机械原理_凸轮机构设计

合集下载

机械原理凸轮机构设计

机械原理凸轮机构设计

凸轮机构的设计一、简介凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。

凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。

与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。

因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。

凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。

凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。

二、凸轮机构的工作原理由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。

凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。

从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。

尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。

为了使从动件与凸轮始终保持接触,可采用弹簧或施加重力。

具有凹槽的凸轮可使从动件传递确定的运动,为确动凸轮的一种。

一般情况下凸轮是主动的,但也有从动或固定的凸轮。

多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。

凸轮机构结构紧凑,最适用于要求从动件作间歇运动的场合。

它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中得到广泛应用。

但凸轮机构易磨损,有噪声,高速凸轮的设计比较复杂,制造要求较高。

一、工作过程和参数在凸轮机构中最常见的运动形式为凸轮机构作等速回转运动,从动件往复移动。

以图6-8为例(对心外轮廓盘形凸轮机构)。

首先介绍一下本图中各构件的名称。

1,运动分析:停CA4ϕ2、参数①推程(升程)-- 从动件自最低位置升到最高位置的过程 ②推程角(升程角)--推动从动件实现推程时的凸轮转角(ϕ1) ③回程 -- 从动件自最高位置升到最低位置的过程 ④回程角 --从动件从最高位置回到最低位置时的 凸轮转角(ϕ3)⑤远停角(远休止角)从动件在最高位置停止不动,与此对应的凸轮转角。

机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。

凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。

二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。

其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。

2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。

跟随件可以是滑块、滚子、摇臂等。

3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。

连杆可以是直杆、摇杆等。

三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。

2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。

3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。

例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。

4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。

四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。

它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。

摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。

2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。

它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。

滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。

3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。

它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。

滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。

机械原理,孙恒,西北工业大学版第9章凸轮机构及其设计

机械原理,孙恒,西北工业大学版第9章凸轮机构及其设计

从动件----直动、摆 动 。
凸轮机构特点:机构简单紧凑,推杆能达到各种预期 的运动规律。 但凸轮廓线与推杆之间为点、线接触,易磨损。
2、凸轮机构的分类
按凸轮形状分:盘形凸轮、平板凸轮、圆柱凸轮 按推杆形状分:尖顶推杆、滚子推杆、平底推杆
封闭方式:力封闭(如弹簧)、几何封闭
§9-2 推杆运动规律 名词介绍:
3、解析法设计凸轮轮廓曲线 ① 偏置直动滚子推杆盘形凸轮机构
建立 oxy 坐标系, B0 点 为凸轮推程段廓线起 始点。 rr -----滚子半径
x ( s0 s) sin e cos y ( s0 s) cos e sin
此式为凸轮理 论廓线方程式。 e—偏心距
得推杆推程运动规律:
S h / 0 v h / 0 a0
等速运动规律有刚性 冲击。(加速度有无 穷大值的突变)
同理可推得等速运动回程时运动规律:
S h(1 / 0 ) v h / 0 a0
(2)二次多项式运动规律 二次多项式表达式:

S C 0 C1 C 2 2 v ds / dt C1 2C 2 a dv / dt 2C 2

2
2
等减速回程: 2 2 S 2h( 0 ) / 0
) /0 v 4h ( 0 a 4h / 0
2
2

2
(3) 五次多项式运动规律
s C0 C1 C2 2 C3 3 C4 4 C5 5 v C1 2C2 3C3 2 4C4 3 5C5 4 a 2C2 2 6C3 2 12C4 2 2 20C5 2 3
回程时的运动方程:

机械原理 4 凸轮机构及其设计

机械原理 4 凸轮机构及其设计

dS e
dS e
arctg d
arctg d
S S0
S r02 e2
η ——转向系数 δ ——从动件偏置方向系数
由式可知:r0↓α ↑
三、按轮廓曲线全部外凸的条件确定平底从动件盘形凸轮机构 凸轮的基圆半径
r0
0
b'
B1
B2 r0
B3
B0

B8
O
B7
§4-2 常用从动件的运动规律
一、几个概念 尖底偏置直动从动件盘形凸轮机构 1、基圆:凸轮轮廓上最小矢径为半径的圆
2、偏距e:偏距圆
e
A
w
B
r0 O
C
D
h h
二、分析从动件的运动
行程:h(最大位移) 推程运动角:φ=BOB′=∠AOB1 运休止角:φS=∠BOC=∠B1OC1 回程运动角:φ′=∠C1OD 近休止角:φS′=∠AOD


f (x1, y1,) 2(x1
x) dx
d
2( y1
y) dy
d
0
联立求解x1和y1,即得滚子从动件盘形凸轮的实际廓线参数方程:
x1 x rT y1 y rT
dy / d
2
2

dx
d



dy
d


dx / d
b'' B6
B5 B4
四、滚子半径的选择
rT
rT C
rT
B
rT

' O
A '
'
滚子半径rT必须小于理论轮廓曲线外凸部分的
最曲率半径ρ

机械原理-第9章凸轮机构及其设计

机械原理-第9章凸轮机构及其设计
③等加速回程段:(见书上) ④等减速回程段:(见书上)
①等加速推程段:
s = 2hδ2/δ02 v = 4hω δ /δ02 a = 4h ω 2/ δ02
②等减速推程段: s = h-2h(δ0-δ)2/δ02 v = 4hω(δ0-δ)/ δ02 a = -4hω2/δ02
由图知,有柔性冲击。
凸轮机构的适用场合: 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
2.凸轮机构的分类
盘形凸轮 (1)按凸轮的形状分:移动凸轮 (板凸轮 )
圆柱凸轮
尖端推杆 (2)按从动件端部型式分 滚子推杆
平底推杆
直动推杆 (3)按从动件的运动方式分 摆动推杆
凸轮机构的命名:
从动件
原动件
对心
• 沿-w方向将基圆作相应等分;
• 沿导路方向截取相应的位移, 得到一系列点;
• 光滑联接。
2)对心直动滚子推杆盘形凸轮机构
s
h
h/2
w
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
4
89
13 14
14 1
取长度比例尺l绘图
13
2
12 w
3
实际廓线
11
4
10
5
9
6
7
A5
C
6
2
B B180°B
6 5
4C
C
5
4φ3
C
φ3 2
A1Leabharlann R(3)按-w 方向划分圆R得 A0、A1、A2等点; 即得机架 反转的一系列
位置;
A4 A3
A2
(4)找从动件反转后的一系

机械原理_第4章__凸轮机构及其设计

机械原理_第4章__凸轮机构及其设计

图4.1 内燃机配气凸轮机构
图4.2
绕线机排线凸轮机构
图4.3所示为录音机卷带装置中的凸轮机构。工作时,凸 轮1处于图示最低位置,在弹簧5的作用下,安装于带轮轴上 的摩擦轮3紧靠卷带轮4,从而将磁带卷紧。停止放音时,凸 轮1随按键上移,其轮廓迫使从动件顺时针方向摆动,使摩 擦轮与卷带轮分离,从而停止卷带。
1. 多项式运动规律
多项式运动规律的一般形式为
s = C 0 + C 1δ + C 2 δ 2 + C 3δ 3 + L + C n δ n
式中, δ 为凸轮转角;s为从动件位 为凸轮转角;s C C C C C 移; 0 , 1 , 2 , 3 ,…, n 为待定常数,可利用边 界条件来确定。 常用的有一次(n=1)多项式(即等速运动规律) 常用的有一次(n=1)多项式(即等速运动规律);二次 (n=2)多项式(即等加速等减速运动规律);五次(n=5) (n=2)多项式(即等加速等减速运动规律);五次(n=5) 多项式运动规律。
图4.10 改进等速 运动规律
图4.11 改进等加速等减速 运动规律
【例4.1】 直动从动件凸轮机构。已知:从动件行程 h=20mm,推程运动角 δ t = 150° ,远休止角 δ s = 60°,回程 运动角 δ h = 120° ,近休止角 δ 's = 30° ;从动件推程、回程分 别采用简谐运动规律和摆线运动规律。试写出从动件一 个运动循环的位移、速度和加速度方程。 解:(1) 从动件推程运动方程。 推程段采用简谐运动规律,故将推程运动角 δ t = 150° 5π /6、行程h=20mm代入简谐运动规律推程运 = 动方程式,可推出
● 4.4 凸轮轮廓曲线的设计——解析法 凸轮轮廓曲线的设计——解析法 曲线的设计—— ●4.4.1 滚子直动从动件盘形凸轮机构 ●4.4.2 滚子摆动从动件盘形凸轮机构理论轮廓 曲线方程 ●4.4.3 平底直动从动件盘形凸轮机构 ●4.4.4 滚子直动从动件圆柱凸轮机构 ● 4.5 凸轮机构基本尺寸的确定 ●4.5.1 凸轮机构的压力角和自锁 ●4.5.2 凸轮基圆半径的确定 ●4.5.3 滚子半径的选择 ●4.5.4 平底从动件的平底尺寸的确定 ● 小结

机械原理-凸轮机构及其设计

机械原理-凸轮机构及其设计

第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。

2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。

缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。

二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。

易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。

不能与凹槽的凸轮轮廓时时处处保持接触。

平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。

不能与凹槽的凸轮轮廓时时处处保持接触。

3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。

(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。

4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。

①等宽凸轮机构② 等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O 为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0 称为基圆半径。

推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。

推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。

回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。

休止:推杆处于静止不动的阶段。

推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。

机械原理第6章 凸轮机构及其设计

机械原理第6章  凸轮机构及其设计

优点: 1)从动件可以实现复杂运动规律。 2)结构简单、紧凑,能准确实现预期运动,运动特性好。 3)性能稳定,故障少,维护保养方便。 4)设计简单。 缺点: 凸轮与从动件为高副接触,易于磨损。由于凸轮的轮廓 曲线通常都比较复杂,因而加工比较困难。
2.凸轮机构的分类
盘形凸轮(图6-1)
(1)按凸轮的e and follo wer displacement(凸轮转角 与从动件的位移)
Fig.6-10 Motion of the follower(凸轮机构运动循环图)
6.2 从动件的运动规律及其设计
1.从动件的基本运动规律
(1)多项式类运动规律
1)一次多项式运动规律。
移动凸轮(图6-2)
圆柱凸轮(图6-3) 尖底从动件
(2)按从动件的形状分类
(图6-4)
滚子从动件
平底从动件
曲底从动件
(3)按从动件的运动形式分类
(图6-4、图6-5)
直动从动件 摆动从动件 力封闭方式(图6-6) 形封闭方式(图6-7)
(4)按凸轮与从动件维持高副接触的方式分类
Fig.6-2 Translating cam mechanisms(移动凸轮机构)
1.凸轮机构的相对运动原理
如图6-19a所示,在直动尖底从动件盘形凸轮机构中,当凸轮 以等角速度ω作逆时针方向转动时,从动件作往复直线移动。设 想给整个凸轮机构加上一个绕凸轮回转中心O的反向转动,使反 转角速度等于凸轮的角速度,即反转角速度为-ω。此时,凸轮 将静止不动,而从动件一方面随导路绕O点以角速度-ω转动,分 别占据B′1、B′2,同时又沿其导路方向作相对移动,分别占据B1、 B2等位置。因此,从动件尖底导路的反转和从动件相对导路移动 的复合运动轨迹,便形成了凸轮的轮廓曲线,这就是凸轮机构的 相对运动原理,也称反转法原理

机械原理课程设计凸轮机构设计说明书

机械原理课程设计凸轮机构设计说明书

全面探究凸轮机构设计原理及方法凸轮机构是一种常用的机械传动装置,通过凸轮和摆杆的配合组成,具有可逆性、可编程性和高精度的特点。

本文将从设计原理、设计方法和优化策略三个方面探究凸轮机构设计的要点。

一、设计原理
凸轮机构的设计原理是在摆杆与凸轮配合时,摆杆可以沿凸轮轮廓实现规定的运动规律,如直线运动、往返运动和旋转运动等。

凸轮可以根据运动轨迹、运动频率和运动速度等要求,通过凸轮轮廓的设计来完成。

凸轮轮廓的设计包括了初步设计、动力学分析、运动规划等步骤。

二、设计方法
凸轮机构的设计方法包括手工绘图及设计软件辅助。

手工绘图是传统的凸轮轮廓设计方法,适用于简单的凸轮机构,如往复式转动机构、转动转动机构等;而对于复杂的凸轮机构,可以利用计算机辅助设计软件,如ProEngineer、CATIA、AutoCAD等,进行三维建模、运动模拟和优化设计。

此外,对于凸轮机构的设计还需要考虑到强度计算、可靠性分析等相关问题。

三、优化策略
凸轮机构的设计优化策略主要包括凸轮轮廓的形状优化、摆杆的长度优化和机构传动效率的优化等。

凸轮轮廓的形状优化通常是通过
Cycloid、Involute、Bezier等曲线的拟合来实现;摆杆的长度优化可以通过数学模型来建立,利用遗传算法、粒子群算法等优化算法进行
求解;传动效率的优化可以通过轮廓优化、材料优化、润滑优化等途
径来进行。

凸轮机构的设计是机械工业中非常重要的一环,它涉及到运动学、动力学、力学等多个学科的知识,需要学习者在多方面进行深入研究
和实践。

通过对凸轮机构的深入探究,我们可以更好地理解机械原理
的精髓,提高机械设计的水平和能力。

机械原理第四章凸轮机构及其设计

机械原理第四章凸轮机构及其设计
图示等加速—等速—等减速组合运动规律
组合运动规律
组合后的从动件运动规律应满足的条件: 1. 满足工作对从动件特殊的运动要求。 2. 各段运动规律的位移、速度和加速度曲线在连接点处其值应分别相等,避免刚性冲击和柔性冲击
,这是运动规律组合时应满足的边界条件。 3. 应使最大速度vmax和最大加速度amax的值尽可能小,以避免过大的动量和惯性力对机构运转造成
摆动从动件盘形凸轮廓线的设计
(1)选取适当的比例尺,作出从动件的位移线图,并将推程和回程区 间位移曲线的横坐标各分成若干等份。与移动从动件不同的是,这 里纵坐标代表从动件的摆角, 单位角度。
移动从动件盘形凸轮廓线的设计
若同时作出这族滚子圆的内、外包络线 h'和 h" 则形成槽凸轮的轮廓曲线。
由上述作图过程可知,在滚子从动件盘形凸 轮机构的设计中,r0指的是理论廓线的基圆半 径。需要指出的是,从动件的滚子与凸轮实 际廓线的接触点是变化的。
移动从动件盘形凸轮廓线的设计
偏置移动滚子从动件盘形凸轮机构具体设计 步骤演示
凸轮廓线设计的基本原理
反转时,凸轮机构的运动: 凸轮固定不动,而让从动件连同导路一起 绕O点以角速度(-ω)转过φ1角 。 此时从动件将一方面随导路一起以角速度 (-ω)转动,同时又在导路中作相对移动 ,运动到图中粉红色虚线所示的位置,从 动件向上移动的距离与前相同。 从动件尖端所占据的位置 B 一定是凸轮轮 廓曲线上的一点。若继续反转从动件,可 得凸轮轮廓曲线上的其它点。
基本概念
偏距 凸轮回转中心至从动件导路的偏置距离 e。
偏距圆 以e为半径作的圆。
基本概念
行程 从动件往复运动的最大位移,用h表示 。
基本概念
推程 从动件背离凸轮轴心运动的行程。

机械原理 第 章 凸轮机构及其设计

机械原理 第 章 凸轮机构及其设计

13 14
1) 将位移曲线若干等分;
2) 沿-w方向将偏距圆作相应等分;
3) 沿导路方向截取相应的位移,得 到一系列点;
4) 光滑联接。
5)偏置直动滚子从动件盘形凸轮机构
取长度比例尺l绘图
s
h
w h/2
13 12 11
10 w
9
8 7
14 1 2
3 4 5 6
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
↑对心直动尖端推杆盘形 凸轮机构
↓对心直动滚子推杆盘形 凸轮机构
↑偏置直动尖端推杆盘形凸 轮机构
↓对心直动平底推杆盘形 凸轮机构
↑尖端摆动凸轮机构 ↓平底摆动凸轮机构
↑滚子摆动凸轮机构
(4)按凸轮与从动件保持接触的方式分 力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持 接触的
刚性冲击 柔性冲击 无冲击 柔性冲击 无冲击
适用场合
低速轻载 中速轻载 高速中载 中低速中载 中高速轻载
除上述以外,还有其它运动规律,或将上述常用运动规律组 合使用。如“改进梯形加速度运动规律”、“变形等速运动规 律”。
3.推杆运动规律的选择
1)只要求当凸轮转过某一角度δ0时,推杆完成一行程h或φ。
4
89
13 14
取长度比例尺l绘图
14 1
13
2
12 w
3
11
4
10
5
9
6
7
实际廓线
理论廓线
4)偏置直动尖端推杆盘形凸轮机构
取长度比例尺l绘图
s
h
w h/2
13 12 11
10 w
9

机械原理课程设计凸轮机构

机械原理课程设计凸轮机构

Part Three
机械原理课程设计 凸轮机构方案
设计目的和要求
设计目的:掌握凸轮机构的基本原 理和设计方法
设计内容:包括凸轮机构的设计、 制造、装配和调试
添加标题
添加标题
添加标题
添加标题
设计要求:满足凸轮机构的运动要 求,如速度、加速度、行程等
设计步骤:明确设计任务、选择设 计方案、进行设计计算、绘制设计 图纸、制作模型、进行实验验证等
凸轮轮廓曲线的设计方法包括解析法、图 解法和计算机辅助设计等。
凸轮轮廓曲线的设计需要满足凸轮机构 的运动规律、负载、速度、加速度等要 求,同时需要考虑到凸轮的制造工艺和 成本等因素。
凸轮机构压力角计算
压力角定义:凸轮与从动件接触点 处法线与凸轮轮廓线之间的夹角
压力角影响因素:凸轮轮廓线形状、 从动件形状、凸轮半径、从动件半 径
凸轮机构工作原理
凸轮机构通过凸轮与从动件 的接触,实现从动件的位移 和运动
凸轮机构由凸轮、从动件和 机架组成
凸轮机构的工作原理是利用 凸轮的轮廓曲线,使从动件
产生预定的运动
凸轮机构的应用广泛,如汽 车、机床、机器人等领域
凸轮机构分类
按照凸轮运动规律分类:等 速运动凸轮、等加速运动凸 轮、等减速运动凸轮等
Part Six
凸轮机构运动仿真 与优化
运动仿真模型的建立
确定凸轮机构的类型和参数 建立凸轮机构的三维模型 设定运动仿真的初始条件和边界条件 设定运动仿真的时间步长和仿真时间 设定运动仿真的输出变量和观察点 运行运动仿真,观察仿真结果,并进行优化
运动仿真结果分析
凸轮机构运动仿 真结果:包括位 移、速度、加速 度等参数
凸轮从动件的类 型:滚子从动件、 滑块从动件、圆 柱从动件等

机械原理_凸轮机构设计

机械原理_凸轮机构设计

机械原理课程设计——凸轮机构设计(一)目录 (1)_________________________(一)、题目及原始数据 (2)(二)、推杆运动规律及凸轮廓线方程 (3)(三)、计算程序方框图 (5)(四)、计算源程序 (6)(五)、程序计算结果及分析 (10)(六)、凸轮机构图 (15)(七)、心得体会 (16)(八)、参考书 (16)(一)、题目及原始数据试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计,凸轮以1rad/s的角速度沿逆时针方向转动。

要求:(1)、推程运动规律为等加速等减速运动,回程运动规律为五次多项式运动规律;(2)、打印出原始数据;(3)、打印出理论轮廓和实际轮廓的坐标值;(4)、打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)、打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;(6)、打印出凸轮运动的位移;(7)、打印最后所确定的凸轮的基圆半径。

原始数据如下:r0=0.015; 初选的基圆半径r0Deltar0=0.0005; 当许用压力角或许用最小曲率半径不满足时,r0以Δr0为步长增加重新计算rr=0.010; 滚子半径r rh=0.028; 推杆行程he=0.005; 偏距eomega=1; 原动件凸轮运动角速度,逆时针ωdelta1=pi/3; 近休止角δ1delta2=2*pi/3; 推程运动角δ2delta3=pi/2; 远休止角δ3delta4=pi/2; 回程运动角δ4alpha1=pi/6; 推程许用压力角[α1]alpha2=(70/180)*pi; 回程许用压力角[α2]rho0min=0.3*rr; 许用最小曲率半径ραmin (二)、推杆运动规律及凸轮廓线方程推杆运动规律:(1)近休阶段:0o≤δ<60 os=0v=0a=0(2)推程阶段:60o≤δ<180 o等加速运动规律:60o≤δ<120 os=2h(δ-60o)2/(120 o)2v=4hω(δ-60o)/(120 o)2a=4hω2/(120 o)2等减速运动规律:120o≤δ<180 os=h-2h(120o -(δ-60o))2/(120 o)2v=4hω(120o -(δ-60o))/(120 o)2a=-4hω2/(120 o)2(3)远休阶段:180o≤δ<270 os=hv=0a=0(4)回程阶段:270o≤δ≤360 o五次多项式运动规律:s=h-(10h(δ-270o)3/(90 o)3-15h(δ-270o)4/(90 o)4+6h(δ-270o)5/(90 o)5)v=-(30hω(δ-270o)2/(90 o)3-60hω(δ-270o)3/(90 o)4+30hω(δ-270o)4/(90 o)5)a=-(60hω2(δ-270o)/(90 o)3-180hω2(δ-270o)2/(90o)4+120hω2(δ-270o)3/(90 o)5)凸轮廓线方程:(1)理论廓线方程:s0=sqrt(r02-e2)x=(s0+s)sinδ+ecosδy=(s0+s)cosδ-esinδ(2)实际廓线方程先求x,y的一阶导数x’=(v/ω-e) sinδ+(s0+s)cosδy’=(v/ω-e) cosδ-(s0+s)sinδ再求sinθ,cosθsinθ=x’/sqrt((x’)2+(y’)2)cosθ=-y’/sqrt((x’)2+(y’)2)最后求实际廓线方程x1=x-rr cosθy1=y-rr sinθ压力角方程:曲率半径计算公式:(四)、计算源程序%凸轮机构大作业Matlab语言源程序%选题:偏置直动滚子推杆盘形凸轮机构5—A% 推程运动规律:等加速等减速运动% 回程运动规律:五次多项式运动% 作者:WYH 学号:xxxxxxxx 日期:2007.12.26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all;%close all;clc;%赋初值r0=0.015;Deltar0=0.0005;rr=0.010;h=0.028;e=0.005;omega=1; %原动件凸轮运动角速度,逆时针delta1=pi/3; %近休止角delta2=2*pi/3; %推程运动角delta3=pi/2; %远休止角delta4=pi/2; %回程运动角alpha1=pi/6; %推程许用压力角alpha2=(70/180)*pi; %回程许用压力角rho0min=0.3*rr; %许用最小曲率半径del1=delta1+delta2;del2=del1+delta3;temp=0; %判断是否执行r0=r0+Deltar0的变量while (temp==0)temp=1;s0=sqrt(r0^2-e^2); %求解s0alpha1max=0;delta1max=0; %定义alpha1的最大值以及对应的delta1值alpha2max=0;delta2max=0; %定义alpha2的最大值以及对应的delta2值rhoamin=r0-rr;deltamin=0; %定义rhoa的最小值以及对应的delta值for I=0:120; %圆周120等分delta=(I*3/180)*pi;if delta>=0&delta<delta1 %近休阶段s=0; %位移v=0; %速度a=0; %加速度elseif delta>=delta1&delta<(delta2/2)+delta1 %等加速推程s=2*h*(delta-delta1)^2/delta2^2;v=4*h*omega*(delta-delta1)/delta2^2;a=4*h*omega^2/delta2^2;elseif delta>=(delta2/2)+delta1&delta<del1 %等减速推程s=h-2*h*(delta2-(delta-delta1))^2/delta2^2;v=4*h*omega*(delta2-(delta-delta1))/delta2^2;a=-4*h*omega^2/delta2^2;elseif delta>=del1&delta<del2 %远休阶段s=h;v=0;a=0;elseif delta>=del2&delta<=2*pi %五次多项式运动规律回程s=h-(10*h*(delta-del2)^3/delta3^3-15*h*(delta-del2)^4/delta3^4+6*h*(delta-del 2)^5/delta3^5);v=-(30*h*omega*(delta-del2)^2/delta4^3-60*h*omega*(delta-del2)^3/delta4^4 +30*h*omega*(delta-del2)^4/delta4^5);a=-(60*h*omega^2*(delta-del2)/delta4^3-180*h*omega^2*(delta-del2)^2/delta 4^4+120*h*omega*(delta-del2)^3/delta4^5);endx=(s0+s)*sin(delta)+e*cos(delta); %理论轮廓方程式y=(s0+s)*cos(delta)-e*sin(delta);x_=(v/omega-e)*sin(delta)+(s0+s)*cos(delta); %理论轮廓对delta求一次导数y_=(v/omega-e)*cos(delta)-(s0+s)*sin(delta);x__=(a/omega^2-(s0+s))*sin(delta)+(2*v/omega-e)*cos(delta); %理论轮廓对delta求二次导数y__=(a/omega^2-(s0+s))*cos(delta)-(2*v/omega--e)*sin(delta);x1=x-rr*(-y_/sqrt(x_^2+y_^2)); %实际轮廓方程式y1=y-rr*(x_/sqrt(x_^2+y_^2));alpha=atan((v-e)/(sqrt(r0^2-e^2)+s)); %求压力角if delta>=del2&delta<=2*pi %判断是否为回程if abs(alpha)>alpha2 %判断是否大于回程许用压力角r0=r0+Deltar0;temp=0;break;elseif abs(alpha)>alpha2max %满足许用压力角,则找出回程最大压力角alpha2max=abs(alpha);delta2max=delta;endendelseif abs(alpha)>alpha1 %判断是否大于推程许用压力角r0=r0+Deltar0; %不满足许用压力角,则增大基圆半径重新计算temp=0;break;elseif abs(alpha)>alpha1max %满足许用压力角,则找出推程最大压力角alpha1max=abs(alpha);delta1max=delta;endendendrho=(x_^2+y_^2)^(3/2)/(x_*y__-y_*x__); %计算曲率半径if rho<0rhoa=abs(rho)-rr;if rhoa>=rho0min %满足最小曲率半径if rhoa<rhoamin %找出实际轮廓曲线的最小曲率半径及其对应的delta角rhoamin=rhoa;deltamin=delta;endelser0=r0+Deltar0;temp=0;break;endendDelta(I+1)=(delta/pi)*180; %delta由弧度值转化为角度值X(I+1)=x*1000;Y(I+1)=y*1000;X1(I+1)=x1*1000;Y1(I+1)=y1*1000;S(I+1)=s;V(I+1)=v;A(I+1)=a;ALPHA(I+1)=(alpha/pi)*180;PHO(I+1)=rho*1000;endenddeltamin=(deltamin/pi)*180;alpha1max=(alpha1max/pi)*180;delta1max=(delta1max/pi)*180;alpha2max=(alpha2max/pi)*180;delta2max=(delta2max/pi)*180;figure(1);axis equal;hold ont=0:0.01:2*pi;xx=r0*cos(t)*1000;yy=r0*sin(t)*1000;xxx=(rr*cos(t)+X(1)/1000)*1000;yyy=(rr*sin(t)+Y(1)/1000)*1000;xxxx=e*cos(t)*1000;yyyy=e*sin(t)*1000;plot(xx,yy,'m--',X,Y,':',X1,Y1,'k',xxx,yyy,'c-',xxxx,yyyy,'y-');%画出理论轮廓及实际轮廓以及基圆legend('基圆','理论轮廓','实际工作轮廓');plot(0,0,'ko')plot(X(1),Y(1),'ko');title('凸轮轮廓曲线图');xlabel('X/mm');ylabel('Y/mm');figure(2);plot(Delta,S,Delta,V,'r--',Delta,A,'k:'); %画出位移、速度、加速度曲线图title('凸轮运动规律曲线图');xlabel('{\delta}/(^o)');ylabel('s/m v/m.s^{-1} a/m.s^{-2}');legend('位移','速度','加速度');%结果显示:disp([num2str(Delta'),num2str(X'),num2str(Y'),num2str(X1'),num2str(Y1'),num 2str(S'*1000)]);disp(['rhoamin=',num2str(rhoamin*1000),'deltamin=',num2str(deltamin)]);disp(['alpha1max=',num2str(alpha1max),'delta1max=',num2str(delta1max)]);disp(['alpha2max=',num2str(alpha2max),'delta2max=',num2str(delta2max)]);disp(['r0=',num2str(r0*1000)]);(五)、程序计算结果及分析求得ραmin及对应的δαmin值:rhoamin=14.0952 deltamin=288求得α1max及对应的δ1max值:alpha1max=29.782 delta1max=120求得α2max及对应的δ2max值:alpha2max=47.4426 delta2max=324求得最后的基圆半径r0为:r0=24.5(七)、心得体会通过对凸轮机构的编程设计:(1)、熟悉了推杆的运动规律特别是等加速等减速和五次多项式运动规律;(2)、掌握了已知推杆运动规律用解析法对凸轮轮廓曲线的进行设计的方法以及设计时应该注意的各个性能要求;(3)、加深了对Matlab语言的熟悉与应用(八)、参考书(1)《机械原理》第七版高等教育出版社(2)《MATLAB程序设计教程》中国水利水电出版社。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理课程设计——凸轮机构设计(一)目录 (1)_________________________(一)、题目及原始数据 (2)(二)、推杆运动规律及凸轮廓线方程 (3)(三)、计算程序方框图 (5)(四)、计算源程序 (6)(五)、程序计算结果及分析 (10)(六)、凸轮机构图 (15)(七)、心得体会 (16)(八)、参考书 (16)(一)、题目及原始数据试用计算机辅助设计完成偏置直动滚子推杆盘形凸轮机构的设计,凸轮以1rad/s的角速度沿逆时针方向转动。

要求:(1)、推程运动规律为等加速等减速运动,回程运动规律为五次多项式运动规律;(2)、打印出原始数据;(3)、打印出理论轮廓和实际轮廓的坐标值;(4)、打印出推程和回程的最大压力角,以及出现最大压力角时凸轮的相应转角;(5)、打印出凸轮实际轮廓曲线的最小曲率半径,以及相应的凸轮转角;(6)、打印出凸轮运动的位移;(7)、打印最后所确定的凸轮的基圆半径。

原始数据如下:r0=0.015; 初选的基圆半径r0Deltar0=0.0005; 当许用压力角或许用最小曲率半径不满足时,r0以Δr0为步长增加重新计算rr=0.010; 滚子半径r rh=0.028; 推杆行程he=0.005; 偏距eomega=1; 原动件凸轮运动角速度,逆时针ωdelta1=pi/3; 近休止角δ1delta2=2*pi/3; 推程运动角δ2delta3=pi/2; 远休止角δ3delta4=pi/2; 回程运动角δ4alpha1=pi/6; 推程许用压力角[α1]alpha2=(70/180)*pi; 回程许用压力角[α2]rho0min=0.3*rr; 许用最小曲率半径ραmin (二)、推杆运动规律及凸轮廓线方程推杆运动规律:(1)近休阶段:0o≤δ<60 os=0v=0a=0(2)推程阶段:60o≤δ<180 o等加速运动规律:60o≤δ<120 os=2h(δ-60o)2/(120 o)2v=4hω(δ-60o)/(120 o)2a=4hω2/(120 o)2等减速运动规律:120o≤δ<180 os=h-2h(120o -(δ-60o))2/(120 o)2v=4hω(120o -(δ-60o))/(120 o)2a=-4hω2/(120 o)2(3)远休阶段:180o≤δ<270 os=hv=0a=0(4)回程阶段:270o≤δ≤360 o五次多项式运动规律:s=h-(10h(δ-270o)3/(90 o)3-15h(δ-270o)4/(90 o)4+6h(δ-270o)5/(90 o)5)v=-(30hω(δ-270o)2/(90 o)3-60hω(δ-270o)3/(90 o)4+30hω(δ-270o)4/(90 o)5)a=-(60hω2(δ-270o)/(90 o)3-180hω2(δ-270o)2/(90o)4+120hω2(δ-270o)3/(90 o)5)凸轮廓线方程:(1)理论廓线方程:s0=sqrt(r02-e2)x=(s0+s)sinδ+ecosδy=(s0+s)cosδ-esinδ(2)实际廓线方程先求x,y的一阶导数x’=(v/ω-e) sinδ+(s0+s)cosδy’=(v/ω-e) cosδ-(s0+s)sinδ再求sinθ,cosθsinθ=x’/sqrt((x’)2+(y’)2)cosθ=-y’/sqrt((x’)2+(y’)2)最后求实际廓线方程x1=x-rr cosθy1=y-rr sinθ压力角方程:曲率半径计算公式:(四)、计算源程序%凸轮机构大作业Matlab语言源程序%选题:偏置直动滚子推杆盘形凸轮机构5—A% 推程运动规律:等加速等减速运动% 回程运动规律:五次多项式运动% 作者:WYH 学号:xxxxxxxx 日期:2007.12.26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all;%close all;clc;%赋初值r0=0.015;Deltar0=0.0005;rr=0.010;h=0.028;e=0.005;omega=1; %原动件凸轮运动角速度,逆时针delta1=pi/3; %近休止角delta2=2*pi/3; %推程运动角delta3=pi/2; %远休止角delta4=pi/2; %回程运动角alpha1=pi/6; %推程许用压力角alpha2=(70/180)*pi; %回程许用压力角rho0min=0.3*rr; %许用最小曲率半径del1=delta1+delta2;del2=del1+delta3;temp=0; %判断是否执行r0=r0+Deltar0的变量while (temp==0)temp=1;s0=sqrt(r0^2-e^2); %求解s0alpha1max=0;delta1max=0; %定义alpha1的最大值以及对应的delta1值alpha2max=0;delta2max=0; %定义alpha2的最大值以及对应的delta2值rhoamin=r0-rr;deltamin=0; %定义rhoa的最小值以及对应的delta值for I=0:120; %圆周120等分delta=(I*3/180)*pi;if delta>=0&delta<delta1 %近休阶段s=0; %位移v=0; %速度a=0; %加速度elseif delta>=delta1&delta<(delta2/2)+delta1 %等加速推程s=2*h*(delta-delta1)^2/delta2^2;v=4*h*omega*(delta-delta1)/delta2^2;a=4*h*omega^2/delta2^2;elseif delta>=(delta2/2)+delta1&delta<del1 %等减速推程s=h-2*h*(delta2-(delta-delta1))^2/delta2^2;v=4*h*omega*(delta2-(delta-delta1))/delta2^2;a=-4*h*omega^2/delta2^2;elseif delta>=del1&delta<del2 %远休阶段s=h;v=0;a=0;elseif delta>=del2&delta<=2*pi %五次多项式运动规律回程s=h-(10*h*(delta-del2)^3/delta3^3-15*h*(delta-del2)^4/delta3^4+6*h*(delta-del 2)^5/delta3^5);v=-(30*h*omega*(delta-del2)^2/delta4^3-60*h*omega*(delta-del2)^3/delta4^4 +30*h*omega*(delta-del2)^4/delta4^5);a=-(60*h*omega^2*(delta-del2)/delta4^3-180*h*omega^2*(delta-del2)^2/delta 4^4+120*h*omega*(delta-del2)^3/delta4^5);endx=(s0+s)*sin(delta)+e*cos(delta); %理论轮廓方程式y=(s0+s)*cos(delta)-e*sin(delta);x_=(v/omega-e)*sin(delta)+(s0+s)*cos(delta); %理论轮廓对delta求一次导数y_=(v/omega-e)*cos(delta)-(s0+s)*sin(delta);x__=(a/omega^2-(s0+s))*sin(delta)+(2*v/omega-e)*cos(delta); %理论轮廓对delta求二次导数y__=(a/omega^2-(s0+s))*cos(delta)-(2*v/omega--e)*sin(delta);x1=x-rr*(-y_/sqrt(x_^2+y_^2)); %实际轮廓方程式y1=y-rr*(x_/sqrt(x_^2+y_^2));alpha=atan((v-e)/(sqrt(r0^2-e^2)+s)); %求压力角if delta>=del2&delta<=2*pi %判断是否为回程if abs(alpha)>alpha2 %判断是否大于回程许用压力角r0=r0+Deltar0;temp=0;break;elseif abs(alpha)>alpha2max %满足许用压力角,则找出回程最大压力角alpha2max=abs(alpha);delta2max=delta;endendelseif abs(alpha)>alpha1 %判断是否大于推程许用压力角r0=r0+Deltar0; %不满足许用压力角,则增大基圆半径重新计算temp=0;break;elseif abs(alpha)>alpha1max %满足许用压力角,则找出推程最大压力角alpha1max=abs(alpha);delta1max=delta;endendendrho=(x_^2+y_^2)^(3/2)/(x_*y__-y_*x__); %计算曲率半径if rho<0rhoa=abs(rho)-rr;if rhoa>=rho0min %满足最小曲率半径if rhoa<rhoamin %找出实际轮廓曲线的最小曲率半径及其对应的delta角rhoamin=rhoa;deltamin=delta;endelser0=r0+Deltar0;temp=0;break;endendDelta(I+1)=(delta/pi)*180; %delta由弧度值转化为角度值X(I+1)=x*1000;Y(I+1)=y*1000;X1(I+1)=x1*1000;Y1(I+1)=y1*1000;S(I+1)=s;V(I+1)=v;A(I+1)=a;ALPHA(I+1)=(alpha/pi)*180;PHO(I+1)=rho*1000;endenddeltamin=(deltamin/pi)*180;alpha1max=(alpha1max/pi)*180;delta1max=(delta1max/pi)*180;alpha2max=(alpha2max/pi)*180;delta2max=(delta2max/pi)*180;figure(1);axis equal;hold ont=0:0.01:2*pi;xx=r0*cos(t)*1000;yy=r0*sin(t)*1000;xxx=(rr*cos(t)+X(1)/1000)*1000;yyy=(rr*sin(t)+Y(1)/1000)*1000;xxxx=e*cos(t)*1000;yyyy=e*sin(t)*1000;plot(xx,yy,'m--',X,Y,':',X1,Y1,'k',xxx,yyy,'c-',xxxx,yyyy,'y-');%画出理论轮廓及实际轮廓以及基圆legend('基圆','理论轮廓','实际工作轮廓');plot(0,0,'ko')plot(X(1),Y(1),'ko');title('凸轮轮廓曲线图');xlabel('X/mm');ylabel('Y/mm');figure(2);plot(Delta,S,Delta,V,'r--',Delta,A,'k:'); %画出位移、速度、加速度曲线图title('凸轮运动规律曲线图');xlabel('{\delta}/(^o)');ylabel('s/m v/m.s^{-1} a/m.s^{-2}');legend('位移','速度','加速度');%结果显示:disp([num2str(Delta'),num2str(X'),num2str(Y'),num2str(X1'),num2str(Y1'),num 2str(S'*1000)]);disp(['rhoamin=',num2str(rhoamin*1000),'deltamin=',num2str(deltamin)]);disp(['alpha1max=',num2str(alpha1max),'delta1max=',num2str(delta1max)]);disp(['alpha2max=',num2str(alpha2max),'delta2max=',num2str(delta2max)]);disp(['r0=',num2str(r0*1000)]);(五)、程序计算结果及分析求得ραmin及对应的δαmin值:rhoamin=14.0952 deltamin=288求得α1max及对应的δ1max值:alpha1max=29.782 delta1max=120求得α2max及对应的δ2max值:alpha2max=47.4426 delta2max=324求得最后的基圆半径r0为:r0=24.5(七)、心得体会通过对凸轮机构的编程设计:(1)、熟悉了推杆的运动规律特别是等加速等减速和五次多项式运动规律;(2)、掌握了已知推杆运动规律用解析法对凸轮轮廓曲线的进行设计的方法以及设计时应该注意的各个性能要求;(3)、加深了对Matlab语言的熟悉与应用(八)、参考书(1)《机械原理》第七版高等教育出版社(2)《MATLAB程序设计教程》中国水利水电出版社。

相关文档
最新文档