2v0的两个粒子同时到达N点(1>k1>k2>0),求二者发射的时间差.22.(2011•浙江模拟)隐身技术在军事领域应用很广.某研究小组的“电磁隐形技术”可等效为下面的模型,如图所示,在y>0的区域内有一束平行的α粒子流(质量设为M,电荷量设为q),它们的速度均为v,沿x轴正向运动.在0≤x<d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向里;在d≤x<3d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向外;在3d≤x<4d的区间有磁感应强度为B的匀强磁场,方向垂直纸面向里.要求α粒子流经过这些区域后仍能沿原直线运动,这样使第一象限某些区域α粒子不能到达,达到“屏蔽”α粒子的作用效果.则:(1)定性画出一个α粒子的运动轨迹;(2)求对α粒子起“屏蔽”作用区间的最大面积;(3)若v、M、q、B已知,则d应满足什么条件?23.(2011•湖北二模)如图所示,在xOy坐标系中分布着四个有界场区,在第三象限的AC 左下方存在垂直纸面向里的匀强磁场B1=0.5T,AC是直线y=﹣x﹣0.425(单位:m)在第三象限的部分,另一沿y轴负向的匀强电场左下边界也为线段AC的一部分,右边界为y轴,上边界是满足y=﹣10x2﹣x﹣0.025(单位:m)的抛物线的一部分,电场强度E=2.5N/C.在第二象限有一半径为r=0.1m的圆形磁场区域,磁感应强度B2=1T,方向垂直纸面向里,该区域同时与x轴、y轴相切,切点分别为D、F.在第一象限的整个空间存在垂直纸面向外的匀强磁场,磁感应强度B3=1T.另有一厚度不计的挡板PQ垂直纸面放置,其下端坐标P(0.1m,0.1m),上端Q在y轴上,且∠PQF=30°.现有大量m=1×10﹣6kg,q=﹣2×10﹣4C的粒子(重力不计)同时从A点沿x轴负向以v0射入,且v0取0<v0<20m/s之间的一系列连续值,并假设任一速度的粒子数占入射粒子总数的比例相同.(1)求所有粒子从第三象限穿越x轴时的速度;(2)设从A点发出的粒子总数为N,求最终打在挡板PQ右侧的粒子数N′.24.(2010•广东)如图(a)所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N1、N2构成,两盘面平行且与转轴垂直,相距为L,盘上各开一狭缝,两狭缝夹角θ可调(如图(b));右为水平放置的长为d的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N1,能通过N2的粒子经O点垂直进入磁场.O到感光板的距离为d/2,粒子电荷量为q,质量为m,不计重力.(1)若两狭缝平行且盘静止(如图(c)),某一粒子进入磁场后,竖直向下打在感光板中心点M上,求该粒子在磁场中运动的时间t;(2)若两狭缝夹角为θ0,盘匀速转动,转动方向如图(b).要使穿过N1、N2的粒子均打到感光板P1P2连线上.试分析盘转动角速度ω的取值范围(设通过N1的所有粒子在盘转一圈的时间内都能到达N2).25.(2010•南通二模)如图所示,有界匀强磁场磁感应强度为B,方向垂直纸面向里,MN 为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心O到MN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e.(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).(3)在(2)的情况下,求金属圆筒的发热功率.26.(2010•徐州三模)如图甲所示,竖直放置的金属板A、B中间开有小孔,小孔的连线沿水平放置的金属板C、D的中间线,粒子源P可以间断地产生质量为m、电荷量为q的带正电粒子(初速不计),粒子在A、B间被加速后,再进入金属板C、D间偏转并均能从此电场中射出.已知金属板A、B间的电压U AB=U0,金属板C、D长度为L,间距d=.两板之间的电压U CD随时间t变化的图象如图乙所示.在金属板C、D右侧有二个垂直纸面向里的均匀磁场分布在图示的半环形带中,该环带的内、外圆心与金属板C、D的中心O点重合,内圆半径R l=,磁感应强度B0=.已知粒子在偏转电场中运动的时间远小于电场变化的周期(电场变化的周期T未知),粒子重力不计.(1)求粒子离开偏转电场时,在垂直于板面方向偏移的最大距离;(2)若所有粒子均不能从环形磁场的右侧穿出,求环带磁场的最小宽度;(3)若原磁场无外侧半圆形边界且磁感应强度B按如图丙所示的规律变化,设垂直纸面向里的磁场方向为正方向.t=时刻进入偏转电场的带电微粒离开电场后进入磁场,t=时该微粒的速度方向恰好竖直向上,求该粒子在磁场中运动的时间为多少?27.(2009•福建)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10﹣3T,在x轴上距坐标原点L=0.50m的P处为离子的入射口,在y上安放接收器.现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不计其重力.(1)求上述粒子的比荷;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形.28.(2009•浙江)如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内与y 轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)在这束带电磁微粒初速度变为2V,那么它们与x轴相交的区域又在哪里?并说明理由.29.(2009•江苏)1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;(2)求粒子从静止开始加速到出口处所需的时间t;(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m、f m,试讨论粒子能获得的最大动能E km.30.(2012•浙江模拟)如图所示,在xOy 平面的第一、四象限内存在着方向垂直纸面向外,磁感应强度为 B 的匀强磁场,在第四象限内存在方向沿﹣y 方向、电场强度为 E 的匀强电场.从y 轴上坐标为(0,a)的P 点向磁场区发射速度大小不等的带正电同种粒子,速度方向范围是与+y 方向成30°﹣150°角,且在xOy 平面内.结果所有粒子经过磁场偏转后都垂直打到x 轴上,然后进入第四象限内的正交电磁场区.已知带电粒子电量为+q,质量为m,粒子重力不计.(1)所有通过第一象限磁场区的粒子中,求粒子经历的最短时间与最长时间的比值;(2)求粒子打到x 轴上的范围;(3)从x 轴上x=a 点射入第四象限的粒子穿过正交电磁场后从y 轴上y=﹣b 的Q 点射出电磁场,求该粒子射出电磁场时的速度大小.31如图25所示,足够大的平行挡板a1、a2竖直放置,间距6l.两板间存在两个方向相反的匀强磁场区域ⅰ和ⅱ,以水平面mn为理想分界面,ⅰ区的磁感应强度为b0,方向垂直纸面向外.a1、a2上各有位置正对的小孔s1、s2,两孔与分界面mn的距离均为l.质量为m、电量为+q的粒子经宽度为d的匀强电场有静止加速后,沿水平方向从s1进入ⅰ区,并直接偏转到mn上的p点,再进入ⅱ区,p点与a1板的距离是l的k倍,不计重力,碰到挡板的粒子不予考虑.(1)若k=1,求匀强电场的电场强度e;(2)若2<k<3,且粒子沿水平方向从s2射出,求出粒子在磁场中的速度大小v与k的关系式和ⅱ区的磁感应强度b与k的关系式.32.(18分) 如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ。

相关文档
最新文档