第七章_动态规划

合集下载

第07章 动态规划 《运筹学》PPT课件

第07章  动态规划  《运筹学》PPT课件
最优路径问题 资源分配问题 排序问题 投资问题 装载问题 生产计划与库存问题 生产过程的最优控制等
动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优

多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优

3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优

4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。

动态规划

动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。

最优控制-第七章-动态规划法

最优控制-第七章-动态规划法

当∆t很小时,有

t t
t
Lx, u, t d t Lx, u, t t
J x, t min
*
min
uU

uU

tf
t0
Lx, u, t d t Φ xt f
tf t t

t t
t
Lx, u, t d t
Lx, u, t d t Φ xt f
P1 11
7
P2 4 2
P3 4 4
12 A 4 8 Q1
4 3 2 2 Q3 B
5 Q2
第一段:P1、Q1的前站是始发站A。显见从
A到B的最优值为12,故得最优路线为AQ1P2Q3B。
综上可见,动态规划法的特点是: 1) 与穷举算法相比,可使计算量大大减少。如
上述最优路线问题,用动态规划法只须做10次
J x, t min Lx, u, t t J xt t , t t
* * uU


(8)
* J x , t J x, t * * J x x, t t J x, t t (12) x t x * T
A城出发到B城的行车时间最短。
P1 3 A 4 Q1 1
7
P2
2
P3 4
4
6 8 2 Q2
3 3 3
2 Q3 4
2
B
现将A到B分成四段,每一段都要作一最优决 策,使总过程时间为最短。所以这是一个多段最 优决策问题。 由图2可知,所有可能的行车路线共有8条。 如果将各条路线所需的时间都一一计算出来,并 作一比较,便可求得最优路线是AQ1P2Q3B,历时 12。这种一一计算的方法称为穷举算法。这种方 法计算量大,如本例就要做3×23=24次加法和7次 比较。如果决策一个n段过程,则共需(n-1)2n-1次 加法和(2n-1-1)次比较。可见随着段数的增多,计 算量将急剧增加。

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。

动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。

它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。

1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。

2.定义状态:确定存储子问题解的状态变量和状态方程。

3.确定边界条件:确定初始子问题的解,也称为边界状态。

4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。

5.求解最优解:通过遍历状态变量找到最优解。

1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。

可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。

2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。

给定一个序列,找到其中最长的递增子序列。

可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。

3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。

给定一系列矩阵,求解它们相乘的最小计算次数。

可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。

4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。

可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。

动态规划(生产和存储问题)

动态规划(生产和存储问题)

动态规划(生产和存储问题)一、动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。

20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。

1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。

例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。

二、动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。

通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。

阶段变量一般用k=1.2….n.表示。

1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。

它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。

通常还要求状态是可以直接或者是间接可以观测的。

描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。

变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。

用X(k)表示第k阶段的允许状态集合。

n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。

动态规划算法教学PPT

动态规划算法教学PPT

03
动态规划算法的实现步骤
明确问题,建立数学模型
1
确定问题的目标和约束条件,将其转化为数学模 型。
2
理解问题的阶段划分,将问题分解为若干个子问 题。
3
确定状态变量和决策变量,以便描述子问题的状 态和决策。
划分阶段,确定状态变量和决策变量
01
根据问题的阶段划分,将问题分解为若干个子问题。
02
确定状态变量和决策变量,以便描述子问题的状态 和决策。
02
将子问题的最优解组合起来,得到原问题的最优解。
对最优解进行验证和性能评估,确保其满足问题的要求。
03
04
动态规划算法的优化技巧
分支定界法
分支定界法是一种求解优化问题的算 法,它通过不断生成问题的分支并确 定每个分支的界限,来寻找最优解。 在动态规划中,分支定界法可以用来 优化状态转移方程,减少计算量。
详细描述
多目标规划问题在实际生活中应用广泛,如资源分配、项目计划、城市规划等领 域都有涉及。常用的求解多目标规划的方法包括权重和法、帕累托最优解等。
多阶段决策问题
总结词
多阶段决策问题是动态规划中的一类,解决的问题需要在多个阶段做出决策,每个阶段的决策都会影响到后续阶 段的决策。
详细描述
多阶段决策问题在实际生活中应用广泛,如生产计划、库存管理、路径规划等领域都有涉及。常用的求解多阶段 决策问题的方法包括递归法、动态规划等。
特点
动态规划算法具有最优子结构、重叠 子问题和最优解性质等特征。
动态规划算法的应用领域
计算机科学
在计算机科学中,动态规划算法广泛应用于字符 串处理、排序、数据压缩和机器学习等领域。
电子工程
在电子工程中,动态规划算法用于信号处理、通 信和控制系统等领域。

动态规划(完整)

动态规划(完整)

(3) 决策、决策变量
所谓决策就是确定系统过程发展的方案,
决策的实质是关于状态的选择,是决策者从
给定阶段状态出发对下一阶段状态作出的选
择。
用以描述决策变化的量称之决策变量, 和状态变量一样,决策变量可以用一个数, 一组数或一向量来描述.也可以是状态变量
的函数,记以 xk xk (sk ) ,表示于 k 阶段状
阶段变量描述当前所处的阶段位置,一 般用下标 k 表示;
(2) 确定状态
每阶段有若干状态(state), 表示某一阶段决策 面临的条件或所处位置及运动特征的量,称为 状态。反映状态变化的量叫作状态变量。 k 阶段的状态特征可用状态变量 sk 描述;
每一阶段的全部状态构成该阶段的状态集合Sk ,并有skSk。每个阶段的状态可分为初始状 态和终止状态,或称输入状态和输出状态, 阶段的初始状态记作sk ,终止状态记为sk+1 ,也是下个阶段的初始状态。
状态转移方程在大多数情况下可以由数学公 式表达, 如: sk+1 = sk + xk;
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
• 2、在全过程最短路径中,将会出现阶段的最优路
径;-----递推性
• 3、前面的终点确定,后面的路径也就确定了,且 与前面的路径(如何找到的这个终点)无关;----
-无后效性
• 3、逐段地求解最优路径,势必会找到一个全过程
最优路径。-----动态规划
§7.1多阶段决策问题
• 动态规划是解决多阶段最优决策的方法, 由美国数学家贝尔曼(R. Bellman) 于 1951年首先提出;

动态规划的基本思想

动态规划的基本思想

动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。

它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。

动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。

这种思想在很多实际问题中都能够得到应用。

动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。

2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。

3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。

4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。

5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。

6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。

动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。

在这个过程中,重叠子问题的求解是动态规划的特点之一。

由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。

动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。

通过利用已解决的子问题的最优解,可以有效地解决原问题。

动态规划算法在实际应用中有着广泛的应用。

它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。

动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。

总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。

动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。

动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。

动态规划PPT学习教案

动态规划PPT学习教案
第14页/共45页
15
第一节 动态规划的基本 概念和基本方程
6、阶段指标、指标函数和最优指标函数 (1)衡量某阶段决策效益优劣的数量指标,称为
阶段指标,用vk(Sk,dk)表示第k阶段的阶段指标。 在不同的问题中,其含义不同。它可以是距离、 利润、成本等。 在引例中,用dk=vk(Sk,dk)表示在第k阶段由点Sk 到点Sk+1=dk(Sk)距离。如d2(B3,C1)=6。
第12页/共45页
13
第一节 动态规划的基本 概念和基本方程
S1 A,S2 B1, B2, B3 ,S3 C1,C2,C3 ,S4 D1, D2
(2)状态应具有无后效性(即马尔可夫性)。即如果某 阶段状态给定,则在这阶段以后过程的发展不受这阶段 以前各阶段状态的影响。 3、决策与决策变量。在某阶段对可供选择状态的决定( 或选择),称为决策。描述的变量称为决策变量。常用 dk(Sk)表示第k阶段处于状态Sk时的决策变量,它是状态 变量的函数。决策变量允许取值的范围,称为允许决策集 合,常用Dk(Sk)表示。显然dk(Sk)∈Dk(Sk)。 如在引例的第二阶段中,若从B1出发,D2(B1)={C1, C2, C3}如果决定选取B1 C2,则d2(B1)= C2。
A→B1→C2→D3→E 其长度为12。 显然,这种方法是不经济的,特别是当阶段数很多,各 阶段可供的选择也很多时,这种解法甚至在计算机上完 成也是不现实的。
第6页/共45页
7
第一节 动态规划的基本 概念和基本方程
由于我们考虑的是从全局上解决求A到E的最短路问题,
而不是就某一阶段解决最短路线,因此可考虑从最后一阶段 开始计算,由后向前逐步推至A点:
C
2
min
C2D1 C2 D2

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第7章 动态规划

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第7章 动态规划
即 f4 (7) = 4, f4 (8) = 3 。 第二步 k=3,状态变量 s3 可取三个值④、⑤、⑥,这是经过一个中途点到达终点 E 的
两级决策问题,从城市④到 E 有两条路线,需加以比较,取其中最短的,即
f3 (4)
=
min
⎧d ⎩⎨d
(4, 7) + (4,8) +
f
4
(7)⎫ ⎬
f4 (8) ⎭
表 7-1
i月
1
2
3
4
yi (需求)
2
3
2
4
这也是一个 4 阶段决策问题。 例 3 投资决策问题
某公司现有资金 Q 万元,在今后 5 年内考虑给 A、B、C、D 四个项目投资,这些项目 的投资期限、回报率均不相同,问应如何确定这些项目每年的投资额,使到第五年末拥有资
金的本利总额最大。 这是一个 5 阶段决策问题。
c(
j)
=
⎧ ⎨⎩a
0 + bj
( j = 0) ( j = 1, 2,3,L , m)
(千元)
其中 a 为生产的固定费用, b 为可变生产费率, m 为生产能力。供应需求所剩余产品应存 入仓库,每月库存 j 单位产品的费用为
E( j) = c * j (千元)
计划开始和计划期末库存量都是 0。试制定 4 个月的生产计划,在满足用户需求的条件下使 总费用最小。
现在我们利用动态规划最优性原理,由最后一段路线开始,向最初阶段递推求解,逐
步求出各段各点到终点 E 的最短路线,最后求得 A 点到 E 点的最短路线。 上面我们已经规定了本例的阶段数、状态变量、决策变量,给出了转移方程、指标函数
等。再用 d (sk , uk ) 表示由状态 s k 点出发,采用决策 uk 到达下一阶段 sk+1 点时的两点间距离。 第一步从 k=4 开始,状态变量 s4 可取两种状态⑦、⑧,它们到 E 点的路长分别为 4,3。

第七章 动态规划h 运筹学 ppt课件

第七章 动态规划h 运筹学 ppt课件

5 B1 4
2 A1
3
7
B2
6 5
3
2 B3 2
各阶段状态集合分别为:
C1 2 5 6
C2 3 2
C3 1
C4 7
D3
1
E 5 D
2
S1={A}
S2={B1,B2,B3}
S3={C1,C2,C3,C4} S4={D1,D2}
状态的选取应当满足无后效性:系统从某个阶段往后的发
展演变,完全由系统本阶段所处的状态及决策所决定,与
从B2出发,可以选择C1,C2,C3,C4,即允许决策集合为: D2(B2)={C1,C2,C3,C4} 当决定选择C3时,可以表示为:u2(B2)=C3
4.策略(policy)
当各个阶段的决策确定以后,各阶段的决策形成一个决 策序列,称此决策序列为一个策略.
使系统达到最优效果的策略称为最优策略。
2 A1
3
5 B1 4
7
B2
6 5
3
2 B3 2
C1 2 5 6
C2 3 2
C3 1
C4 7
状态转移方程为:sk+1= uk(sk)
D3
1
E 5 D
2
6.指标函数和最优指标函数 衡量所选策略优劣的数量指标称为指标函数。它定义在全 过程和所有后部子过程,常用Vk,n表示,即: Vk,n=Vk,n(sk,uk,sk+1,…,sn+1) 当k=1时,V1,n表示初始状态为s1,采用策略p1,n时的指标 函数值。 V1,n=V1,n(s1,u1,s2,…,sn+1)
3 D1 3
0
55
E
D2
从前向后标号:
02

动态规划的逆推解法

动态规划的逆推解法
西安邮电大学 现代邮政学院
Xi'an post and telecommunications university modern post College
第七章 动态规划
主讲教师 贾玉花
主要内容
1 动态规划的基本概念
2 动态规划的基本方程
运 筹
3 动态规划的逆推解法

4 动态规划的应用
3 动态规划的逆推解法
f2 s2
max v 0x2 s2 2
s2, x2
* f3 (s3 )
max
x3 s3
x22 (s2
x2 )
x2*
2 3
s2
f2 s2
4 27
s23
式3
3 动态规划的逆推解法
第1阶段:
s2 s1 x1
v1s1, x1 x1
f2 s2
4 27
s23
4 27
s1
x1 3
max z x1x22x3
离散模型
动态规划模型
变量离散取值
连续模型
变量连续取值
3 动态规划的逆推解法
用逆推解法求解问题: 阶段k:按变量个数划分成3个阶段
状态变量sk:第k阶段到第3阶段剩余变量
max z x1x22x3
的和
s.t
xx1i
x2 0,
x3 c(c i 1,2,3
0)
决策变量:取问题中的变量xk为决策变量 决策允许集合:0≤xk≤sk 状态转移方程:sk+1=sk-xk
递推方程:fk(sk)=max{vk(sk,xk)×fk+1(sk+1)}
边界条件:f4(s4)=1
式1
3 动态规划的逆推解法

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
基本模型
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>

动态规划

动态规划



状态 B1 在决策 u2 ( B1 ) 作用下的一个新的状态,记作u2 ( B1 ) C2 . 4、策略 策略是一个按顺序排列的决策组成的集合。由过程的第 k 阶段开始到 终止状态为止的过程,称为问题的后部子过程(或称为 k 子过程)。
返回 结束
动态规划
由每段的决策按照顺序排列组成的决策函数序列
k 1,2,, n.
对于动态规划模型的指标函数,应具有可分离性,并满足递推关系
Vk ,n k [ sk , uk ,Vk 1,n ( sk 1 ,, sn1 )]
在实际问题中指标函数都满足这个性质。 常见的指标函数有下列两种形式 (1)过程和任一子过程的指标是它所包含的各阶段指标的和,即
指标函数的最优值,称为最优值函数,记作 f k (sk ) 它表示从第 k 阶段 的状态 sk 开始到第 n 阶段的终止状态的过程,采取最优策略所得到的 指标函数值。即
f k ( sk ) opt Vk ,n ( sk , uk ,, sn1 )
uk ,,un
返回 结束
动态规划
在不同的问题中,指标函数的含义不同,它可能是距离,利润,成本 ,产品的产量,资源消耗等。 二、动态规划的基本思想和基本方程 结合最短路问题介绍动态规划的基本思想 。最短路线有一个重要特性,
这种递推关系式称为动态规划的基本方程。
返回
结束
动态规划
资源分配问题 某工业部门根据国家计划的安排,将某种高效率的设备 五台,分配给所属的甲、乙、丙三个工厂,各工厂若获得 这种设备之后,可以为国家提供盈利如表2-2所示。
问这五台设备应如何分配给工厂,才能使国家得到的 盈利最大。
返回
结束
动态规划
表2-2

动态规划

动态规划

3 2 A 4 B2 B1 1 2 3 1 3
C1 C2 4 C3 3
1 D
第三阶段( A → B ): A 到B 有二条路线。 有二条路线。 第三阶段( f3(A)1 = d(A, B1 )+ f2 ( B1 ) =2+4=6 + + = f3 (A)2 = d(A, B2 )+ f2 ( B2 ) =4+3=7 + + = + ∴ f3 (A) = min d(A, B1 )+ f2 ( B1 ) = min{6,7}=6 { } d(A, B2 )+ f2 ( B2 ) + (最短路线为 最短路线为A→B1→C1 →D) 最短路线为
3 2 A 4 B2 B1 1 2 3 1 C3 C2 4 3 3 C1
1 D
3 2 A 4 B2 B1 1 2 3 1 3
C1 C2 4 C3 3
1 D
整个计算过程分三个阶段,从最后一个阶段开始。 解:整个计算过程分三个阶段,从最后一个阶段开始。 第一阶段( 第一阶段(C →D): C 有三条路线到终点 。 ): 有三条路线到终点D 显然有 f1 (C1 ) = 1 ; f1(C2 ) = 3 ; f1 (C3 ) = 4
动 态 规 划
(Dynamic programming)
动态规划的基本思想 最短路径问题 投资分配问题 背包问题
动态规划是用来解决多阶段决策过程最优 化的一种数量方法。其特点在于, 化的一种数量方法。其特点在于,它可以把一 维决策问题变换为几个一维最优化问题, 个n 维决策问题变换为几个一维最优化问题,从 而一个一个地去解决。 而一个一个地去解决。 需指出:动态规划是求解某类问题的一种 需指出: 方法,是考察问题的一种途径, 方法,是考察问题的一种途径,而不是一种算 必须对具体问题进行具体分析, 法。必须对具体问题进行具体分析,运用动态 规划的原理和方法,建立相应的模型, 规划的原理和方法,建立相应的模型,然后再 用动态规划方法去求解。 用动态规划方法去求解。

EX7-20132022

EX7-20132022

第七章动态规划{最长公共子序列、矩阵链乘、点对最短路径}仅供参考7.5用算法LCS来找出两个字符串A=”xzyzzyx”和B=”zxyyzxz”的最长公共子序列的长度。

给出一个最长公共子序列。

解:算法LCS填表过程如下:由回溯法以求得最长公共子序列(长度为4)有以下两个:1.(上行方向回溯):xyyz,逆序zyyx为所求。

2.(左行方向回溯):zzyx,逆序xyzz为所求。

7.11对于以下5个矩阵应用算法MATCHAINM1:2*3,M2:3*6,M3:6*4,M4:4*2,M5:2*7 (a)找出这5个矩阵相乘需要的最小数量算法的次数(即C[1,5])。

(b)请给出一个括号化表达式,使在这种次序下达到乘法的次数最少。

解:矩阵链乘算法MATCHAIN。

建立矩阵C[n][n],其中Cij表示矩阵i到j的链乘的最小次数。

递归式如下:{}{)(,0,**],[]1,[min 1],[j i if j k i r r r j k C k i C j k i j i C =<=<++-+=目标为C[1,n]。

过程如下表:M1:2×3 M2:3×6 M3:6×4 M4:4×2 M5:2×7 首先,为了找出这五个矩阵相乘需要的最少数量乘法的次数的结合方法,使用动态规划方法,填写二维表C 。

r 为记录顺序规模的数组{2,3,6,4,2,7}. 动态规划的填表公式如下:C[i,j]=min{C[i,k-1]+C[k,j]+r i r k r j+1},并且通过加括号指出当前规模的结合方式。

所以,这五个矩阵相乘需要的最少数量乘法的次数为:124 最佳乘法结合次序为如下表达式:(M1(M2(M3M4)))M57.15在如图7.7所示的含权有向图上执行所有点对最短路径算法。

解:记L[i,j]为初始状态点i 到点j的路径长;k j i d ,为矩阵k D 的第i 行j 列元素,表征从点i 到点j ,除了可能经过顶点1、顶点2或者同时经过他们以外,不经过任何其他顶点的最短路径,等等。

动态规划的基本方程

动态规划的基本方程

第七章 动态规划主要内容2动态规划的基本概念动态规划的逆推解法运筹学13动态规划的应用4动态规划的基本方程2动态规划的基本方程例1:如图所示线路网络,求A到G的最短路线。

AB 1B 2C 1C 2C 3C 4D 1D 2D 3E 1E 2E 3F 1F 2G538761366835338422123335526643最短路线的性质:如果由起点A经过P点和H点而到达终点G是一条最短路线,则由点P出发经过H点到达点G的这条子路线,必定是从点P 到点G的最短路线。

根据最短路线的性质,寻找最短路线的方法,就是从最后一段开始,由后向前逐步递推,求出各点到G 点的最短路线。

1234562动态规划的基本方程运筹学k=6第六阶段f6(F1)=4f6(F2)=3F1F2G43s6={F1,F2}式12动态规划的基本方程k =5第五阶段f 5(E 1)=min {7,8}=7s 5={E 1,E 2,E 3}E 1E 2E 3F 1F 2G35526643()()()()()73543min ,,min 262151611515=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=F f F E d F f F E d E f ①:d 5(E 1,F 1)+f 6(F 1)=3+4=7②:d 5(E 1,F 2)+f 6(F 2)=5+3=8()115F E u =E 1→F 1→G2动态规划的基本方程k=5第五阶段s k={E1,E2,E3}E1 E2 E3F1F2G 355 26 643()()()()()73543min,,min262151611515=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=FfFEdFfFEdEf()115FEu= ()()()()()53245min,,min262251612525=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=FfFEdFfFEdEf()225FEu= ()()()()()93646min,,min262351613535=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=FfFEdFfFEdEf()235FEu=2动态规划的基本方程k =4第四阶段s 4={D 1,D 2,D 3}()()()()()75272min ,,min 252141511414=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=E f E D d E f E D d D f ()214E D u =D 1D 2D 3E 1E 2E 3F 1F 2G22123335526643()()()()()69251min ,,min 353242522424=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=E f E D d E f E D d D f ()224E D u =()()()()()89353min ,,min 353342523434=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=E f E D d E f E D d D f ()432u D E =2动态规划的基本方程k =3第三阶段s 3={C 1,C 2,C 3,C 4}()()()()()136876min ,,min 242131411313=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=D f D C d D f D C d C f ()113D C u =C 1C 2C 3C 4D 1D 2D 3E 1E 2E 3F 1F 2G6835338422123335526643()()()()()106573min ,,min 242231412323=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=D f D C d D f D C d C f ()123D C u =()()()()()98363min ,,min 343332423333=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=D f D C d D f D C d C f ()233D C u =()()()()()128468min ,,min 343432424343=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=D f D C d D f D C d C f ()343D C u =2动态规划的基本方程k =2第二阶段s 2={B 1,B 2}()()()()()()()1396103131min ,,,min 33312232121311212=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=C f C B d C f C B d C f C B d B f ()212C B u =B 1B 2C 1C 2C 3C 4D 1D 2D 3E 1E 2E 3F 1F 2G8761366835338422123335526643()()()()()()()1612697108min ,,,min 43422333222322222=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+++=C f C B d C f C B d C f C B d B f ()322C B u =2动态规划的基本方程k =1第一阶段s 1={A }()()()()()18163135min ,,min 2221121111=⎭⎬⎫⎩⎨⎧++=⎭⎬⎫⎩⎨⎧++=B f B A d B f B A d A f ()11B A u =AB 1B 2C 1C 2C 3C 4D 1D 2D 3E 1E 2E 3F 1F 2G5387613668353384221233355266432动态规划的基本方程()11B A u =()181=A f ()1312=B f ()212C B u =()1622=B f ()322C B u =()1313=C f ()113D C u =()1023=C f ()123D C u =()933=C f ()233D C u =()1243=C f ()343D C u =()714=D f ()214E D u =()624=D f ()224E D u =()834=D f ()234E D u =()715=E f ()115F E u =()525=E f ()225F E u =()935=E f ()235F E u =()416=F f ()G F u =16()326=F f ()G F u =26计算结果汇总A →B 1B 1→C 2C 2→D 1D 1→E 2E 2→F 2F 2→GA →B 1→C 2→D 1→E 2→F 2→G2动态规划的基本方程递推关系()()()()(){} ()⎪⎩⎪⎨⎧==+=+1,2,3,4,5,6,,min771ksfsufsusdsfkkkkkkkukkk边界条件递推关系一般形式()()()()(){}()⎪⎩⎪⎨⎧-==+=+++1,,1,,0,111nnksfsufsusvoptsfnnkkkkkkkukkk()()()()(){}()⎪⎩⎪⎨⎧-==⨯=+++1,,1,,1,,111nnksfsufsusvoptsfnnkkkkkkkukkk加法合成乘法合成2动态规划的基本方程动态规划的最优性原理:作为整个过程的最优策略,无论过去的状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、基本方程 根据最优性定理,可以写出动态规划递推方程, 即基本方程:
Vkn(Sk,Pkn)= ∑ Vj(Sj, Uj),j=k,…n时, fk(Sk)=opt{ Vk (Sk,Uk)+ fk+1(Sk+1)} fn+1(Sn+1)=0
Vkn(Sk,Pkn)= ∏ Vj(Sj, Uj),j=k,…n时, fk(Sk)=opt{ Vk (Sk,Uk)·fk+1(Sk+1)} fn+1(Sn+1)=1 其中的fn+1(Sn+1)为边界条件。
3. 航天飞机飞行控制问题:由于航天飞机的 运动的环境是不断变化的,因此就要根据航天飞机 飞行在不同环境中的情况,不断地决定航天飞机的 飞行方向和速度(状态),使之能最省燃料和实现 目的(如软着陆问题)。
不包含时间因素的静态决策问题(本质上是一 次决策问题)也可以适当地引入阶段的概念,作为 多阶段的决策问题用动态规划方法来解决。 4 . 线性规划、非线性规划等静态的规划问题也 可以通过适当地引入阶段的概念,应用动态规划方 法加以解决。
二、动态规划的基本思想和基本方程
1、Bellman最优性定理
一个过程的最优策略具有这样的性质:即无论初始状 态及初始决策如何,对于先前决策所形成的状态而言, 其以后所有的决策应构成最优策略。 换句话说,最优策略只能由最优子策略构成。
2、思想方法:在求解过程中,各阶段的状态和决策, 对其后面的阶段来说,只影响其初始状态,而不影响 后面的最优策略。——无后效性 方法:“顺序编号,逆序求解”
1 D
3 1
解:整个计算过程分三个阶段,从最后一个阶段开始。
第三阶段(C →D): C 有三条路线到终点D 。
显然有 f3 (C1 ) = 1 ; f3(C2 ) = 3 ; f3 (C3 ) = 4
3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
1 D
3 1
第二阶段(B →C): B 到C 有六条路线。
1
2
3
5
6
二、解题思路 三、应用范围 1、动态 2、静态 四、缺点 1、建模后,没有统一的方法 2、维数障碍
第二节 动态规划的基本概念
一、基本概念
1、阶段: 把一个问题的过程,恰当地分为若干个相互联系的 阶段,以便于按一定的次序去求解。
描述阶段的变量称为阶段变量,用k表示。阶段的划分, 一般是根据时间和空间的自然特征来进行的,但要便于 一个数、 年、月、 问题转化为多阶段决策。 一组数、
可能是距离、利润、成本、产量或资源消耗等。
7、指标函数:Vkn(Sk, Pkn),k阶段,Sk状态下,作出Pkn 子策略带来的效果。动态规划模型的指标函数,应具有可分
离性,并满足递推关系。
阶段指标与指标函数的关系有两种: 1)指标函数是它所含有的各阶段的阶段指标之和。 即Vkn(Sk,Pkn)= ∑ Vj(Sj, Uj),j=k,…n 则有Vkn(Sk,Pkn)= Vk (Sk,Uk)+ Vk+1 n(Sk+1,Pk+1 n) 2)指标函数是它所含有的各阶段的阶段指标之积。 即Vkn(Sk,Pkn)= ∏Vj(Sj, Uj),j=k,…n 则有Vkn(Sk,Pkn)= Vk (Sk,Uk)·Vk+1 n(Sk+1,Pk+1 n) 8、最优指标函数:指标函数的最优值,称为最优值 函数。用fk(Sk)=optVkn(Sk,Pkn) opt表示最优化,常取max或min。
4、确定状态转移方程
根据k 阶段状态变量和决策变量,写出k+1阶段状态变 量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动态规 划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函数 是指从第k 阶段状态出发到第n 阶段末所获得收益的最 优值,最后写出动态规划基本方程。 以上五步是建立动态规划数学模型的一般步骤。由于 动态规划模型与线性规划模型不同,动态规划模型没有统 一的模式,建模时必须根据具体问题具体分析,只有通过 不断实践总结,才能较好掌握建模方法与技巧。
14 10
C1
9
3
D1
6
5 2
A
5
1
B2 B3
6
C2
8
4 13
5 12 11
E
D2
10
C3
路线为A→B2→C1 →D1 →E ,最短路径为19
二、资源分配问题 一维资源分配
现有数量为a的资源,用于生产n种产品,第i种产品 分配xi,带来gi(xi)收益,问如何分配使总收益最大? 据此,有下式:
max Z
第三节 动态规划应用举例
一、最短路径问题
例一、从A 地到D 地要铺设一条煤气管道,其中需经过 两级中间站,两点之间的连线上的数字表示距离,如 图所示。问应该选择什么路线,使总距离最短?
3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
1 D
3 1
3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
s 2 T1 ( s 1 , u 1 ) s 3 T 2 ( s1 , u1 , s 2 , u 2 ) s k 1 Tk ( s1 , u1 , s 2 , u 2 , , s k , u k )
图示如下: s1 u1 1 s2 u2 2 s3 sk uk k sk+1
C1
C2 4 C3 3
1 D
3 1
d( B2,C1 ) + f3 (C1 ) 2+1 f2 ( B2 ) = min d( B2,C2 ) + f3 (C2 ) = min 3+3 d( B2,C3 ) + f3 (C3 ) 1+4 3 = min 6 = 3 (最短路线为B2→C1 →D) 5
3
这时,机器的年完好率为a,即如果年初完好机 器的数量为u,到年终完好的机器就为au, 0<a<1。
在低负荷下生产时,产品的年产量h和投入生产 的机器数量u2的关系为 h=h(u2)
相应的机器年完好率b, 0< b<1。
假定开始生产时完好的机器数量为s1。要求制 定一个五年计划,在每年开始时,决定如何重新 分配完好的机器在两种不同的负荷下生产的数量, 使在五年内产品的总产量达到最高。

n
gi ( xi )
i1
n xi a i 1 x 0 i 1 .2 . .n i
第七章 动 态 规 划
(Dynamic programming)
动态规划的基本概念、基本思想
动态规划模型的建立和求解
动态规划的应用:背包问题;生产
经营问题;设备更新问题;复合系统 工作可靠性问题
第一节 动态规划
动态规划(Dynamic Programming)是用来解决 多阶段决策过程最优化的一种数量方法。其特 点在于,它可以把一个n 维决策问题变换为几个 一维最优化问题,从而一个一个地去解决。 需指出:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算 法。必须对具体问题进行具体分析,运用动态 规划的原理和方法,建立相应的模型,然后再 用动态规划方法去求解。
路段 一个向 2、状态:表示每个阶段开始所处的自然状况或客观 量 条件。通常一个阶段有若干个状态,描述过程状态的
变量称为状态变量,用Sk表示。 状态变量的取值有一定的允许集合或范围,此集合 称为状态允许集合。
3、决策:表示当过程处于某一阶段的某个状态时, 可以作出不同的决定,从而确定下一阶段的状态,这 种决定称为决策。
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
1 D
3 1
第一阶段( A → B ): A 到B 有二条路线。
f3(A)1 = d(A, B1 )+ f2 ( B1 ) =2+4=6 f3 (A)2 = d(A, B2 )+ f2 ( B2 ) =4+3=7 ∴ f1 (A) = min d(A, B1 )+ f2 ( B1 ) = min{6,7}=6 d(A, B2 )+ f2 ( B2 ) (最短路线为A→B1→C1 →D)
三、建立动态规划模型的步骤 1、划分阶段 划分阶段是运用动态规划求解多阶段决策问题的第一 步,在确定多阶段特性后,按时间或空间先后顺序, 将过程划分为若干相互联系的阶段。对于静态问题要 人为地赋予“时间”概念,以便划分阶段。
2、正确选择状态变量
选择变量既要能确切描述过程演变又要满足无后效性, 而且各阶段状态变量的取值能够确定。一般地,状态 变量的选择是从过程演变的特点中寻找。 3、确定决策变量及允许决策集合 通常选择所求解问题的关键变量作为决策变量,同时 要给出决策变量的取值范围,即确定允许决策集合。
描述决策的变量,称为决策变量,用Uk(Sk )表示。决 策变量是状态变量的函数。 在实际问题中决策变量的取值往往在某一范围之内, 此范围称为允许决策集合,用Dk(Sk )表示。
4、状态转移方程
状态转移方程是确定过程由 一个状态到另一个状态的演 变过程。如果第k阶段状态变 量sk的值、该阶段的决策变量 一经确定,第k+1阶段状态变 量sk+1的值也就确定。
s 2 T1 ( s 1 , u 1 ) s3 T2 ( s2 , u 2 ) sk 1 Tk ( sk , uk )
动态规划中能 处理的状态转移 方程的形式。
5、策略:是一个按顺序排列的决策组成的集合。在 实际问题中,可供选择的策略有一定的范围,称为允 许策略集合。从允许策略集合中找出达到最优效果的 策略称为最优策略。 全过程策略:U1(S1), U2(S2),…, Un(Sn) P1n={Ui(Si)}, i=1,…,n 子过程策略:Uk(Sk), Uk+1(Sk+1),…, Un(Sn) Pkn={Ui(Si)}, i=k,…,n 6、阶段指标:Vk(Sk, Uk),k阶段,Sk状态下,作出Uk决 策带来的效果。在不同的问题中,指标的含义是不同的,它
相关文档
最新文档